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Dense Matter in Neutron Stars: A Theorists View  
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And what do they all have in common? Who are they?



Pions in Cold Dense Matter 
• There is a vast and daunting literature on pions in nuclei and nuclear matter. 

• Several possible pion condensed states of matter were proposed and/or discarded. 

• Negatively charged, p-wave pion condensate was the most popular.  

• No compelling evidence was found for pion condensation in nuclei.  

• Pions in neutron star matter was studied extensively with contradictory conclusions. 

• Calculations were based on simple nucleon-pion potential models and approximate 
many-body methods.  

• Interest in pions condensation seems to have waned after Kaplan and Nelson  
proposed  kaon condensation in the late 1980s.   



Bose-Einstein Condensation of Mesons in Dense Matter
At low temperature, bosons condense when 

μboson > E

chemical  
potential

lowest energy  
state of the boson  

In dense neutron star matter, the relevant chemical potential is μQ− = μe−

Negatively charged mesons are preferentially sourced: 

condensation:  π−s-wave  μe− > Eπ−(p = 0) = m*π−

μe− > EK−(p = 0) = m*K−
s-wave  condensation:  K−

p-wave      condensation: π− μe− > Eπ−(p ≠ 0)



S-wave Meson Condensation in Neutron Stars

Need strong repulsion to prevent pion 
condensation.  

Need very strong attraction to realize 
kaon condensation

VLenz =
2π a

M̃
nB

Very simple models:

VHartree =
4π
3

V0R3 nB
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Fig. 3. Electron chemical potential, the pion and kaon vacuum and in-medium
effective masses in dense stellar matter

with medium are included, however, a uniformly charged pion condensate is
disfavored due to a weak repulsive s-wave interaction. Instead, a spatially
varying condensate can be favored due to attractive p-wave interactions (for
a review see Ref. [10]). The kaon-nucleon interaction, on the other hand, is
strongly attractive. In what follows we only discuss kaon condensation for
this simple reason.

The idea that kaons could condense in dense nuclear matter was due
to Kaplan and Nelson [11]. Using a simplified SUR(3) ⊗ SUL(3) chiral
Lagrangian they showed that the K− could condense at a density about
three times nuclear density. Subsequently several authors have studied in
detail the nature and the role of kaon condensation in neutron star matter
(for a recent review see Ref. [12]).

Here, we will employ a simple schematic potential model for kaon-
nucleon interactions considered in Ref. [13] to illustrate the salient features.
The scattering length aK−n characterizes the low energy kaon-nucleon in-
teraction, and experiment indicates that aK−n ≈ −0.4 fm. Following the

non-interacting  

nucleons
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analysis to densities that are low enough, and tempera-
tures that are high enough, to ensure that the fugacity
z⇡� < 1 and that Bose-Einstein condensation of pions
does not occur.

At the modest densities that we consider, ⇢ . 3⇥ 1014

g/cm3, it is adequate, as a first step, to account for inter-
actions between nucleons using a simple non-relativistic
Skyrme model [14]. The parameters of the model we em-
ploy, called NRAPR, are obtained by fitting to the em-
pirical properties of nuclear matter at nuclear saturation
density n0 = 0.16 fm�3 [15, 16], and to the properties of
neutron matter predicted by ab initio many-body theory
which employ realistic nuclear interactions [17, 18]. The
nucleon contribution to the energy density is given by

EN (nn, np, T ) =
⌧n
2mn
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where t0, t1, t2, t3, x0, x1, x2, x3, and ✏ are the Skryme pa-
rameters taken from Ref. [15]. The neutron and proton
densities are denoted by nn and np, respectively, and
nB = nn + np is the total baryon density. The vari-
ables ⌧n and ⌧p are defined such that the first two terms
in Eq. 1 correspond to the neutron and proton kinetic
energy densities, respectively.

The dense matter we consider is homogeneous, elec-
trically neutral, and close to beta equilibrium. Un-
der these conditions, the chemical potential for nega-
tive charge µ̂ = µn � µp acts as a source for nega-
tively charged particles. In beta-equilibrium the elec-
tron, muon and pion chemical potentials are equal µe =
µ�
µ = µ⇡� = µ̂, and electric charge-neutrality requires

that np = ne + nµ + n⇡� . When µ̂ = µn � µp & T it
is reasonable to neglect the presence of ⇡0 and ⇡+ parti-
cles in the ground state since their density is suppressed
by the factor exp (�µ̂/T ) and exp (�2µ̂/T ), respectively,
relative to the abundance of ⇡�.

