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Goals
● Self-consistently incorporate information from arbitrary tabulated EOS models

● Automatically incorporate causality constraints and thermodynamic stability

● Allow for large amounts of model freedom

● Incorporate transparent priors



differences between Parametric and Nonparametric inference



Parametric vs. Nonparametric Inference
Parametric constructions:

● Typically, include a small number of parameters and claim they reproduce proposed EOS reasonably well
● Think of fitting a collection of data with a fixed function

Parametric analyses require the function to be
of a specific form which may or may not faithfully
represent the data.
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Parametric vs. Nonparametric Inference
Parametric constructions:

● Typically, include a small number of parameters and claim they reproduce proposed EOS reasonably well
● Think of fitting a collection of data with a fixed function

Piecewise polytrope

Spectral decomposition

Sound-speed constructions



Parametric vs. Nonparametric Inference     a function-space perspective

Parametric constructions
● only allow for certain types of behavior (set of measure zero), and all expected behavior must be built into 

the model from the start
● If true EOS is not exactly described by the parameterized model, it can never be exactly recovered

true EOS

best fit model systematic errors



Parametric vs. Nonparametric Inference     a function-space perspective

Parametric constructions, adding more parameters
● May yield more model freedom, but any finite set will still have some systematic error
● Can further complicate unintuitive priors

true EOS

best fit model systematic errors

Note!

adding m
ore parameters 

does 

not m
ake

 th
e analys

is 

nonparametric
!
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● Self-consistently incorporate information from arbitrary tabulated EOS models

○ Can check for faithfulness between parameterized model and any proposed EOS
○ However, usually this is some sort of mean-square-error or other ad hoc statistic and more parameters 

may be needed

● Automatically incorporate causality constraints and thermodynamic stability
○ This can be accomplished with clever prior bounds on the parameters

■ Can be hard to articulate
○ Some parameterizations build this in from the start (e.g., sound-speed parameterizations)

● Allow for large amounts of model freedom
○ From a functional-space perspective, any finite parametrization of the EOS constitutes a vanishingly 

small set of all possible causal and stable EOS
○ One can always add more parameters...

● Incorporate transparent priors
○ Depending on the parameterization, priors can be unintuitive
○ “Flat priors” may in fact be quite informative



Parametric vs. Nonparametric Inference
Nonparametric constructions:

● Do not assume a functional form for the EOS a prior
● Think of making a histogram or kernel density estimate instead of using a fixed functional form

Nonparametric analyses assume things about the
type of correlations within a function but do not require
the function to have any specific form!



Parametric vs. Nonparametric Inference     a function-space perspective

Parameterized models 
● only allow for certain types of behavior (set of measure zero), and all expected behavior must be 

built into the model from the start
○ If true EOS is not exactly described by the parameterized model, it can never be recovered 

without some bias

Nonparametric constructions (with Gaussian processes)
● Assign non-zero prior probability to all causal and thermodynamically stable EOS

○ No modeling systematics (in the limit of infinite data)
○ How do we assign relative probabilities to different possible EOS?
○ Surely we have some prior knowledge?



What is a Gaussian Process?

A “distribution over functions” described by a mean and covariance matrix over infinitely many degrees of freedom

Assuming these cumulants describe all statistical properties of the unknown function implies a Gaussian process.



What is a Gaussian Process?

A “distribution over functions” described by a mean and covariance matrix over infinitely many degrees of freedom

Assuming these cumulants describe all statistical properties of the unknown function implies a Gaussian process.

We parameterize the type of correlations preferred by the function, but not the specific functions themselves. This 
means we assign (and can compute!) a non-zero probability of obtaining any function specified at arbitrary 
precision! 
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○ Gaussian processes can be trained to emulate the behavior seen in an arbitrary collection of 

proposed EOS without knowing what that behavior is a priori
○ What’s more, we can tune the amount we want to believe theoretical models easily

● Automatically incorporate causality constraints and thermodynamic stability
○ A modified sound-speed prescription via an auxiliary variable

● Allow for large amounts of model freedom
○ Gaussian process formally supports any possible EOS, although our priors favor a subset
○ i.e., they emulate “reasonable behavior”  but also produce behavior not seen in training set if 

desired

● Incorporate transparent priors
○ configurable “confidence” in tabulated EOS
○ different uncertainty at different pressures

