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Fig. 2 Time evolution of central quantities and the total neutrino luminosity and lepton flux. The
gray region corresponds to the accretion phase and is on a linear time scale, while the region to
the right is the PNS cooling phase and it is plotted on a logarithmic scale. At the transition from
the accretion phase to the PNS cooling phase, all of the material from above the shock is excised
from the grid, causing a slight jump in some quantities. The top panel shows the total energy
loss rate from the PNS and the deleptonization rate. The second panel shows the evolution of the
central lepton fraction and electron fraction, as well as the PNS radius. The deleptonization era
corresponds to the period over which Ye and YL differ. The third panel shows the evolution of the
central neutrino chemical potential and entropy. The impact of Joule heating is visible between
five and twenty seconds. The bottom panel shows the central density and the central lapse, a , to
illustrate the contraction of the PNS over time.

The impact of the nuclear EOS 
on neutrino emission from 

proto-neutron stars

Luke Roberts 
Michigan State University

 1



Overview
• Progenitor dependence of 3D models of CCSNe  

• EOS sensitivity of CCSN explosion mechanism 

• Some EOS sensitivities of long term CCSN neutrino 
emission
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representative mass often used for comparative studies and the
first for CHIMERA. In Section 2, we summarize our methodology
and initial conditions. An overview of the simulations is
presented in Section 3, with a focus on the differences between
the 2D and 3D simulations in Section 4. We discuss our results
in context in Section 5, followed by a summary in Section 6.

2. NUMERICAL METHODS AND INPUTS

Initial conditions are taken from the 15 M☉ pre-supernova
progenitor of Woosley & Heger (2007). The inner region
(10,700 km; 2.32M☉) is remapped onto 540 radial shells on a
logarithmic radial grid ( r rd ) modified to track density
gradients. Multi-dimensional simulations were initialized from
a 1D simulation at 1.3 ms after bounce by applying a 0.1%
random density perturbation over radii 10–30 km, mimicking
perturbations seen in simulations evolved through bounce in
2D. The angular grid of the 3D simulation (C15-3D) was
initialized with a 180-zone ( 2fD = n) ϕ grid and a 180-zone θ
grid equally spaced in cosm qº , i.e., equal solid angle. This θ
grid widens the pole-adjacent zones ( ℓ R sinsph f qD = D ) and
therefore the time step. We evolve in spherical symmetry inside
R 6sph = km until 45 ms after bounce (when prompt convec-
tion fades), thereafter setting R 8sph = km. With this grid, the
pole-most zone is ≈8.5°wide, resulting in a minimum length
and time step ≈4× larger than for a uniform 2n θ grid (e.g.,
Hanke et al. 2013). At 300 ms after bounce, the θ grid was
remapped in the 10 θ zones closest to each pole (≈27°) to
uniform spacing ( 2.7qD = n) and the ϕ sweep at the pole was
replaced by a (ϕ) average—yielding similar time steps. The
axisymmetric simulation (C15-2D) uses 270 uniform θ zones
( 2 3qD = n).

These are the third series of CHIMERA simulations (Series-C)
and are substantially similar to the Series-B simulations
(Bruenn et al. 2013, 2014, hereafter B2013 and B2014). A
more extensive description of CHIMERA can be found in Bruenn
et al. (2014). The included microphysics are the same as for the
Series-B models including the spherical GR terms in the
gravity and transport. We solve the multi-group flux-limited
diffusion equations in the ray-by-ray approximation for all
three flavors of neutrinos and anti-neutrinos with four coupled
species: en , ēn , { , }n n n=mt m t , ¯ { ¯ , ¯ }n n n=mt m t , using 20
logarithmically spaced energy groups 4a =� –250MeV, where
α is the lapse function and ϵ is the comoving-frame group-
center energy. The neutrino–matter interactions used are the
full set of B2014. We utilize the Lattimer & Swesty (1991)
equation of state (EoS; incompressibility K= 220MeV) for

1011r > g cm 3- and an enhanced version of the Cooperstein
(1985) EoS for 1011r < g cm 3- , and in outer regions, we use a
14-species a-network (Hix & Thielemann 1999).

Relative to the Series-B simulations (B2013; B2014), the
neutrino transport solver now corrects for frame differences
between shock-adjacent zones when computing the flux and
flux gradients (S.W. Bruenn et al. 2015, in preparation),
permitting spherically symmetric CHIMERA simulations to track
the late shock retreat of the reference simulation in Lentz et al.
(2012). This improvement has a modest effect on the shock
stalling radius.

All times are given relative to core bounce. The proto-NS is
defined as the volume where 1011r > g cm 3- , and the shocked
“cavity” is the volume between the proto-NS and the shock.

3. SIMULATION OVERVIEW

After remapping from 1D, the multi-D simulations proceed
in a similar fashion: convectively unstable regions left behind
by the shock progress through the Fe-core trigger prompt
convection inside the proto-NS, similar to the axisymmetric
Series-B simulations.
Neutrino heating establishes a heating region extending

inward from the shock to the gain surface, where net neutrino
heating transitions to net cooling. Starting at ≈80 ms for both
multi-D simulations, heating at the base of the gain region
creates buoyantly unstable conditions, resulting in convective
plumes rising against the continuing inflow. Rising plumes
begin to affect the shock surface at ≈95 ms for C15-3D and
≈105 ms for C15-2D, as seen by the separation of the
minimum and maximum shock radii (Figure 1, dashed lines).
Over the next ∼50 ms, both models become completely
convective within the shocked cavity. For C15-3D, this results
in a flat mean shock radius, Rshock, that rises gradually up to
≈280 ms. For C15-2D, Rshock oscillates and grows faster,
indicating earlier shock revival and explosion. The shock for
C15-1D, which lacks multi-dimensional flows, reaches a
maximum radius of ≈180 km at ≈80 ms and recedes thereafter,
which is typical of 1D CCSN simulations.
The shock in C15-2D expands rapidly from ≈230 ms