The second-virial coe�cient for the ⇡��neutron sys-
tem is given by

bn⇡
�

2 =
e�M

2⇡3

Z 1

M
dEE2K1(�E)

X

l,⌫

(2l + 1)�3/2l,⌫ , (2)

where K1 is the modified Bessel function of the second
kind, M = mN+m⇡ is the invariant mass of the interact-
ing pair at the threshold [10]. The sum is over the angu-
lar momentum l of the scattering state, and the nucleon
spin-projections ⌫ = +,�. Since n⇡� scattering only in-
volves the isospin I = 3/2 state, only the pion-nucleon

phase shift in the isospin I = 3/2 channel denoted by

�3/2l,⌫ contributes to bn⇡
�

2 . We note that this definition
di↵ers from Ref. [10, 11] in that it contains an extra fac-
tor of e�M . We find it convenient to include this factor
and redefine the thermodynamic functions that appear
later in the text.
Proton-⇡� scattering involves two reaction channels:

⇡�p ! ⇡�p and ⇡�p ! ⇡0n, which implies these re-
actions do not have definite isospin. However, since b2
is independent of the basis in which we consider the S

matrix [19], bp⇡
�

2 depends on the sum of the phase shifts
from the two mixed isospin channels.
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(3)
In this study we will only include l = 0, 1, i.e, the

s-wave and p-wave contributions. At the energies of in-
terest we find them to be the dominant contributions.
In Fig. 1 we show the s-wave and p-wave phase shifts
taken from the analysis of experimental data in Ref. [20].
The phase shifts are plotted as a function of E � M
where E =

p
p2 +m2

⇡ +
p

p2 +m2
n is the center of mass

momentum energy and p is the magnitude of the pion
and nucleon momenta in the center of mass frame. The
large and attractive p-wave phase-shift �3/2+1 due to the
��resonance is the dominant channel. The second-virial

FIG. 1. Pion-nucleon phase shifts from the analysis presented
in Ref. [20]

coe�cients calculated using Eqns. 2 & 3 at a few tem-
peratures of interest are shown in Table 1.
The virial expansion for nucleons fails at the higher

density of interest here, and for this reason we use a sim-
ple mean-field model to include the e↵ects of nucleon-

Pion-nucleon Interaction
Fairly well understood at low energy  
(Chiral Perturbation Theory) 

Scattering lengths are very small:  

Phase shifts have been reliably extracted 
from experiments.  

𝒜[π− + n → π− + n] = 𝒜3/2

𝒜[π− + p → π− + p] =
2
3

𝒜1/2 +
1
3

𝒜3/2

a+ ≃ − 0.004 fm
a− ≃ 0.09 fm



Pions in Hot Neutron Star Matter
The virial expansion is a model independent 
approach to calculate thermodynamic properties 
at high temperature as an expansion in the 
particle fugacities 

Virial expansion used in the heavy-ion context to describe hot meson gases. 
[Dashen Ma, Bernstein (1969) Venugoplan and Prakash (1992), Houvinen and Petreczky (2018)]

Also used to describe the high-temperature and low-density gas of nucleons in astrophysics.   
[Horowitz and Schwenk (2006)]
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coe�cients calculated using Eqns. 2 & 3 at a few tem-
peratures of interest are shown in Table 1.
The virial expansion for nucleons fails at the higher

density of interest here, and for this reason we use a sim-
ple mean-field model to include the e↵ects of nucleon-

nint
i = nideal

i + ∑
j

zizj b(ij)
2

zi = exp(βμ̃i)

The effect of  interactions 
between pions and nucleons 
can be accounted for by the 
second virial coefficients when 
the fugacities are small.

second-viral coefficient depends on 
the scattering phase shifts  



Hot Dense Matter Encountered in Neutron Star Mergers 
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A Simple Hybrid Model for Hot Neutron Star Matter 
For matter with T=30-50 MeV  and nB = 
0.1 nsat - 2 nsat  the hybrid model:

1. Treats nucleon-nucleon interactions using a 
phenomenological mean field model (Skyrme 
fit to ab initio predictions and nuclear 
constraints)

2. Treat pion-nucleon interactions using the 
virial expansion. 

3

T (MeV) 15 30 45

bn⇡�
2 (fm�3) 2.14E-4 4.09E-3 1.87E-2

bp⇡
�

2 (fm�3) 4.24E-4 4.68E-3 2.02E-2

TABLE I. The second-virial coe�cients for the N⇡� system.

nucleon interactions. While it is desirable to treat
the nucleon-nucleon and nucleon-pion interactions con-
sistently, and chiral perturbation theory provides in-
principle a framework to do this, there remain technical
challenges [21]. Further, the convergence of the chiral ex-
pansion for pion-nucleon interactions is poor and requires
a large number of operators to capture the resonant na-
ture of this interaction[22]. To circumvent these issues,
as a first step in the study of the role of pions in hot dense
matter, we advocate our hybrid approach. In the limit
when z⇡� ⌧ 1, and zn, zp ⌧ 1 our approach is reliable.
At higher density where the z⇡� < 1/2, and zn < 1 or
zp < 1 we expect our results to capture the qualitative
aspects, but corrections due to neglected terms propor-
tional to z⇡z2n and z⇡z2p become important. These need to
be assessed before one can draw quantitative conclusions.
In this study, we also neglect pion-pion interactions be-
cause the pion-nucleon interaction, and the nucleon den-
sity, are both significantly larger.

