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THE PLAN

1) Motivation: what do we want to do and
why is it interesting?

2) Method: how to get numbers?

3) Results: 1D & 3D Fermi gases



ULTRACOLD FERMI GASES:
WHY ARE THEY INTERESTING?

(electrons in metals, nuclear physics, neutron stars,
superfluidity, controllable experiments, ...)

Reviews:
[Ketterle, Zwierlein '08]
[Giorgini, Pitevskii, Stringari '08]
[Bloch, Dalibard, Zwerger '08]
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KEY QUESTIONS

- what happens to the ground-state at finite polarization?
(are there ?)

- how does the for superfluidity
change with polarization?

- what happens in systems with
particles of ?



Model: contact interaction
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bcs theory
molecular dynamics
matrix product states

diagrammatic monte (Iéae% e
bethe ansatz machine learning

perturbation theorygsgmc
density functional theory

quantum monte carlo

.dmc , dmft vmcCimc :
functional renormalization group

afdA3 tensor networksfeiame
mean field d mrg'aﬂgﬁggﬂ dynamics

pigs . .
lattice gauge theories

exact diagonalization

coupled cluster

*not exhaustive
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What do we need to compute?

(the only technical slide, promise!)

Z ~ Trle 1] = Tr[ePT+ W)

() ~ %Tr[(A? e_ﬂﬁ]]

Rewrite the problem as a path-integral:
Z=[D¢ detMy detM; = [Dg e5I7

"all" that is left to do: evaluate high-dimensional integral



roll some dice

(create random auxiliary field configurations)



Quantum Monte Carlo (QMC)
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Quantum Monte Carlo (QMC)

(O) = [ D¢ P[] O[]

i. produce a random sample of the
auxiliary field ¢

ii. evaluate the integrand with that value

iii. save result & repeat

iv. stop after enough samples and
compute the average
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THE SIGN PROBLEM

(computational effort increases exponentially with system size)

[Troyer, Wiese '05]
probability measure not
positive (semi-)definite if:

Ny # N,

my # m,
g>0

—
Z= [ D¢ detM; det M



Option I: imaginary mass-imbalance (iHMC)

mases have an imaginary part and are

® @ complex conjugate to each other

-1®

[de Forcrand, Philipsen '02]
[Braun+ '13]

[Roscher, Braun, Chen, Drut '13]
[Braun, Drut, Roscher '15]
[Loheac, Braun, Drut, Roscher '15]



Option I: imaginary mass-imbalance (iHMC)

mases have an imaginary part and are

® @ complex conjugate to each other

probability measure non-negative:
detM] detM; — |detM,|’

)
— 1 @ analytic continuation: im — m
to obtain results for real imbalances

same idea works for
spin-imbalanced systems at finite T
[de Forcrand, Philipsen '02]

[Braun+ '13] (complex chemical potentials)

[Roscher, Braun, Chen, Drut '13]
[Braun, Drut, Roscher '15]
[Loheac, Braun, Drut, Roscher '15]




Option ll: roll dice with imaginary sides (CL)

+1

(complexified auxiliary fields)



COMPLEX LANGEVIN: OVERVIEW

stochastic quantization: equilibrium distribution of a
(d + 1)-dimensional random process is identified with
the probability measure of our d-dimensional path integral

random walk governed by Langevin equation (Brownian motion):

Jdip 55[45]

[Parisi, Wu '81]
[Aarts '09; Seiler '17]
[Loheac, Drut '17;

LR, Porter, Drut, Braun '17]



COMPLEX LANGEVIN: OVERVIEW

stochastic quantization: equilibrium distribution of a
(d + 1)-dimensional random process is identified with
the probability measure of our d-dimensional path integral

random walk governed by Langevin equation (Brownian motion):

Jdip 55[45]

problem: S[¢] must be bounded from below!
[Parisi, Wu '81]
) [Aarts '09; Seiler '17]
[Loheac, Drut '17;
LR, Porter, Drut, Braun '17]