onward (Figure 1), with the diagnostic energy10 E+

(Figure 2(a)) simultaneously becoming positive. E+ surpasses
0.01 B by 250 ms and grows rapidly thereafter. For C15-3D,
the first evidence of potential explosion begins with an
increased growth of Rshock at ≈280 ms, accelerating after
≈350 ms, as the largest buoyant plume expands, leading to a
small, but growing, E+.
The explosion is clearly more energetic in C15-2D at all

times (Figure 2(a)). We evaluate the growth of E+ over a
common period beginning when Rshock exceeds 500 km and
ending 45 ms later. For C15-3D, Rshock passes 500 km at
393 ms when E+ is 0.034 B, which grows to 0.067 B at 438 ms
when Rshock is 735 km. For C15-2D, Rshock exceeds 500 km at
278 ms when E+ is 0.041 B, which grows to 0.147 B at 323 ms

Figure 1. Mean (solid) shock radius for models C15-3D (green), C15-2D
(black), and C15-1D (red) plotted vs. time. Minima and maxima plotted with
dashed lines.

10 Following B2014, E+ is defined as the integral of the total energy (thermal,
kinetic, and gravitational) in all zones of the cavity where locally positive.
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Lentz	et	al.	(2015)

• Many	groups	are	seeing	shock	runaway	(although	not	all),	but	maybe	not	
quantitative	agreement		

• Sensitive	to	input	physics	(e.g.	Melson	et	al.	’15)	and	resolution	
• Nevertheless,	things	look	relatively	positive	for	3D	shock	runaway

Takiwaki	et	al.	’12,	Melson	’15,	Lentz	’15,	LR	et	al.	’16,	Takiwaki	et	al.	’16,	Ott	et	al.	’18,	O’Connor	and	Couch	’18,	Burrows	et	al.	’19	
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ABSTRACT
We present a first study of the progenitor star dependence of the three-dimensional (3D) neutrino mech-
anism of core-collapse supernovae. We employ full 3D general-relativistic multi-group neutrino radiation-
hydrodynamics and simulate the post-bounce evolutions of progenitors with zero-age main sequence masses
of 12, 15, 20, 27, and 40M�. All progenitors, with the exception of the 12M� star, experience shock runaway
by the end of their simulations. In most cases, a strongly asymmetric explosion will result. We find three qual-
itatively distinct evolutions that suggest a complex dependence of explosion dynamics on progenitor density
structure, neutrino heating, and 3D flow. (1) Progenitors with massive cores, shallow density profiles, and high
post-core-bounce accretion rates experience very strong neutrino heating and neutrino-driven turbulent convec-
tion, leading to early shock runaway. Accretion continues at a high rate, likely leading to black hole formation.
(2) Intermediate progenitors experience neutrino-driven, turbulence-aided explosions triggered by the arrival
of density discontinuities at the shock. These occur typically at the silicon/silicon-oxygen shell boundary. (3)
Progenitors with small cores and density profiles without strong discontinuities experience shock recession and
develop the 3D standing-accretion shock instability (SASI). Shock runaway ensues late, once declining ac-
cretion rate, SASI, and neutrino-driven convection create favorable conditions. These differences in explosion
times and dynamics result in a non-monotonic relationship between progenitor and compact remnant mass.
Keywords: supernovae: general – neutrinos – stars: black holes – stars: neutron

1. INTRODUCTION

Core-collapse supernovae (CCSNe) are the birth places of
neutron stars and black holes. They liberate the ashes of stel-
lar evolution, seeding the interstellar gas with the elements
from which planets form and life is made. They feed back on
star formation and regulate galaxy gas budgets. Yet, despite
their importance for much of astrophysics, our understanding
of the CCSN explosion mechanism, and its dependence on
progenitor star properties, is woefully incomplete.

The CCSN problem (see, e.g., Janka et al. 2007 for an
in-depth review) boils down to the total pressure behind the
shock having to offset the accretion ram pressure of the outer
core impinging on the shock. The hot accreting protoneutron
star (PNS) formed at core bounce emits a huge flux of neutri-
nos of all species. The neutrino mechanism (Bethe & Wilson
1985) relies on a fraction of these neutrinos being reabsorbed
in a “gain layer” below the shock. There, they heat the gas, in-
creasing the thermal pressure. Stars are spherical from a dis-
tance and much of the early CCSN simulation work was con-
ducted in spherical symmetry (1D). But 1D simulations fail
to show explosions powered by the neutrino mechanism for
all but the lowest-mass progenitors (M . 10M�; e.g., Kitaura
et al. 2006; Radice et al. 2017). Neutrino heating is strongest

1 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto,
Japan

2 TAPIR, Mailcode 350-17, California Institute of Technology,
Pasadena, CA 91125, USA, christian.d.ott@gmail.com

3 National Superconducting Cyclotron Laboratory, Michigan State Uni-
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5 Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada
6 Department of Physics, University of Guelph, Guelph, ON, Canada
7 Center for Computation & Technology, Louisiana State University,

Baton Rouge, LA, USA

at the base of the gain layer and it establishes a radially de-
creasing gradient in entropy. The first axisymmetric (2D) sim-
ulations showed that turbulent convection driven by this gradi-
ent plays a crucial role in reviving shock expansion (Burrows
et al. 1995; Herant et al. 1994; see Couch & Ott 2015 for the
role of turbulence). 2D simulations also showed that a non-
spherical instabilitiy of the standing accretion shock (SASI;
Blondin et al. 2003; Foglizzo et al. 2006) can also help revive
the shock.