The composition of matter at fixed temperature and
baryon density is determined by requiring matter to be
charge-neutral and in beta-equilibrium, The chemical po-
tentials µn, µp, and µe = µµ� = µ⇡� = µ̂ = µn � µp

are determined to ensure that nB = nn + np and
ne� + nµ� + n⇡� = np. The e↵ect of interactions is
negligible for the leptons and their number densities are
obtained using the ideal Fermi gas result.

For nucleons and pions, interactions are important.
The nucleon number densities are given by

ni =

Z
dk

⇡2
k2(1 + exp (�(✏i(k)� µi)))

�1 . (4)

where the single nucleon energy

✏i(k) = mi +
k2

2m⇤
i

+ Ui(nn, np, T ) , (5)

is obtained in mean field theory and m⇤
i is the nucleon

e↵ective mass, and Ui(nn, np, T ) = @EN (nn, np, T )/@ni is
the mean field potential energy [14]. The number density
of pions is obtained in the virial expansion, and is given
by

n⇡� =

Z
dk

2⇡2
k2 exp (��(

p
k2 +m2

⇡ � µ̂)) + nint
⇡� , (6)

where

nint
⇡� =

X

N=n,p

zNz⇡�bN⇡�

2 , (7)

is the contribution due to pion-nucleon interactions.
Eq. 4 only includes e↵ects due to nucleon-nucleon in-
teractions. The contributions due to pion-nucleon in-
teractions, given by the virial expansion, are �nn =

znz⇡�bn⇡
�

2 , and �np = zpz⇡�bp⇡
�

2 , respectively. In our
hybrid model, these contributions are added to Eq. 4 to
obtain the total neutron and proton densities.

FIG. 2. Number fraction of charged particles at T = 30 MeV.
Solid curves include pions and dashed curves only contain
nucleons and leptons.

The densities of charged particles with and without
the inclusion of pions are shown in Fig. 2. From the fig-
ure it is evident that pions enhance the proton fraction
and suppress the lepton fraction in the hot dense matter
as they furnish additional negative charge. This e↵ect is
strong enough that at higher densities the proton fraction
begins increasing with density due to the large number
of pions. Although m⇡ > mµ, strong attractive p-wave
interactions with nucleons enhance their number density,
at nB = n0 and T = 30 MeV, n⇡� ⇡ nµ� . A naive ex-
trapolation suggests n⇡� increases rapidly with density,
and nB = 1.4n0 and T = 30 MeV, n⇡� ⇡ 2nµ� .
The fugacities of pions and nucleons at baryon density

nB = n0/2 and nB = n0 as a function of the temperature
are shown in Fig. 3. It is interesting to note that z⇡� and
zp remain small over a wide range of temperatures. As
expected in neutron-rich matter, the fugacity of neutrons
is large, and the virial expansion for pion-neutron inter-
actions is reliable only at high temperature. In what fol-
lows we consider matter at nB < 1.5n0 and T > 25 MeV
and calculate the equation of state and weak interaction
rates using the hybrid model in which pion-nucleon inter-
actions are accounted for through the second-virial coef-
ficient and nuclear interactions are treated in mean field
theory.

with pions

without pions

At T~30 MeV, the number density of pions  
is comparable to that of the electrons.
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FIG. 3. Pion and nucleon fugacities in charge-neutral dense
matter in �-equilibrium at nB = n0 (solid-curves) and nB =
n0/2 (dashed-curves) are shown as function of temperature.

III. ASTROPHYSICAL IMPLICATIONS

A. Equation of State

At a given baryon density and temperature, pions alter
the EOS in two ways. First, they make a small contribu-
tion to the pressure and energy density. The pion contri-
bution to the pressure and the energy density, obtained
in the relativistic virial expansion to leading order in the
pion and nucleon fugacities, z⇡� and zN , are given by

P⇡� = Tz⇡�

Z
dkk2

2⇡2
exp (��✏⇡(k))

+ Tz⇡�

X

N=n,p

zNbN⇡�

2 ,
(8)

and

✏⇡� = z⇡�

Z
dkk2

2⇡2
✏⇡(k) exp (��✏⇡(k))

