Experimental Constraints on the EoS of Dense Matter

"Physics in still an Experimental Science"

William Lynch SπRIT Collaboration HiRA Group

Nuclear Equation of State

 An equation that describes the relations among the pressure, energy, temperature, density and isospin asymmetry of nuclear systems.

$$E / A \equiv \varepsilon (\rho, \delta, T = 0) = \varepsilon (\rho, 0, 0) + \underline{S (\rho, T = 0)} \cdot \delta^{2}$$

EOS of symmetric nuclear matter

- Experimentally constrained in 0.5ρ₀ > ρ > 4.5ρ₀
 - Collective flows
 - Isoscalar collective vibrations
 - Kaon production in HIC
- Behavior at p=2p₀ influences neutron star deformability and its mass radius relationship

Symmetry energy

- Constrained at $0.25 < \rho/\rho_0 < 0.75$
- Constrains crust/core transition density
- Relatively unconstrained at $\rho > \rho_0$
- Behavior at p=2p₀ influences neutron star deformability and its mass radius relationship

Constraints $\rho < 2\rho_0$ asy_eos DFT (M) 70 fopi_land Brown (M) 60 n-CP flow ▼--Y(n)/Y(p) Russotto et al 50 Isodif S(ρ,δ=1) $\mathbb{Z}^{-}S(\rho)_{IAS}$ 40 30 pions 20 Xiao et al., 10 0 0.5 1.5 2 0 ρ/ρ_0

What density do nuclear masses constrain?

- Crossover technique:
 - Alex Brown fit the masses of doubly closed shell nuclei, while setting different values neutron skin thicknesses of $\Delta R_{np}=0.16, 0.20$ and 0.24 fm. All Brown fits provide $S(\rho)=24.8\pm0.7$ MeV at $\rho/\rho_0=0.63\pm.03$ as shown at left.
- Slope technique
 - The values for S_0 and L lie on a line in the S_0 and L plane along which $S(0.63\rho_0)$ remains constant. This line lies perpendicular to the gradient of $S(0.63\rho_0)$ in the the S_0 and L plane.
 - The slope, M, of the line and the form of the function is sufficient to determine $\rho/\rho_0=0.63\pm.03$ and $S(\rho)=24.8\pm0.7$ MeV.
- Pearson correlation technique
 - Stabdard statistical analysis technique that can correlate data or assumption with conclusion

Influence of S(ρ) on a neutron star S(ρ): = density dep. of symmetry energy

 $ρ < ρ_0$ Inner crust: Neutron gas in coexistence with "Coulomb lattice" of nuclei. S(ρ) governs thickness of crust and the observed frequencies in star quakes.

Inner boundary of inner crust: Cylindrical and plate-like nuclear "pasta"

Inner core:

 $\rho > \rho_0$ Outer core:

Composed of neutron-rich nuclear matter. S(p) Governs stellar radii, and moments of inertia.

At the crust-core boundary uniform matter becomes adiabatically unstable to break into isolated liquid structures surrounded by neutron-rich gas.

What a constraint on masses provides.

- Ducoin et al., calculated the crust-core transition density, pressure and proton fraction for 21 Skyrme and 14 relativistic models. Ducoin et al, C 83, 045810 (2011)
- Observed that the transition density, pressure and proton fraction are strongly correlated with the first three terms of a Taylor expansion of the symmetry energy functional about ρ_{01} =0.10 fm⁻³.

$$S(\rho) = S_{0.1} + \frac{L_{0.1}}{3} \left(\frac{\rho}{\rho_{0.1}} - 1\right) + \frac{K_{sym,0.1}}{18} \left(\frac{\rho}{\rho_{0.1}} - 1\right)^2 + \dots$$

• They showed that these differences in the predictions for P_{cc} and ρ_{cc} stem from differences in L_{01} and K_{01}

From $S_0 - L$ correlations to $S(\rho)$

C. J. Horowitz et al., J. Phys. G: Nucl. Part. Phys. 41 (2014) 093001

- Note the consistency of the results.
- If you want to measure S(ρ) you need a observable that probes ρ at the density you need it.