The recent availability of petascale supercomputers has en-
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Figure 1. The density as a function of enclosed mass coordinate for our set
of progenitor stars. The density profile is the single most important progenitor
property since it sets the postbounce accretion rate. Note that the structures
inside ⇠1.3 - 1.4M� obey a homology relationship due to the universal na-
ture of degenerate self-gravitating objects.
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Figure 2. Basic radiation hydrodynamics results as a function of time after core bounce. The left panel pair depict shock radius (top) and accretion rate Ṁ at
400km (bottom). The Ṁ curves terminate when the shock first exceeds that radius. The center panels show the electron neutrino luminosities (top) and electron
antineutrino and heavy-lepton neutrino luminosities (bottom), extracted at 450km. We plot with thin lines the luminosities from the precursor 1D simulations
until 40ms after bounce and with thick lines the luminosities in the 3D simulations started from the 1D simulations at 20ms after bounce (38ms for model
s27WHW02). In the right panels, we plot the mean electron neutrino (top) and electron antineutrino and heavy-lepton neutrino (bottom) energies. Note the strong
dependence of the ⌫

e

and ⌫̄
e

luminosities on the accretion rate. The mean energies exhibit much less Ṁ sensitivity and their overall increase is driven by the
contraction of the PNS (cf. Fig. 3). Also note that the mean energies of ⌫

x

neutrinos are overestimated by our simulations compared to others (cf. Melson et al.
2015a), since we do not include neutrino-nucleon inelastic scattering. Shock runaway occurs in s20WH07 and s27WHW02 when the Si/Si-O interface reaches the
shock and Ṁ drops. No such drop is necessary to revive s40WH07’s shock. Model s15WH07 begins shock expansion only after ⇠500ms and model s12WH07
does not experience shock runaway by the end of its simulation.

Si/Si-O shell interface9 (cf. Fig. 1). In both models, it is
the drop in ram pressure due to the rapidly decreasing Ṁ

that triggers shock runaway ⇠170 - 200ms after bounce.

(3) In the 12M� and 15M� models with their moderate Ṁ

and low L⌫ , the shock recedes to radii around 100km. The
accretion rate gradually decreases, and so do the ⌫

e

and
⌫̄

e

luminosities (central panels of Fig. 2), while the mean
neutrino energies increase due to the increasing compact-
ness of the PNS (bottom-right panel of Fig. 3). Both mod-
els experiences SASI. Eventually, more than 500ms after
bounce, shock runaway occurs in the 15M� model. The
12M� model does not experience shock runaway by the
end of our simulation, but it still has the potential to re-
sume expansion at a later time.

O’Connor & Couch (2015) and Summa et al. (2016) found
similar evolutions to modes (2) and (3) in 2D simulations.

In Fig. 3, we present diagnostics that help understand the
three evolution modes. Shock expansion is facilitated by in-
creases in thermal and turbulent pressure that offset the ac-
cretion ram pressure (e.g., Couch & Ott 2015). Stronger neu-
trino heating means more thermal pressure and stronger driv-

9 The magnitude of the density jump is set by the scale of the jump in spe-
cific entropy between shells, e.g. Sukhbold et al. (2017); Suwa et al. (2016).

ing of turbulence. The neutrino heating rate scales approxi-
mately as Q̇heat / (h✏2

⌫
e

iL⌫
e

+ h✏2
⌫̄

e

iL⌫̄
e

)R-2
gainMgain , where Mgain

and Rgain are the mass contained in the gain region and the
gain radius, respectively (Janka 2001; Summa et al. 2016).
Therefore, the hierarchy of heating rates among the models
mirrors their luminosity hierarchy (Fig. 3). Assuming that
the majority of the ⌫

e

and ⌫̄
e

luminosity is powered by ac-
cretion, one finds Q̇heat / Ṁ(MPNSR

-1
PNS)1+2↵

R

-2
gainMgain, which

implies greater heating for a higher accretion rate and a more
compact PNS for a fixed gain region size and mass. Interest-
ingly, at early times (. 80 - 100ms), the heating efficiency
⌘ = Q̇net(L⌫

e

+L⌫̄
e

)-1 (where Q̇net is the net heating rate; heating
minus cooling) is independent of progenitor. Since the mean
neutrino energies are very similar at early times, this implies
that MgainR

-2
gain is similar for all of the models even though they

have different masses in the gain region (see the top-center
panel of Fig. 3).

Neutrino-driven convection begins to grow at ⇠80-100ms
in all models, as can be seen from the top-right panel of Fig. 3,
showing the radial and nonradial specific turbulent kinetic en-
ergy in the gain region. It is fully developed at 200ms (Fig. 4).

The specific turbulent energy in the gain region is very sim-
ilar in all models and grows with time, although convection

Ott,	LR	et	al.	(2018)
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Figure 2. Basic radiation hydrodynamics results as a function of time after core bounce. The left panel pair depict shock radius (top) and accretion rate Ṁ at
400km (bottom). The Ṁ curves terminate when the shock first exceeds that radius. The center panels show the electron neutrino luminosities (top) and electron
antineutrino and heavy-lepton neutrino luminosities (bottom), extracted at 450km. We plot with thin lines the luminosities from the precursor 1D simulations
until 40ms after bounce and with thick lines the luminosities in the 3D simulations started from the 1D simulations at 20ms after bounce (38ms for model
s27WHW02). In the right panels, we plot the mean electron neutrino (top) and electron antineutrino and heavy-lepton neutrino (bottom) energies. Note the strong
dependence of the ⌫

e

and ⌫̄
e

luminosities on the accretion rate. The mean energies exhibit much less Ṁ sensitivity and their overall increase is driven by the
contraction of the PNS (cf. Fig. 3). Also note that the mean energies of ⌫

x

neutrinos are overestimated by our simulations compared to others (cf. Melson et al.
2015a), since we do not include neutrino-nucleon inelastic scattering. Shock runaway occurs in s20WH07 and s27WHW02 when the Si/Si-O interface reaches the
shock and Ṁ drops. No such drop is necessary to revive s40WH07’s shock. Model s15WH07 begins shock expansion only after ⇠500ms and model s12WH07
does not experience shock runaway by the end of its simulation.