+ z⇡�

X

N=n,p

zN
@bN⇡�

2

@�
,

(9)

respectively, where ✏⇡(k) =
p

k2 +m2
⇡ is the free pion

dispersion relation [10]. In Eqns. 8 & 9, the second line
contains the contribution due to interactions between nu-
cleons and pions. Second, by furnishing negative charge,
pions increase the proton fraction, and decrease the lep-
ton fraction. This has an important e↵ect on the EOS,
because any reduction in the asymmetry between neu-
tron and protons lowers the pressure at fixed density.
The individual contributions to the pressure at T = 30

MeV are shown as a function of the energy density in
Fig. 4. Here, the energy density and pressure of nucleons

FIG. 4. The equation of state of hot dense matter with and
without the inclusion of negative pions. The density axis cor-
responds to matter containing negative pions.

are calculated in mean field theory using Eq. 1, and the
leptons are treated as an ideal Fermi gas. From the figure
we can infer that the dominant e↵ect of pions is to alter
the nucleon contribution. The symmetric state, with a
higher proton fraction, is softer and has lower pressure
at a given energy density.

FIG. 5. The equation of state of hot dense matter with and
without the inclusion of negative pions.

Pions soften the EOS (by increasing the 
proton fraction) . The correction is modest. 
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FIG. 6. Pion self energy predicted by our model at a few
representative temperatures and baryon densities.

where the pion-nucleon interaction is directly propor-
tional to the phase shifts

V (ps)
i⇡� (pcm) = �↵

X

I,l,⌫

(2l + 1)
�Il,⌫

m̄ pcm
. (21)

Here, pcm = m̄
q

p2

m2
⇡
+ k2

m2
n
� 2pk

m⇡mn
cos ✓ is the center of

mass momentum, and m̄ = m⇡mn/(mn + m⇡) is the
reduced mass. The sum is over allowed values of the
isospin, angular momentum values and nucleon spins.

A fudge factor ↵ is introduced to ensure that the
number density we obtain using this dispersion relation
matches the result in Eq. 6 obtained in the virial ex-
pansion. We find that the ⇡� interaction with neutrons
dominates the self-energy, and in what follows we neglect
the contribution due to ⇡� proton interactions. The self-
energy obtained in this way is shown in figure 6. We
employ the experimentally measured phase shifts up to
pcm ⇡ 350 MeV and assume that it remains constant
at higher momentum. The values for the fudge factor ↵
used to ensure consistency with the virial result are given
in table II.

↵ T=30 MeV T=60 MeV
nB = 0.5n0 1.20 1.42
nB = 1.0n0 0.91 1.10

TABLE II. Values of the fudge factor ↵ needed to obtain
consistency.

Although our model for ⌃⇡� is admittedly very crude,
the modest variation of ↵ over a broad range of den-
sities and temperatures is reassuring. It suggests that
our ansatz provides a fair description of the momentum

dependence of pion-nucleon interactions. We have exam-
ined the general behaviour of the pion dispersion relation
we obtain and find that it is physically plausible. The
substantial reduction in the pion energy seen in Fig. 6 at
p⇡ ' 300 MeV is due to the strong p-wave attractive in-
teraction, and the small increase at p = 0 arises to weak
and repulsive s-wave interaction. The group velocity of
the pions is also roughly consistent with general expec-
tations. It is small at low momentum and approaches c
(speed of light) at large momenta. At intermediate val-
ues ' 350 MeV we find that the model predicts a group
velocity that can exceed c by a few percents - a mild
deficiency given the approximations of our model. First,
the pseudo-potential in Eq. 21 was employed in the Born
approximation to calculate ⌃⇡� and it provided a direct
relationship between the self-energy and the phase shifts
in Eq. 20. This relationship is exact only in the limit
when one can neglect correlations between nucleons and
nucleon recoils [30]. Second, our approximation that the
phase shift-remains constant for pcm & 350 MeV, has an
e↵ect on the behaviour of the pion self-energy at these
large momenta. Third, we have neglected the imaginary
part of the pion self-energy in the matter. The imagi-
nary part arises due to two-loop contributions involving
two nucleons in the medium. For these reasons, we view
our model as the first step towards more realistic calcu-
lations.

FIG. 7. Antineutrino mean free paths due to the inverse pion
decay reaction, with and without N⇡� interactions included,
are compared to the neutral current reactions involving nu-
cleons.

The mean free path due to the reaction⌫µ+µ� ! ⇡� in
matter containing pions at nB = 0.5 n0 and T = 30 MeV
is shown in Fig. 7. The dashed-green curve is calculated
using the vacuum dispersion relation for the pions. Since
pions only appear in the final state, this curve depends
only weakly on the model for pion-nucleon interactions.