Constraints on the crust-core transition density

- Constraints on S(ρ_s) from structure and low energy reactions are shown by the points in the top figure. The solid line shows a constrained fit to these data.
- Following Ducoin et al., PRC, 83 (2011) 045810, this fit enables a good estimate of the NS crustcore transition density and pressure.
- The red point in the lower figure shows the crosscore transition density and pressure obtained from this fit. It implies that the crust core transition occurs at ≈ρ₀/2.
- Additional or more precise constraints on $S(\rho_s)$ will help. A tighter constraint on L would be especially helpful.

$$S(\rho) = S_0 + \frac{L}{3} \left(\frac{\rho}{\rho_0} - 1\right) + \frac{K_{sym}}{18} \left(\frac{\rho}{\rho_0} - 1\right)^2 + \dots$$

What do we know to constrain EoS of symmetric nucleonic matter at $\rho > \rho_0$?

- 1. Transport Theory: e.g. BUU Time dependent Thomas Fermi
- 2. Density dependent momentum independent mean field potentials (Direct term HF).

$$U_n(\rho_n,\rho_p) = U_p(\rho_n,\rho_p)$$

- Must bind nuclei properly at correct density and nuclear radius.
- Extrapolate reasonably to high density
- 3. Density dependent momentum dependent mean field potentials (Exchange term. Finite range)

$$U_{n,k}(\rho_n, \rho_p, p_n^2, f_n(p_n), f_p(p_n)) = U_{p,k}(\rho_n, \rho_p, p_n^2, f_n(p_n), f_p(p_n))$$

- Governs the thermal and non-equilibrium behavior and momentum dependence of optical potentials.
- 4. Cross sections induced by the residual interactions+ Pauli blocking
- All of these quantities must be fixed by Experimental Data!

Determination of symmetric matter EOS from nucleus-nucleus collisions

- The curves labeled by K_{nm} represent calculations with parameterized Skyrme mean fields
 - They are adjusted to find the pressure that replicates the observed transverse flow.
- The boundaries represent the range of pressures obtained for the mean fields that reproduce the data.
- They also reflect the uncertainties from the effective mass and in-medium cross sections.

- Note: analysis required additional constraints on m* and σ_{NN} .
- Flow confirms the softening of the EOS at high density.
- Constraints from kaon production are consistent with the flow constraints and bridge gap to GMR constraints.

- The symmetry energy dominates the uncertainty in the n-matter EOS.
- Both laboratory and astronomical constraints on the density dependence of the symmetry energy are urgently needed.

How does this match to various neutron star observations?

$$EoS \Leftrightarrow \varepsilon(\rho, \delta) \approx \varepsilon(\rho, 0) + S(\rho)\delta^{2}; \delta = (\rho_{n} - \rho_{p})/\rho$$

- Symmetric matter $\varepsilon(\rho, 0)$ at $\rho > \rho$
 - Flow with EoS TPC at LBL (2002)
 - GSI Kaon constraint (2009)
 - GSI Flow constraint (2016)
 - Essential to constrain
 - local isoscaler mean field: $\varepsilon(\rho, 0)$
 - Non-local isoscaler mean field: $m_s^*(\rho)$
- Extrapolation to neutron matter:
 - Using parameterization by Prakash & Latimer

 $\begin{array}{l} S(\rho)_{stiff} = & 12.7 \times (\rho/\rho_0)^{2/3} + 38 \times (\rho/\rho_0)^{2/(1+\rho/\rho_0)} \\ S(\rho)_{soft} = & 12.7 \times (\rho/\rho_0)^{2/3} + 19 \times (\rho/\rho_0)^{1/2} \end{array}$

- This a reasonable bracketing assumption.
- Matches NS radii from x-ray bursters
- Matches GW17081 constraints amazingly well.

What have we learned about the symmetry energy or symmetry pressure?

- GW neutron matter pressure exceeds pymmetric matter pressure.
- Most probable symmetry pressure can be obtained by subtraction.
- "Error bars" are 50% confidence limits.
- At 90% confidence level a negative symmetry pressure, corresponding to decreasing symmetry energy cannot be precluded.
- Need laboratory constraint on symmetry energy

The Symmetry energy is key to determining where the phase transitions occur within neutron stars (crust-core, delta, strange or quark matter).