Si/Si-O shell interface9 (cf. Fig. 1). In both models, it is
the drop in ram pressure due to the rapidly decreasing Ṁ

that triggers shock runaway ⇠170 - 200ms after bounce.

(3) In the 12M� and 15M� models with their moderate Ṁ

and low L⌫ , the shock recedes to radii around 100km. The
accretion rate gradually decreases, and so do the ⌫

e

and
⌫̄

e

luminosities (central panels of Fig. 2), while the mean
neutrino energies increase due to the increasing compact-
ness of the PNS (bottom-right panel of Fig. 3). Both mod-
els experiences SASI. Eventually, more than 500ms after
bounce, shock runaway occurs in the 15M� model. The
12M� model does not experience shock runaway by the
end of our simulation, but it still has the potential to re-
sume expansion at a later time.

O’Connor & Couch (2015) and Summa et al. (2016) found
similar evolutions to modes (2) and (3) in 2D simulations.

In Fig. 3, we present diagnostics that help understand the
three evolution modes. Shock expansion is facilitated by in-
creases in thermal and turbulent pressure that offset the ac-
cretion ram pressure (e.g., Couch & Ott 2015). Stronger neu-
trino heating means more thermal pressure and stronger driv-

9 The magnitude of the density jump is set by the scale of the jump in spe-
cific entropy between shells, e.g. Sukhbold et al. (2017); Suwa et al. (2016).

ing of turbulence. The neutrino heating rate scales approxi-
mately as Q̇heat / (h✏2

⌫
e

iL⌫
e

+ h✏2
⌫̄

e

iL⌫̄
e

)R-2
gainMgain , where Mgain

and Rgain are the mass contained in the gain region and the
gain radius, respectively (Janka 2001; Summa et al. 2016).
Therefore, the hierarchy of heating rates among the models
mirrors their luminosity hierarchy (Fig. 3). Assuming that
the majority of the ⌫

e

and ⌫̄
e

luminosity is powered by ac-
cretion, one finds Q̇heat / Ṁ(MPNSR

-1
PNS)1+2↵

R

-2
gainMgain, which

implies greater heating for a higher accretion rate and a more
compact PNS for a fixed gain region size and mass. Interest-
ingly, at early times (. 80 - 100ms), the heating efficiency
⌘ = Q̇net(L⌫

e

+L⌫̄
e

)-1 (where Q̇net is the net heating rate; heating
minus cooling) is independent of progenitor. Since the mean
neutrino energies are very similar at early times, this implies
that MgainR

-2
gain is similar for all of the models even though they

have different masses in the gain region (see the top-center
panel of Fig. 3).

Neutrino-driven convection begins to grow at ⇠80-100ms
in all models, as can be seen from the top-right panel of Fig. 3,
showing the radial and nonradial specific turbulent kinetic en-
ergy in the gain region. It is fully developed at 200ms (Fig. 4).

The specific turbulent energy in the gain region is very sim-
ilar in all models and grows with time, although convection
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abled the first detailed 3D CCSN simulations (Hanke et al.
2013; Tamborra et al. 2014; Lentz et al. 2015; Melson et al.
2015b,a; Roberts et al. 2016; Takiwaki et al. 2014, 2016;
Müller et al. 2017; Summa et al. 2017; Chan et al. 2017).
Comparisons with 2D simulations have shown that 3D is
essential for understanding CCSNe, their explosion mecha-
nism, and for predicting their multi-messenger observables
(cf. Couch & Ott 2015; Janka et al. 2016).

In this Letter, we present a first study of the progenitor-star
dependence of neutrino-driven CCSNe in 3D, covering zero-
age main-sequence masses from 12M� to 40M�. All progen-
itors, except for the 12M� star, see shock runaway by 500 ms
after bounce, but in remarkably distinct ways, depending sen-
sitively on their precollapse structure.

2. METHODS AND SETUP

We draw 1D progenitors of 12, 15, 20, and 40M� from
the set of Woosley & Heger (2007) (WH07). In addition, we
use the 27M� model of Woosley et al. (2002) (WHW02) that
was simulated in 3D by Hanke et al. (2013) and Roberts et al.
(2016). We plot the progenitor density profiles in Figure 1.

We simulate core collapse in 1D using GR1D (O’Connor
& Ott 2013; O’Connor 2015) and map to 3D at 20ms af-
ter bounce for all WH07 progenitors. The 27M� model is
mapped at 38ms after bounce due to a transposed-digits er-
ror of the lead author. We carry out the 3D simulations with
the open-source 3D general-relativistic (GR) multi-group
radiation-hydrodynamics CCSN code Zelmani (Roberts
et al. 2016). It is based on the Einstein Toolkit (Löf-
fler et al. 2012; Mösta et al. 2014). Neutrino transport is
handled in the GR M1 multi-group approximation (Shibata
et al. 2011). We use three neutrinos species (⌫

e

, ⌫̄
e

, and
⌫

x

= [⌫µ, ⌫̄µ,⌫⌧ , ⌫̄⌧ ]), and 12 energy groups, spaced logarith-
mically with bin-centers between 1MeV and 248MeV. In the
3D simulations, we employ the subset of Bruenn (1985) neu-
trino opacities used in O’Connor & Ott (2013), but leave out
velocity dependence and inelastic scattering processes. Ve-
locity dependence and inelastic neutrino–electron scattering
are included in the 1D collapse simulatons as described in
O’Connor (2015). All simulations employ the SFHo equation
of state, which is tuned to fit astrophysical and experimental
constraints (Steiner et al. 2013). Upon mapping from 1D, we
observe a short transient in all neutrino quantities for about a
light-crossing time until the radiation field has reached quasi-
steady state. Similarly, there is a small re-adjustment in the
hydrodynamics as the 1D structure relaxes to the 3D Carte-
sian grid.