Eπ−(p) = p2 + m2
π + Σπ−(p)

negligible 
correction 

large 
attraction
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FIG. 6. Pion self energy predicted by our model at a few
representative temperatures and baryon densities.

where the pion-nucleon interaction is directly propor-
tional to the phase shifts

V (ps)
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X
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Here, pcm = m̄
q

p2

m2
⇡
+ k2

m2
n
� 2pk

m⇡mn
cos ✓ is the center of

mass momentum, and m̄ = m⇡mn/(mn + m⇡) is the
reduced mass. The sum is over allowed values of the
isospin, angular momentum values and nucleon spins.

A fudge factor ↵ is introduced to ensure that the
number density we obtain using this dispersion relation
matches the result in Eq. 6 obtained in the virial ex-
pansion. We find that the ⇡� interaction with neutrons
dominates the self-energy, and in what follows we neglect
the contribution due to ⇡� proton interactions. The self-
energy obtained in this way is shown in figure 6. We
employ the experimentally measured phase shifts up to
pcm ⇡ 350 MeV and assume that it remains constant
at higher momentum. The values for the fudge factor ↵
used to ensure consistency with the virial result are given
in table II.

↵ T=30 MeV T=60 MeV
nB = 0.5n0 1.20 1.42
nB = 1.0n0 0.91 1.10

TABLE II. Values of the fudge factor ↵ needed to obtain
consistency.

Although our model for ⌃⇡� is admittedly very crude,
the modest variation of ↵ over a broad range of den-
sities and temperatures is reassuring. It suggests that
our ansatz provides a fair description of the momentum

dependence of pion-nucleon interactions. We have exam-
ined the general behaviour of the pion dispersion relation
we obtain and find that it is physically plausible. The
substantial reduction in the pion energy seen in Fig. 6 at
p⇡ ' 300 MeV is due to the strong p-wave attractive in-
teraction, and the small increase at p = 0 arises to weak
and repulsive s-wave interaction. The group velocity of
the pions is also roughly consistent with general expec-
tations. It is small at low momentum and approaches c
(speed of light) at large momenta. At intermediate val-
ues ' 350 MeV we find that the model predicts a group
velocity that can exceed c by a few percents - a mild
deficiency given the approximations of our model. First,
the pseudo-potential in Eq. 21 was employed in the Born
approximation to calculate ⌃⇡� and it provided a direct
relationship between the self-energy and the phase shifts
in Eq. 20. This relationship is exact only in the limit
when one can neglect correlations between nucleons and
nucleon recoils [30]. Second, our approximation that the
phase shift-remains constant for pcm & 350 MeV, has an
e↵ect on the behaviour of the pion self-energy at these
large momenta. Third, we have neglected the imaginary
part of the pion self-energy in the matter. The imagi-
nary part arises due to two-loop contributions involving
two nucleons in the medium. For these reasons, we view
our model as the first step towards more realistic calcu-
lations.

FIG. 7. Antineutrino mean free paths due to the inverse pion
decay reaction, with and without N⇡� interactions included,
are compared to the neutral current reactions involving nu-
cleons.

The mean free path due to the reaction⌫µ+µ� ! ⇡� in
matter containing pions at nB = 0.5 n0 and T = 30 MeV
is shown in Fig. 7. The dashed-green curve is calculated
using the vacuum dispersion relation for the pions. Since
pions only appear in the final state, this curve depends
only weakly on the model for pion-nucleon interactions.
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Fig. 5 shows the temperature dependence of the pres-
sure at fixed baryon density. Motivated by recent simula-
tions that suggest high temperatures, T ' 20� 50 MeV,
are realized in neutron star mergers even at baryon den-
sity nB ' n0 [23], we chose a rather large range of T
to assess the temperatures at which pions would have
the most dramatic e↵ects on the EOS. From the figure,
we see that pions play a role and soften the EOS when
T & 40 MeV. We find that at nB = n0 pions decrease the
total pressure by about 10% at T = 50 MeV. Our study
suggests that these e↵ects can be significantly larger at
higher density. However, methods beyond the virial ex-
pansion are needed to ascertain their importance.

B. Neutrino Mean Free Paths

The mean free path of neutrinos and anti-neutrinos
in hot dense matter influences aspects of supernovae dy-
namics [24], the observable signatures of neutrinos from
proto-neutron stars [25–27], and is expected to play a
role in neutron star mergers [23, 28]. At the densities
and temperature encountered in these environments, all
three flavors of neutrinos are produced, and contribute to
the transport of energy, momentum, and lepton number.
In matter containing nucleons and leptons, ⌫e and ⌫̄e in-
teract most strongly as they encounter both charged cur-
rent and neutral current interactions with nucleons and
leptons. The µ and ⌧ neutrinos are coupled to matter
only through their neutral-current interactions as their
energies are not adequate to create the heavy charged
leptons in the final state. Here, for the first time, we
show that the presence of pions allows for new charged
current reactions for muon neutrinos. We find below that
these reactions significantly reduce the ⌫µ and ⌫µ mean
free paths.