■ small uncertainty near the crust
■ large uncertainty near the central core

Advantages of Nonparametric approaches

determined by the covariance kernel and 
hyperparameters, but come automatically from 
the training set



constructing Nonparametric priors



bsr2y

irregularly sampled
tabulated data

self-consistent inference of derivative 
based on tabulated data

Emulating Proposed EOS

irregularly sampled
tabulated data



inferred auxiliary variable 
with associated uncertainty

bsr2y

irregularly sampled
tabulated data

Emulating Proposed EOS



hyperonic bsr family



hyperonic all families



Emulating Proposed EOS

model-informed priors
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model-agnostic priors

Exploring all possible EOS
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results from GW170817 and massive Pulsars



Constraints on macroscopic observables

BBH disfavored by the GW data alone

GW data favors small radii, but can be 
overwhelmed by strong theory prior Central densities between

2x-4x saturation

Neither informed nor agnostic prior
is strongly preferred



Constraints on EOS and phenomenology

Posterior process essentially recovers the prior 
process, but there is a weak preference for the 
GP models conditioned on Quark EOS

model-informed priors



Constraints on EOS and phenomenology

GW data mostly influences EOS between 1x and 2x 
saturation

Essentially no constraint below ~1x saturation

Tightened constraints at high density are mostly due 
to truncating the tail of the prior distribution (which 
includes PSR data)

Note! Model-agnostic priors produce EOS behavior 
not seen in any of the training EOS

model-agnostic priors

GW

PSR

central
densities



Constraints on EOS and phenomenology model-agnostic priors

GW

PSR

central
densities



next steps



Including more types of astrophysical observations (and population models)

high densities dominated 
by pulsar observations

low densities dominated 
by GW observations

preliminary
Landry, Essick, and Chatziioannou (in prep)

and NICER results…
and more GW data...

heavy pulsars
(dominated by heaviest observed object)

GW events
(only informative if SNR≳20)



Including more rigorous estimates theoretical uncertainty (chiral EFT)

EFT
EFT

preliminary
Essick, Landry, Tews, Reddy, Holz (in prep)



Including more rigorous estimates theoretical uncertainty (chiral EFT)

preliminary
Essick, Landry, Tews, Reddy, Holz (in prep)

data’s preference for inclusion of EFT 
constraints up to higher densities 
driven by Occam factor

local maximum!
(but statistics still low)



Including more rigorous estimates theoretical uncertainty (chiral EFT)

preliminary
Essick, Landry, Tews, Reddy, Holz (in prep)

EFT
agnostic posterior

EFT predictions are not just consistent with agnostic 
posterior, they fall near the maxima a posteriori 
for all densities up to ~2x saturation!



Including more rigorous estimates theoretical uncertainty (chiral EFT)

preliminary
Essick, Landry, Tews, Reddy, Holz (in prep)

Trusting EFT up to
    0.5x saturation → R1.4 ~ 11.70 km (10.07, 13.29)
    1.0x saturation → R1.4 ~ 11.44 km (10.38, 12.76)
    2.0x saturation → R1.4 ~ 11.23 km (10.39, 12.45)

“stringent constraints” on R1.4 come 
primarily from strong assumption of EFT up 

to 2x saturation 



summary



● Self-consistently incorporate information from arbitrary tabulated EOS models
○ condition prior directly on proposed EOS
○ Gaussian processes can be trained to emulate the behavior seen in an arbitrary collection of proposed EOS 

without knowing what that behavior is a priori
○ What’s more, we can tune the amount we want to believe theoretical models easily

● Automatically incorporate causality constraints and thermodynamic stability
○ A modified sound-speed prescription via an auxiliary variable

● Allow for large amounts of model freedom
○ Gaussian process formally supports any possible EOS, although our priors favor a subset
○ i.e., they emulate “reasonable behavior” but also produce behavior not seen in training set if desired

● Incorporate transparent priors
○ configurable “confidence” in tabulated EOS
○ different uncertainty at different pressures

■ small uncertainty near the crust
■ large uncertainty near the central core

Advantages of Nonparametric approaches

determined by the covariance kernel and 
hyperparameters, but come automatically from the 
training set
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Constraints on GW170817’s components

model-informed priors
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Constraints on canonical macroscopic observables

model-agnostic priors



Constraints on canonical macroscopic observables

model-agnostic priors
agnostic

informed

compare to Cromartie+(2019) 

https://www.nature.com/articles/s41550-019-0880-2