The 3D simulations use 8 levels of Cartesian adaptive mesh
refinement, resolving the PNS with 370m resolution and the
postshock region with 1.5km before shock expansion (see
Abdikamalov et al. 2015; Roberts et al. 2016 for resolution
studies with our code). After the shock has expanded to radii
&300km, we regrid to 3km resolution for the shocked region.
We find that once the shock has begun its runaway, changes
in the postshock resolution have only small effects. Table 1
summarizes key model properties. All times in this letter are
measured relative to core bounce of each model.

3. RESULTS

Core bounce occurs when the inner core reaches nuclear
density and the repulsive short-range component of the nu-
clear force stabilizes its collapse. With little variation between
progenitors, the CCSN shock is launched from a mass coor-
dinate of 0.56 - 0.58M� (Table 1; this is expected, see, e.g.,

Table 1

Model Summary

Model ⇠1.75 Mic,b [M�] tf - tb [ms] hRshock,fi [km]

s12WH07 0.235 0.583 527 123
s15WH07 0.580 0.576 597 526
s20WH07 0.944 0.577 384 523
s27WHW02 0.783 0.573 392 482
s40WH07 1.328 0.562 323 614

Note. — ⇠1.75 is the core compactness (O’Connor & Ott 2011) measured at
bounce at a mass coordinate of 1.75M�. Mic,b is the mass of the homologous
core at bounce. tf - tb is the final simulation time relative to core bounce and
hRshock,fi is the final average shock radius.

Janka et al. 2012). The shock first expands rapidly, but quickly
weakens due to the dissociation of heavy nuclei in accreting
outer core material and neutrino losses. It succumbs to the ac-
cretion ram pressure and stalls at a radius of ⇠150km. At this
point, differences in progenitor structure begin to matter.

In the bottom-left panel of Fig. 2, we plot the time evolution
of the mass accretion rate Ṁ in all progenitors. Within tens of
milliseconds of bounce, the entire iron core has accreted in all
models. Comparing with Fig. 1, we see the subsequent Ṁ is
determined by the progenitor density profile in the overlying
Si and Si-O shells at mass coordinate M & 1.3 - 1.9M�.

One expects the accretion rate to have multiple important
roles, some of which may counteract one another. First, it sets
the accretion ram pressure Pram = ⇢v

2 / ṀM

1/2
PNSr

-5/2
s

(the sec-
ond relationship results from assuming the accreted material
is in free-fall from a large radius), which keeps the stalled
shock from expanding. Second, it regulates the accretion lu-
minosity Lacc / ṀMPNSR

-1
PNS, which is the dominant source

of ⌫
e

and ⌫̄
e

luminosity providing energy to the shock. The
hierarchy of ⌫

e

and ⌫̄
e

luminosities between the different pro-
genitor models shown in the center panels of Fig. 2 directly
reflects the Ṁ order. Finally, the integrated accretion rate de-
termines mass and radius evolution of the PNS. To within an
order of magnitude, the mean neutrino energies are propor-
tional to the temperature at the surface of the PNS. A virial
argument suggests h✏⌫

e

i / (MPNSR

-1
PNS)↵ , which will depend

on the integrated accretion rate8. At early times, MPNSR

-1
PNS is

similar among all progenitors due to the universal structure of
the collapsed cores (Fig. 3) and therefore the mean neutrino
energies are similar (Fig. 2), but they start to deviate with time
due to differing accretion histories. Because of all that, one
expects the accretion history to be a determining factor in the
CCSN evolution of a given progenitor.

The impact of progenitor structure on the shock evolution
toward explosion is depicted by the top-left panel of Fig. 2.
We see three qualitatively different evolution modes:

(1) The 40M� progenitor has the highest postbounce Ṁ,
translating to the highest neutrino luminosities. Its den-
sity profile (Fig. 1) is shallow and smooth and there are
no quick drops in Ṁ. This model’s shock begins to de-
viate substantially from spherical symmetry at ⇠100ms
after bounce and shock runaway ensues at around 200ms.

(2) The 20M� and 27M� models have lower postbounce Ṁ,
but their density profiles have a steep discontinuity at the

8 Empirically, we find that ↵ = 0.35 with an overall scaling factor of
33MeV provides a fit better than 5% for all of the simulations.
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2015b,a; Roberts et al. 2016; Takiwaki et al. 2014, 2016;
Müller et al. 2017; Summa et al. 2017; Chan et al. 2017).
Comparisons with 2D simulations have shown that 3D is
essential for understanding CCSNe, their explosion mecha-
nism, and for predicting their multi-messenger observables
(cf. Couch & Ott 2015; Janka et al. 2016).

In this Letter, we present a first study of the progenitor-star
dependence of neutrino-driven CCSNe in 3D, covering zero-
age main-sequence masses from 12M� to 40M�. All progen-
itors, except for the 12M� star, see shock runaway by 500 ms
after bounce, but in remarkably distinct ways, depending sen-
sitively on their precollapse structure.