We find that the most important reactions are ⌫µ +
⇡� ! µ� and ⌫µ + µ� ! ⇡�. The low energy e↵ective
Lagrangian that describes these weak processes is

L = �GF cos ✓Cp
2

f⇡ @
↵⇡�  ̄⌫µ(�↵(1� �5)) µ , (10)

where f⇡ = 130.4 MeV is the pion decay constant [29].
The amplitude-squared for the process ⌫µ + µ� ! ⇡� is
given by

|A|2⌫̄µ
= 2(GF cos ✓Cf⇡)

2m2
µ(E

2
⇡ � p2⇡ �m2

µ) , (11)

where E⇡ and p⇡ are the pion energy and momentum,
respectively, and mµ is the mass of the muon. In the
vacuum, energy and momentum conservation forbids the
process ⌫µ + ⇡� ! µ�. However, in dense matter the
modification of the pion dispersion relation, which we
discuss in detail below, allows for this process when the
pion momenta and energy satisfy E2

⇡ � p2⇡ < m2
µ. In this

case, the amplitude-squared for this process is

|A|2⌫µ
= 2(GF cos ✓Cf⇡)

2m2
µ(m

2
µ � (E2

⇡ � p2⇡)) , (12)

We note that the amplitude-squared is proportional to
the square of the lepton mass, a well-known fact that
suppresses the decay of pions to electrons. It is for this
reason that we focus on interactions involving only muon
neutrinos in this work.
Using Fermi’s Golden rule, the mean free path of ⌫̄µ

due to the inverse decay reaction is given by

1

�⌫̄µ(E⌫̄µ)
=

Z
d3~pµ

(2⇡)32Eµ

Z
d3~p⇡

(2⇡)32E⇡
fµ(1 + g⇡)

⇥ (2⇡)4�4(Pµ + P⌫̄µ � P⇡)|A|2⌫̄µ

(13)

where g⇡ and fµ are the distribution functions for pions
and muons, respectively. When kinematically allowed,
the mean free path of ⌫µ due to the charged current re-
action is

1

�⌫µ(E⌫µ)
=

Z
d3~pµ

(2⇡)32Eµ

Z
d3~p⇡

(2⇡)32E⇡
g⇡(1� fµ)

⇥ (2⇡)4�4(P⇡ + P⌫µ � Pµ)|A|2⌫µ
.

(14)

The integrals appearing in Eqs. 13 and 14 can be further
simplified and we find that

1

�⌫̄µ(E⌫̄µ)
=

1

16⇡E2
⌫

Z ph

pl

dp⇡
p⇡
E⇡

fµ(1 + g⇡)|A|2⌫̄µ
,(15)

1

�⌫µ(E⌫µ)
=

1

16⇡E2
⌫

Z ph

pl

dp⇡
p⇡
E⇡

g⇡(1� fµ)|A|2⌫µ
.(16)

The limits of the pion momentum integral, pl and ph,
arise due to the energy conservation. For the ⌫µ + µ� !
⇡� reaction, the limits are determined to ensure that

�1  E⇡

p⇡
�

E2
⇡ � p2⇡ �m2

µ

2p⇡E⌫
 1 , (17)

and for the ⌫µ +⇡� ! µ� reaction, they are obtained to
ensure that

�1  E⇡

p⇡
+

E2
⇡ � p2⇡ �m2

µ

2p⇡E⌫
 1 . (18)

To calculate the neutrino mean free paths we need the
pion dispersion relation to determine the relationship be-
tween the pion energy and momentum in matter. In gen-
eral, this is given by

E⇡�(p) =
p
p2 +m2

⇡ + ⌃⇡�(p) , (19)

where ⌃⇡�(p) is the self-energy. We propose a simple
model to calculate the real part of ⌃⇡�(p) using the one-
loop approximation. The model is constructed to be con-
sistent with the predictions of the virial expansion and
the pion-self energy is given by

⌃⇡�(p) =

Z
d3k

(2⇡)3

X

i=n,p

fi(Ei(k)) V
ps
i⇡�(pcm) , (20)