- No astronomical observation currently constrains the symmetry energy in the NS core.
- Goal of experiments is to probe *Symmetry energy in HIC at energies where densities approach* 220
 - For ${}^{132}Sn + {}^{124}Sn$, symmetry energy repels n's from and p's to dense neutron rich region.
 - For 108Xe + 112Sn symmetry plays almost no role \rightarrow both reactions are important.
 - 1st observable: Y(n, KE)/Y(p, KE): (radial, transverse, elliptcal flows): sensitive to S(ρ), $m_v^*(\rho)$
 - Nucleonic probes improve with incident energy.
 - Gave reasonable positive pressure in Au+Au collisions
 - See talk by A. Le Fevre
- 2nd obs.: $Y(\pi^-, KE)/Y(\pi^+, KE)$
 - Probe more sensitive at lower incident energy.
 - Potentially large effects
 - No published data

Proposed pion measurements of ratios and double ratios Double ratio depends only on symmetry energy

SπRIT 2016 Campaign

- SAMURAI Pion Reconstruction and Ion Tracker Time Projection Chamber was installed within the SAMURAI superconducting magnet at RIBF/RIKEN.
- NueLAND was located at $\sim 30^{\circ}$

E_{beam}=270 AMeV

System	δ=(N-Z)/A	#events
¹³² Sn+ ¹²⁴ Sn	0.22	3.8x10 ⁶
¹⁰⁸ Sn+ ¹¹² Sn	0.09	2.4x10 ⁶
¹¹² Sn+ ¹²⁴ Sn	0.15	1.8x10 ⁶
¹²⁴ Sn+ ¹¹² Sn	0.15	2.5x10 ⁵

Cocktail (Z=1~3) with E=100, 300 MeV

Technical results from previous experiment

- Eight technical papers published. One patent.
- Two more under review and two more in preparation.
- Illustrative examples:
 - 1. Algorithm for space charge corrections in a TPC.
 - Dynamic range extended by factor 5, effectively 4000 to 1 maximum signal to noise.
 - 3. Efficiency by embedding test tracks in real data.

Scientific Results: 4 papers in preparation

- Seven groups of transport theorists have working to together for three years to make transport theory more quantitative.
- Published 3 theoretical articles on Transport model evaluation project. One focus was on transport model comparisons with analytically known solutions.
- First focus was on the total pion ratio $Y(\pi-)/Y(\pi^+)$.
- Error in data is size of points and mostly systematic: 4% for multiplicity and 2% for ratios.
- Theory underpredicts data for many models.
- Normalizing pion production mechanism on Au+Au at E/A=400 MeV may have been problematic. → Normalize on Xe+Sn reactions and check the energy dependence carefully.

1st paper G. Jhang et al

> Unpublished work. Please do not distribute!

Effect of stiff of S(ρ) Is known to be small. Our uncertainties are small enough, but our focus is on spectra

Analysis of mirror systems from J. Barney

2nd paper

- p_T - y_0 plot for π shows Coulomb attraction towards the collision center resulting in low emission energy. Opposite phenomenon is observed for π + by Coulomb repulsion.
- π -/ π + ratio shows symmetric in forward and backward rapidity regions as expected.

Unpublished work. Please do not distribute!

y_o

Isospin dependence of Elliptical Flow

from M. Kurata-Nishimura

• Comparison of ¹³²Sn+¹²⁴Sn to systematics

Summary

- Experiment can be useful if the observables are carefully chosen so that the unknowns are constrained.
 - Example: crust-core transition density, you need to go beyond masses!!
- You need to know what density your observable probes!
 - Please do quantitative sensitivity tests.
- For HIC you need to constrain all unknowns in your theory.
 - Density dependent, momentum independent mean field potential
 - Density dependent momentum dependent mean field potential
 - In medium cross sections.
- Until that is done, all constraints will be preliminary.
- Right now the pressures in neutron stars are known to about factor of four.
- If you can constraint the pressure to less than a factor of two, it is progress,