
ULTRACOLD FERMIONS  
AWAY FROM BALANCED SYSTEMS

Lukas Rammelmüller, TU Darmstadt  
Hirschegg, January 2018

[LR, Drut, Braun in preparation]  
[LR, Porter, Drut, Braun Phys. Rev. D 96, 094506, 2017] 
[LR, Porter, Braun, Drut Phys. Rev. A 96, 033635, 2017]

HGS-HIRe
Helmholtz Graduate School for Hadron and Ion Research



THE PLAN

1) Motivation: what do we want to do and  
why is it interesting?

2) Method: how to get numbers?

3) Results: 1D & 3D Fermi gases



ULTRACOLD FERMI GASES:  
WHY ARE THEY INTERESTING?

(electrons in metals, nuclear physics, neutron stars,  
superfluidity, controllable experiments, ...)

Reviews:  
[Ketterle, Zwierlein '08]  

[Giorgini, Pitevskii, Stringari '08]  
[Bloch, Dalibard, Zwerger '08]
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spin polarization



mass imbalance



KEY QUESTIONS

- what happens to the ground-state at finite polarization?  
(are there inhomogeneous/supersolid phases?)

- how does the critical temperature for superfluidity  
change with polarization?

- what happens in systems with  
particles of different mass?
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What do we need to compute? 
(the only technical slide, promise!)
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What do we need to compute? 
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Rewrite the problem as a path-integral:  

 ∼ Tr[ ] = Tr[ ]e−βH
̂ 

e−β(  +  )T
̂ 

V
̂ 

⟨⟩ ∼ Tr[ ]1


̂ e−βH

̂ 

 = ∫ ϕ  det det ≡ ∫ ϕ M
↑

ϕ
M

↓

ϕ
e−S[ϕ]



What do we need to compute? 
(the only technical slide, promise!)

Rewrite the problem as a path-integral:  

"all" that is le� to do: evaluate high-dimensional integral

 ∼ Tr[ ] = Tr[ ]e−βH
̂ 
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roll some dice

 

(create random auxiliary field configurations)



Quantum Monte Carlo (QMC)

⟨⟩ = ∫ ϕ P[ϕ][ϕ]
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ii. evaluate the integrand with that value
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i. produce a random sample of the
auxiliary field 

ii. evaluate the integrand with that value

iii. save result & repeat

Quantum Monte Carlo (QMC)

⟨⟩ = ∫ ϕ P[ϕ][ϕ]

ϕ



i. produce a random sample of the
auxiliary field 

ii. evaluate the integrand with that value

iii. save result & repeat

iv. stop a�er enough samples and
compute the average

Quantum Monte Carlo (QMC)

⟨⟩ = ∫ ϕ P[ϕ][ϕ]

ϕ



Statistical uncertainties

σ  ∝  ( )# of (uncorrelated) samples‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
−1
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Statistical uncertainties

example: coin flips
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Statistical uncertainties

example: coin flips
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Statistical uncertainties

example: coin flips

 x 50  x 500  x 5000

σ  ∝  ( )# of (uncorrelated) samples‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
−1





THE SIGN PROBLEM
(computational effort increases exponentially with system size)

[Troyer, Wiese '05]



THE SIGN PROBLEM
(computational effort increases exponentially with system size)

 = ∫ ϕ  det detM
↑

ϕ
M

↓

ϕ

probability measure not  
positive (semi-)definite if:  

 
  

 

≠N↑ N↓

≠m↑ m↓

g > 0

[Troyer, Wiese '05]



mases have an imaginary part and are
complex conjugate to each other

Option I: imaginary mass-imbalance (iHMC)  

[de Forcrand, Philipsen '02]  
[Braun  '13]  
[Roscher, Braun, Chen, Drut '13]  
[Braun, Drut, Roscher '15]  
[Loheac, Braun, Drut, Roscher '15]

+



mases have an imaginary part and are
complex conjugate to each other

probability measure non-negative:  

analytic continuation:  
to obtain results for real imbalances

same idea works for  
spin-imbalanced systems at finite   

(complex chemical potentials)

Option I: imaginary mass-imbalance (iHMC)  

det det    →   | detM
↑

ϕ
M

↓

ϕ
Mϕ|2

  i   →  m̄ m̄

T
[de Forcrand, Philipsen '02]  
[Braun  '13]  
[Roscher, Braun, Chen, Drut '13]  
[Braun, Drut, Roscher '15]  
[Loheac, Braun, Drut, Roscher '15]

+



Option II: roll dice with imaginary sides (CL)  

  

(complexified auxiliary fields)



COMPLEX LANGEVIN: OVERVIEW

stochastic quantization: equilibrium distribution of a  
-dimensional random process is identified with  

the probability measure of our -dimensional path integral

random walk governed by Langevin equation (Brownian motion):

(d + 1)

d

= − + η(t)
∂ϕ

∂t

∂S[ϕ]

∂ϕ

[Parisi, Wu '81]  
[Aarts '09; Seiler '17]  

[Loheac, Drut '17;  
LR, Porter, Drut, Braun '17]



COMPLEX LANGEVIN: OVERVIEW

stochastic quantization: equilibrium distribution of a  
-dimensional random process is identified with  

the probability measure of our -dimensional path integral

random walk governed by Langevin equation (Brownian motion):

problem:  must be bounded from below!