_ 7 }
S[p] = —1In (detM¢ deth)



First step: compare to other methods

[LR, Porter, Drut, Braun '17]
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[BA: lida, Wadati '07; Tracy, Widom '16]
[DFT-RG: Kemler, Pospiech, Braun '16]
[HMC: LR, Porter, Loheac, Drut '15]



First step: compare to other methods

[LR, Porter, Drut, Braun '17]

v =3.0
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1072
10—4,
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repulsive side:
Outliers skew

expectation values!
('fat tail' problem)

AV |
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[BA: lida, Wadati '07; Tracy, Widom '16]
[DFT-RG: Kemler, Pospiech, Braun '16]
[HMC: LR, Porter, Loheac, Drut '15]



First step: compare to other methods

[LR, Porter, Drut, Braun '17]
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[BA: lida, Wadati '07; Tracy, Widom '16]
[DFT-RG: Kemler, Pospiech, Braun '16]
[HMC: LR, Porter, Loheac, Drut '15]



spin polarization




polarized 1D fermions: equation of state

[LR, Drut, Braun in preparation]
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polarized 1D fermions: pair correlation

[LR, Drut, Braun in preparation]
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[LR, Drut, Braun in preparation]
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polarized 1D fermions: pair correlation

[LR, Drut, Braun in preparation]

k/kp

O )W, (), () i, (7))

signature of
FFLO type

pairing

y = g/n
N;—=N,

p - NT+N¢




mass imbalance




mass-imbalanced 1D fermions: CL & iHMC

[LR, Porter, Drut, Braun '17]
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mass-imbalanced 1D fermions: CL & iHMC

[LR, Porter, Drut, Braun '17]

excellent

agreement
form < 0.6
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mass-imbalanced 1D fermions: CL & iHMC

[LR, Porter, Drut, Braun '17]
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[Grimm, private communication]

5BCr 161Dy

53Cr 167Er

4OK 161Dy
5SCr 173Yb

experimental
mixtures
accessible!




COMPLEX LANGEVIN IN 1D

of CL & other methods (BA, DFT-RG, HMC, PT)
EOS of spin-imbalanced systems in agreement with perturbation theory
at all polarizations in 1D (no breakdown)

mass-imbalance: EOS up to
(no analytic solutions available!)



3D CALCULATIONS

same methods but computationally challenging!



3D CALCULATIONS

same methods but computationally challenging!

particularly interesting:

UNITARY FERMI GAS (UFG)



UFG at finite T: equation of state

[LR, Loheac, Drut, Braun in preparation]
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[experiment/BDMC: van Houcke+ '12]
[DHMC: Drut, Lahde, Wlazlowski, Magierski '12]



UFG at finite T: equation of state

[LR, Loheac, Drut, Braun in preparation]

3.5 /“.
good agreement 3.0 MM.
with experiment o1
2.51
and other _
I
P = CL results:
methods! =, finite lattice!
DHMC -
BDMC (V=9
L.5] experiment (MIT)
3rd order virial exp.
10 complex Langevin
—3 —2 —1 0 1 2 3 4
B

[experiment/BDMC: van Houcke+ '12]
[DHMC: Drut, Lahde, Wlazlowski, Magierski '12]



UFG at finite T: equation of state

[LR, Loheac, Drut, Braun in preparation]
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[experiment/BDMC: van Houcke+ '12]
[DHMC: Drut, Lahde, Wlazlowski, Magierski '12]



UFG at finite T: equation of state

[LR, Loheac, Drut, Braun in preparation]
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[experiment/BDMC: van Houcke+ '12]
[DHMC: Drut, Lahde, Wlazlowski, Magierski '12]



RECAP

imbalanced Fermi gases are hard to treat:
accessible with the method

CL compares well with other methods wherever possible

accessible
for systems with spin- and mass-imbalance