2. METHODS AND SETUP

We draw 1D progenitors of 12, 15, 20, and 40M� from
the set of Woosley & Heger (2007) (WH07). In addition, we
use the 27M� model of Woosley et al. (2002) (WHW02) that
was simulated in 3D by Hanke et al. (2013) and Roberts et al.
(2016). We plot the progenitor density profiles in Figure 1.

We simulate core collapse in 1D using GR1D (O’Connor
& Ott 2013; O’Connor 2015) and map to 3D at 20ms af-
ter bounce for all WH07 progenitors. The 27M� model is
mapped at 38ms after bounce due to a transposed-digits er-
ror of the lead author. We carry out the 3D simulations with
the open-source 3D general-relativistic (GR) multi-group
radiation-hydrodynamics CCSN code Zelmani (Roberts
et al. 2016). It is based on the Einstein Toolkit (Löf-
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mically with bin-centers between 1MeV and 248MeV. In the
3D simulations, we employ the subset of Bruenn (1985) neu-
trino opacities used in O’Connor & Ott (2013), but leave out
velocity dependence and inelastic scattering processes. Ve-
locity dependence and inelastic neutrino–electron scattering
are included in the 1D collapse simulatons as described in
O’Connor (2015). All simulations employ the SFHo equation
of state, which is tuned to fit astrophysical and experimental
constraints (Steiner et al. 2013). Upon mapping from 1D, we
observe a short transient in all neutrino quantities for about a
light-crossing time until the radiation field has reached quasi-
steady state. Similarly, there is a small re-adjustment in the
hydrodynamics as the 1D structure relaxes to the 3D Carte-
sian grid.

The 3D simulations use 8 levels of Cartesian adaptive mesh
refinement, resolving the PNS with 370m resolution and the
postshock region with 1.5km before shock expansion (see
Abdikamalov et al. 2015; Roberts et al. 2016 for resolution
studies with our code). After the shock has expanded to radii
&300km, we regrid to 3km resolution for the shocked region.
We find that once the shock has begun its runaway, changes
in the postshock resolution have only small effects. Table 1
summarizes key model properties. All times in this letter are
measured relative to core bounce of each model.

3. RESULTS

Core bounce occurs when the inner core reaches nuclear
density and the repulsive short-range component of the nu-
clear force stabilizes its collapse. With little variation between
progenitors, the CCSN shock is launched from a mass coor-
dinate of 0.56 - 0.58M� (Table 1; this is expected, see, e.g.,

Table 1

Model Summary

Model ⇠1.75 Mic,b [M�] tf - tb [ms] hRshock,fi [km]

s12WH07 0.235 0.583 527 123
s15WH07 0.580 0.576 597 526
s20WH07 0.944 0.577 384 523
s27WHW02 0.783 0.573 392 482
s40WH07 1.328 0.562 323 614

Note. — ⇠1.75 is the core compactness (O’Connor & Ott 2011) measured at
bounce at a mass coordinate of 1.75M�. Mic,b is the mass of the homologous
core at bounce. tf - tb is the final simulation time relative to core bounce and
hRshock,fi is the final average shock radius.

Janka et al. 2012). The shock first expands rapidly, but quickly
weakens due to the dissociation of heavy nuclei in accreting
outer core material and neutrino losses. It succumbs to the ac-
cretion ram pressure and stalls at a radius of ⇠150km. At this
point, differences in progenitor structure begin to matter.

In the bottom-left panel of Fig. 2, we plot the time evolution
of the mass accretion rate Ṁ in all progenitors. Within tens of
milliseconds of bounce, the entire iron core has accreted in all
models. Comparing with Fig. 1, we see the subsequent Ṁ is
determined by the progenitor density profile in the overlying
Si and Si-O shells at mass coordinate M & 1.3 - 1.9M�.

One expects the accretion rate to have multiple important
roles, some of which may counteract one another. First, it sets
the accretion ram pressure Pram = ⇢v
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(the sec-
ond relationship results from assuming the accreted material
is in free-fall from a large radius), which keeps the stalled
shock from expanding. Second, it regulates the accretion lu-
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PNS, which is the dominant source

of ⌫
e

and ⌫̄
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luminosity providing energy to the shock. The
hierarchy of ⌫
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and ⌫̄
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luminosities between the different pro-
genitor models shown in the center panels of Fig. 2 directly
reflects the Ṁ order. Finally, the integrated accretion rate de-
termines mass and radius evolution of the PNS. To within an
order of magnitude, the mean neutrino energies are propor-
tional to the temperature at the surface of the PNS. A virial
argument suggests h✏⌫

e

i / (MPNSR

-1
PNS)↵ , which will depend

on the integrated accretion rate8. At early times, MPNSR

-1
PNS is

similar among all progenitors due to the universal structure of
the collapsed cores (Fig. 3) and therefore the mean neutrino
energies are similar (Fig. 2), but they start to deviate with time
due to differing accretion histories. Because of all that, one
expects the accretion history to be a determining factor in the
CCSN evolution of a given progenitor.

The impact of progenitor structure on the shock evolution
toward explosion is depicted by the top-left panel of Fig. 2.
We see three qualitatively different evolution modes:

(1) The 40M� progenitor has the highest postbounce Ṁ,
translating to the highest neutrino luminosities. Its den-
sity profile (Fig. 1) is shallow and smooth and there are
no quick drops in Ṁ. This model’s shock begins to de-
viate substantially from spherical symmetry at ⇠100ms
after bounce and shock runaway ensues at around 200ms.