ℒ =
GF cos θc

2
fπ ∂απ− ψ̄νμ

(γα(1 − γ5))ψμ

νμ + π− → μ−

ν̄μ + μ− → π−

Important reactions:  
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The solid-red curve is obtained using the dispersion re-
lation in Eq. 19, and the self-energy depicted in Fig. 6.
Here we see the strong influence of the in-medium dis-
persion relation, especially at large neutrino energy. The
reduction in the pion energy due to its large and attrac-
tive p-wave interaction with nucleons implies that a large
momentum pion in the final state is unable to satisfy en-
ergy and momentum conservation in the medium. The
rapid increase in the mean free path depicted by the solid-
red curve reflects these severe kinematic constraints. At
lower neutrino energy, the in-medium dispersion relation
leads to a significant reduction of the ⌫µ mean free path.
It is remarkable that at these low energies neutrino pro-
cesses involving a sparse population of muons and pions
are significantly more important than processes involv-
ing nucleons and electrons. Neutral current reactions
⌫µ +X ! ⌫µ +X where X = n, p, e� have been studied
extensively in earlier work [31, 32] and we use the open-
source computer codes from the neutrino opacity library,
nuOpac[33] to calculate the neutrino mean free paths.
The contributions from the reactions ⌫µ + n ! ⌫µ + n,
and ⌫µ + p ! ⌫µ + p are shown as the blue dot-dashed
and orange dotted curves in Fig. 7. Neutral reactions
involving electrons, not shown in the figure, are smaller
than that due to the nucleons.

FIG. 8. Neutrino mean free path due to the inverse muon
decay reaction is compared with the mean free path due to
neutral and charged current reactions involving nucleons.

The mean free path of muon neutrinos in matter con-
taining pions at nB = 0.5 n0 and T = 30 MeV is shown
in Fig. 8. This process, which is forbidden in the vac-
uum, is sensitive to the pion dispersion relation and their
abundance. Again, the result, depicted by the solid-red
curve, shows some remarkable features. At low energy,
the process involving pions is dominant. It remains more
important than the charged current reactions involving

nucleons shown as the dashed-green curve even at higher
energies. Neutral current scattering o↵ nucleons, shown
by the blue dot-dashed and orange dotted curves, con-
tinues to be the dominant reaction for thermal neutri-
nos under these specific conditions. The sharp feature in
the solid-red curve at E⌫ ' 30 MeV is due to the non-
monotonic behaviour of the kinematic constraint in Eq.
18.

C. Weak equilibration and bulk viscosity

Bulk viscosity o↵ers a mechanism to damp density os-
cillations in matter and plays a role in neutron star dy-
namics [34]. For example, dissipative e↵ects in neutron
star mergers influence the lifetime of the hot dense hyper-
massive neutron star and the post-merger gravitational-
wave emission[35]. Bulk viscosity arises due to non-
equilibrium reactions that convert chemical energy into
thermal energy. This conversion happens because the
equilibrium chemical composition of matter changes with
density; therefore, the density perturbations induce in-
elastic reactions.
In neutron stars, where relevant dynamical timescales

are of the order of milliseconds, weak reactions play the
dominant role in determining the bulk viscosity [36]. In
dense nuclear matter, the reaction e�+p $ n+⌫e, often
referred to as the URCA reactions in astrophysics, and
the modified URCA reaction e� + p + n $ n + n + ⌫e
change the proton fraction when perturbed and are gen-
erally considered to be the main source of bulk viscosity.
Recent work have investigated the role of these weak re-
actions involving nucleons in dense matter with and with-
out neutrino trapping at high temperatures [37, 38]. At
nB = 0.5n0 and T = 30 MeV the results in Ref. [38]
indicate that the beta-equilibrium relaxation time for
these reactions is about 10�7 s for the neutrino free case,
and about 10�9 s when neutrinos are trapped. How-
ever, we expect that under similar conditions reactions
involving pions and nucleons, would proceed on much
faster timescales due to the strong interaction, allowing
for faster equilibration of the proton fraction.
Consider a density perturbation in which the final equi-

librium state contains a larger neutron fraction. In the
absence of reactions involving pions, electron capture re-
actions e� + p ! n + ⌫e and e� + p + n ! n + n + ⌫e
generate the needed neutrons. When these reactions are
out of equilibrium they generate heat and dissipation.
In the presence of pions and muons there are additional
reaction channels that can play a role. These include

⇡� + p+ n $ n+ n , (22)

µ� $ ⇡� + ⌫µ , (23)

µ� $ e� + ⌫̄e + ⌫µ , (24)

⇡� $ µ� + ⌫̄µ . (25)

The non-leptonic reactions mediated by the strong inter-
action proceed on a timescale that is much faster than

(possible due to 
in-medium effects)  

Introduces new reaction channels. The 
reduced muon neutrino mean free paths may 
be relevant to the evolution of neutron star 
mergers and proto-neutron stars.   
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FIG. 6. Pion self energy predicted by our model at a few
representative temperatures and baryon densities.

where the pion-nucleon interaction is directly propor-
tional to the phase shifts

V (ps)
i⇡� (pcm) = �↵

X

I,l,⌫

(2l + 1)
�Il,⌫

m̄ pcm
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Here, pcm = m̄
q

p2

m2
⇡
+ k2

m2
n
� 2pk

m⇡mn
cos ✓ is the center of

mass momentum, and m̄ = m⇡mn/(mn + m⇡) is the
reduced mass. The sum is over allowed values of the
isospin, angular momentum values and nucleon spins.