(d + 1)

d

= − + η(t)
∂ϕ

∂t

∂S[ϕ]

∂ϕ

S[ϕ]

S[ϕ]  ≡ − ln (det det )M
↑

ϕ
M

↓

ϕ

[Parisi, Wu '81]  
[Aarts '09; Seiler '17]  

[Loheac, Drut '17;  
LR, Porter, Drut, Braun '17]



First step: compare to other methods
[LR, Porter, Drut, Braun '17]

[BA: Iida, Wadati '07; Tracy, Widom '16] 
[DFT-RG: Kemler, Pospiech, Braun '16] 
[HMC: LR, Porter, Loheac, Drut '15]

γ = g/n
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repulsive side:  
Outliers skew  

expectation values!  
('fat tail' problem)
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First step: compare to other methods

repulsive side:  
Outliers skew  

expectation values!  
('fat tail' problem)

attractive side:  
no outliers,  

no problems!

[LR, Porter, Drut, Braun '17]

[BA: Iida, Wadati '07; Tracy, Widom '16] 
[DFT-RG: Kemler, Pospiech, Braun '16] 
[HMC: LR, Porter, Loheac, Drut '15]

γ = g/n



spin polarization



polarized 1D fermions: equation of state
[LR, Drut, Braun in preparation]

γ = g/n

p =
−N↑ N↓

+N↑ N↓

p = 1.0

p = 0.8

p = 0.4

p = 0.0



polarized 1D fermions: pair correlation
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polarized 1D fermions: pair correlation

signature of
FFLO type

pairing

(x, )  =  ⟨ (x) (x) ( ) ( )⟩npair x′
ψ ̂ †

↑ ψ ̂ †
↓ ψ ̂ 

↓ x′
ψ ̂ 

↑ x′

[LR, Drut, Braun in preparation]
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mass imbalance



mass-imbalanced 1D fermions: CL & iHMC
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[LR, Porter, Drut, Braun '17]
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mass-imbalanced 1D fermions: CL & iHMC

 
 

γ = 0.6

γ = 1.0

γ = 1.4

[LR, Porter, Drut, Braun '17]

excellent 
agreement  
for ≲ 0.6m̄ experimental  

mixtures  
accessible!

γ = g/n

=m̄
−m↑ m↓

+m↑ m↓

[Grimm, private communication]



COMPLEX LANGEVIN IN 1D

very good agreement of CL & other methods (BA, DFT-RG, HMC, PT)

EOS of spin-imbalanced systems in agreement with perturbation theory

FFLO-type pairing at all polarizations in 1D (no breakdown)

mass-imbalance: EOS up to very high mass-imbalances 
(no analytic solutions available!)



3D CALCULATIONS
same methods but computationally challenging!



3D CALCULATIONS
same methods but computationally challenging!

particularly interesting:
UNITARY FERMI GAS (UFG)



UFG at finite T: equation of state
[LR, Loheac, Drut, Braun in preparation]

[experiment/BDMC: van Houcke  '12] 
[DHMC: Drut, Lähde, Wlazlowski, Magierski '12]

+



UFG at finite T: equation of state
[LR, Loheac, Drut, Braun in preparation]

[experiment/BDMC: van Houcke  '12] 
[DHMC: Drut, Lähde, Wlazlowski, Magierski '12]

+

good agreement
with experiment

and other
methods! CL results: 

finite lattice! 
( )V = 9

3
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UFG at finite T: equation of state
[LR, Loheac, Drut, Braun in preparation]

[experiment/BDMC: van Houcke  '12] 
[DHMC: Drut, Lähde, Wlazlowski, Magierski '12]

+

βh = 0.0

βh = 0.4

βh = 0.8

βh = 1.2

βh = 1.6

βh = 2.0

h =
−μ↑ μ↓

2

results match
3rd order virial

expansion at
large

temperature



RECAP
imbalanced Fermi gases are hard to treat:  

accessible with the complex Langevin method

CL compares well with other methods wherever possible

EOS & correlation functions accessible  
for systems with spin- and mass-imbalance

first ab initio results for the  
UFG with finite polarization at T > 0