(2) The 20M� and 27M� models have lower postbounce Ṁ,
but their density profiles have a steep discontinuity at the

8 Empirically, we find that ↵ = 0.35 with an overall scaling factor of
33MeV provides a fit better than 5% for all of the simulations.
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Figure 2. Basic radiation hydrodynamics results as a function of time after core bounce. The left panel pair depict shock radius (top) and accretion rate Ṁ at
400km (bottom). The Ṁ curves terminate when the shock first exceeds that radius. The center panels show the electron neutrino luminosities (top) and electron
antineutrino and heavy-lepton neutrino luminosities (bottom), extracted at 450km. We plot with thin lines the luminosities from the precursor 1D simulations
until 40ms after bounce and with thick lines the luminosities in the 3D simulations started from the 1D simulations at 20ms after bounce (38ms for model
s27WHW02). In the right panels, we plot the mean electron neutrino (top) and electron antineutrino and heavy-lepton neutrino (bottom) energies. Note the strong
dependence of the ⌫

e

and ⌫̄
e

luminosities on the accretion rate. The mean energies exhibit much less Ṁ sensitivity and their overall increase is driven by the
contraction of the PNS (cf. Fig. 3). Also note that the mean energies of ⌫

x

neutrinos are overestimated by our simulations compared to others (cf. Melson et al.
2015a), since we do not include neutrino-nucleon inelastic scattering. Shock runaway occurs in s20WH07 and s27WHW02 when the Si/Si-O interface reaches the
shock and Ṁ drops. No such drop is necessary to revive s40WH07’s shock. Model s15WH07 begins shock expansion only after ⇠500ms and model s12WH07
does not experience shock runaway by the end of its simulation.

Si/Si-O shell interface9 (cf. Fig. 1). In both models, it is
the drop in ram pressure due to the rapidly decreasing Ṁ

that triggers shock runaway ⇠170 - 200ms after bounce.

(3) In the 12M� and 15M� models with their moderate Ṁ

and low L⌫ , the shock recedes to radii around 100km. The
accretion rate gradually decreases, and so do the ⌫

e

and
⌫̄

e

luminosities (central panels of Fig. 2), while the mean
neutrino energies increase due to the increasing compact-
ness of the PNS (bottom-right panel of Fig. 3). Both mod-
els experiences SASI. Eventually, more than 500ms after
bounce, shock runaway occurs in the 15M� model. The
12M� model does not experience shock runaway by the
end of our simulation, but it still has the potential to re-
sume expansion at a later time.

O’Connor & Couch (2015) and Summa et al. (2016) found
similar evolutions to modes (2) and (3) in 2D simulations.

In Fig. 3, we present diagnostics that help understand the
three evolution modes. Shock expansion is facilitated by in-
creases in thermal and turbulent pressure that offset the ac-
cretion ram pressure (e.g., Couch & Ott 2015). Stronger neu-
trino heating means more thermal pressure and stronger driv-

9 The magnitude of the density jump is set by the scale of the jump in spe-
cific entropy between shells, e.g. Sukhbold et al. (2017); Suwa et al. (2016).

ing of turbulence. The neutrino heating rate scales approxi-
mately as Q̇heat / (h✏2

⌫
e

iL⌫
e

+ h✏2
⌫̄

e

iL⌫̄
e

)R-2
gainMgain , where Mgain

and Rgain are the mass contained in the gain region and the
gain radius, respectively (Janka 2001; Summa et al. 2016).
Therefore, the hierarchy of heating rates among the models
mirrors their luminosity hierarchy (Fig. 3). Assuming that
the majority of the ⌫

e

and ⌫̄
e

luminosity is powered by ac-
cretion, one finds Q̇heat / Ṁ(MPNSR

-1
PNS)1+2↵

R

-2
gainMgain, which

implies greater heating for a higher accretion rate and a more
compact PNS for a fixed gain region size and mass. Interest-
ingly, at early times (. 80 - 100ms), the heating efficiency
⌘ = Q̇net(L⌫

e

+L⌫̄
e

)-1 (where Q̇net is the net heating rate; heating
minus cooling) is independent of progenitor. Since the mean
neutrino energies are very similar at early times, this implies
that MgainR

-2
gain is similar for all of the models even though they

have different masses in the gain region (see the top-center
panel of Fig. 3).

Neutrino-driven convection begins to grow at ⇠80-100ms
in all models, as can be seen from the top-right panel of Fig. 3,
showing the radial and nonradial specific turbulent kinetic en-
ergy in the gain region. It is fully developed at 200ms (Fig. 4).

The specific turbulent energy in the gain region is very sim-
ilar in all models and grows with time, although convection
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Figure 2. Basic radiation hydrodynamics results as a function of time after core bounce. The left panel pair depict shock radius (top) and accretion rate Ṁ at
400km (bottom). The Ṁ curves terminate when the shock first exceeds that radius. The center panels show the electron neutrino luminosities (top) and electron
antineutrino and heavy-lepton neutrino luminosities (bottom), extracted at 450km. We plot with thin lines the luminosities from the precursor 1D simulations
until 40ms after bounce and with thick lines the luminosities in the 3D simulations started from the 1D simulations at 20ms after bounce (38ms for model
s27WHW02). In the right panels, we plot the mean electron neutrino (top) and electron antineutrino and heavy-lepton neutrino (bottom) energies. Note the strong
dependence of the ⌫

e

and ⌫̄
e

luminosities on the accretion rate. The mean energies exhibit much less Ṁ sensitivity and their overall increase is driven by the
contraction of the PNS (cf. Fig. 3). Also note that the mean energies of ⌫

x

neutrinos are overestimated by our simulations compared to others (cf. Melson et al.
2015a), since we do not include neutrino-nucleon inelastic scattering. Shock runaway occurs in s20WH07 and s27WHW02 when the Si/Si-O interface reaches the
shock and Ṁ drops. No such drop is necessary to revive s40WH07’s shock. Model s15WH07 begins shock expansion only after ⇠500ms and model s12WH07
does not experience shock runaway by the end of its simulation.