A fudge factor ↵ is introduced to ensure that the
number density we obtain using this dispersion relation
matches the result in Eq. 6 obtained in the virial ex-
pansion. We find that the ⇡� interaction with neutrons
dominates the self-energy, and in what follows we neglect
the contribution due to ⇡� proton interactions. The self-
energy obtained in this way is shown in figure 6. We
employ the experimentally measured phase shifts up to
pcm ⇡ 350 MeV and assume that it remains constant
at higher momentum. The values for the fudge factor ↵
used to ensure consistency with the virial result are given
in table II.

↵ T=30 MeV T=60 MeV
nB = 0.5n0 1.20 1.42
nB = 1.0n0 0.91 1.10

TABLE II. Values of the fudge factor ↵ needed to obtain
consistency.

Although our model for ⌃⇡� is admittedly very crude,
the modest variation of ↵ over a broad range of den-
sities and temperatures is reassuring. It suggests that
our ansatz provides a fair description of the momentum

dependence of pion-nucleon interactions. We have exam-
ined the general behaviour of the pion dispersion relation
we obtain and find that it is physically plausible. The
substantial reduction in the pion energy seen in Fig. 6 at
p⇡ ' 300 MeV is due to the strong p-wave attractive in-
teraction, and the small increase at p = 0 arises to weak
and repulsive s-wave interaction. The group velocity of
the pions is also roughly consistent with general expec-
tations. It is small at low momentum and approaches c
(speed of light) at large momenta. At intermediate val-
ues ' 350 MeV we find that the model predicts a group
velocity that can exceed c by a few percents - a mild
deficiency given the approximations of our model. First,
the pseudo-potential in Eq. 21 was employed in the Born
approximation to calculate ⌃⇡� and it provided a direct
relationship between the self-energy and the phase shifts
in Eq. 20. This relationship is exact only in the limit
when one can neglect correlations between nucleons and
nucleon recoils [30]. Second, our approximation that the
phase shift-remains constant for pcm & 350 MeV, has an
e↵ect on the behaviour of the pion self-energy at these
large momenta. Third, we have neglected the imaginary
part of the pion self-energy in the matter. The imagi-
nary part arises due to two-loop contributions involving
two nucleons in the medium. For these reasons, we view
our model as the first step towards more realistic calcu-
lations.

FIG. 7. Antineutrino mean free paths due to the inverse pion
decay reaction, with and without N⇡� interactions included,
are compared to the neutral current reactions involving nu-
cleons.

The mean free path due to the reaction⌫µ+µ� ! ⇡� in
matter containing pions at nB = 0.5 n0 and T = 30 MeV
is shown in Fig. 7. The dashed-green curve is calculated
using the vacuum dispersion relation for the pions. Since
pions only appear in the final state, this curve depends
only weakly on the model for pion-nucleon interactions.

negligible 
correction 

large 
attraction

The pseudo-potential provides useful insights: 

Energy shift of low momentum pions is small. 

Shift has a weak density dependence. 

The large repulsion required to prevent pion 
condensation is not to be found.  
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Condensate Amplitude

negligible 
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attraction

nπ− = f2
π μe 1 − ( m*π

μe )
4

If the pion effective mass m* in the dense 
matter is not strongly altered by interactions, 
the condensate will grow quickly 

Condensate amplitude is set by pion-pion 
interactions. 

Implications: 
• Soft EOS (smaller radii and deformability) 
• Superconductivity (magnetic field evolution)
• Mixing between neutron and proton states 

N
um

be
r D

en
si

ty
 (f

m
-3

)
μe (MeV)

nπ−

ne−



•More detailed studies that incorporate realistic pion-nucleon potentials in many-body theory are 
needed. Chiral perturbation theory with explicit pions and Deltas? 

Need to Revisit Pion Condensation with Modern Nuclear Interactions 

π−

•Study the role of (spin-isospin) correlations in neutron-rich matter:  

π−

nucleons

g′�

π−

nucleons

Δ π− π−

• Reanalyze deeply bound pionic atoms. 



Conclusions 

•Thermal pions can be incorporated into the EOS of hot and dense matter using the virial 
expansion for a range of densities and temperatures encountered in astrophysics.  

• Even relatively small populations of pions can greatly alter the neutrino mean free paths.   

• The pseudo-potential model suggests the pion condensation is likely in neutron stars. The 
energy shift of a low-momentum pion in dense neutron rich matter is small.  

• The softening of the EOS around twice saturation density has implications for masses, radii 
and tidal deformabilties. 