Si/Si-O shell interface9 (cf. Fig. 1). In both models, it is
the drop in ram pressure due to the rapidly decreasing Ṁ

that triggers shock runaway ⇠170 - 200ms after bounce.

(3) In the 12M� and 15M� models with their moderate Ṁ

and low L⌫ , the shock recedes to radii around 100km. The
accretion rate gradually decreases, and so do the ⌫

e

and
⌫̄

e

luminosities (central panels of Fig. 2), while the mean
neutrino energies increase due to the increasing compact-
ness of the PNS (bottom-right panel of Fig. 3). Both mod-
els experiences SASI. Eventually, more than 500ms after
bounce, shock runaway occurs in the 15M� model. The
12M� model does not experience shock runaway by the
end of our simulation, but it still has the potential to re-
sume expansion at a later time.

O’Connor & Couch (2015) and Summa et al. (2016) found
similar evolutions to modes (2) and (3) in 2D simulations.

In Fig. 3, we present diagnostics that help understand the
three evolution modes. Shock expansion is facilitated by in-
creases in thermal and turbulent pressure that offset the ac-
cretion ram pressure (e.g., Couch & Ott 2015). Stronger neu-
trino heating means more thermal pressure and stronger driv-

9 The magnitude of the density jump is set by the scale of the jump in spe-
cific entropy between shells, e.g. Sukhbold et al. (2017); Suwa et al. (2016).

ing of turbulence. The neutrino heating rate scales approxi-
mately as Q̇heat / (h✏2
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gainMgain , where Mgain

and Rgain are the mass contained in the gain region and the
gain radius, respectively (Janka 2001; Summa et al. 2016).
Therefore, the hierarchy of heating rates among the models
mirrors their luminosity hierarchy (Fig. 3). Assuming that
the majority of the ⌫
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and ⌫̄
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luminosity is powered by ac-
cretion, one finds Q̇heat / Ṁ(MPNSR

-1
PNS)1+2↵
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-2
gainMgain, which

implies greater heating for a higher accretion rate and a more
compact PNS for a fixed gain region size and mass. Interest-
ingly, at early times (. 80 - 100ms), the heating efficiency
⌘ = Q̇net(L⌫
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+L⌫̄
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)-1 (where Q̇net is the net heating rate; heating
minus cooling) is independent of progenitor. Since the mean
neutrino energies are very similar at early times, this implies
that MgainR

-2
gain is similar for all of the models even though they

have different masses in the gain region (see the top-center
panel of Fig. 3).

Neutrino-driven convection begins to grow at ⇠80-100ms
in all models, as can be seen from the top-right panel of Fig. 3,
showing the radial and nonradial specific turbulent kinetic en-
ergy in the gain region. It is fully developed at 200ms (Fig. 4).

The specific turbulent energy in the gain region is very sim-
ilar in all models and grows with time, although convection
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Figure 2. Basic radiation hydrodynamics results as a function of time after core bounce. The left panel pair depict shock radius (top) and accretion rate Ṁ at
400km (bottom). The Ṁ curves terminate when the shock first exceeds that radius. The center panels show the electron neutrino luminosities (top) and electron
antineutrino and heavy-lepton neutrino luminosities (bottom), extracted at 450km. We plot with thin lines the luminosities from the precursor 1D simulations
until 40ms after bounce and with thick lines the luminosities in the 3D simulations started from the 1D simulations at 20ms after bounce (38ms for model
s27WHW02). In the right panels, we plot the mean electron neutrino (top) and electron antineutrino and heavy-lepton neutrino (bottom) energies. Note the strong
dependence of the ⌫

e

and ⌫̄
e

luminosities on the accretion rate. The mean energies exhibit much less Ṁ sensitivity and their overall increase is driven by the
contraction of the PNS (cf. Fig. 3). Also note that the mean energies of ⌫

x

neutrinos are overestimated by our simulations compared to others (cf. Melson et al.
2015a), since we do not include neutrino-nucleon inelastic scattering. Shock runaway occurs in s20WH07 and s27WHW02 when the Si/Si-O interface reaches the
shock and Ṁ drops. No such drop is necessary to revive s40WH07’s shock. Model s15WH07 begins shock expansion only after ⇠500ms and model s12WH07
does not experience shock runaway by the end of its simulation.

Si/Si-O shell interface9 (cf. Fig. 1). In both models, it is
the drop in ram pressure due to the rapidly decreasing Ṁ

that triggers shock runaway ⇠170 - 200ms after bounce.

(3) In the 12M� and 15M� models with their moderate Ṁ

and low L⌫ , the shock recedes to radii around 100km. The
accretion rate gradually decreases, and so do the ⌫

e

and
⌫̄

e

luminosities (central panels of Fig. 2), while the mean
neutrino energies increase due to the increasing compact-
ness of the PNS (bottom-right panel of Fig. 3). Both mod-
els experiences SASI. Eventually, more than 500ms after
bounce, shock runaway occurs in the 15M� model. The
12M� model does not experience shock runaway by the
end of our simulation, but it still has the potential to re-
sume expansion at a later time.

O’Connor & Couch (2015) and Summa et al. (2016) found
similar evolutions to modes (2) and (3) in 2D simulations.

In Fig. 3, we present diagnostics that help understand the
three evolution modes. Shock expansion is facilitated by in-
creases in thermal and turbulent pressure that offset the ac-
cretion ram pressure (e.g., Couch & Ott 2015). Stronger neu-
trino heating means more thermal pressure and stronger driv-

9 The magnitude of the density jump is set by the scale of the jump in spe-
cific entropy between shells, e.g. Sukhbold et al. (2017); Suwa et al. (2016).

ing of turbulence. The neutrino heating rate scales approxi-
mately as Q̇heat / (h✏2
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)R-2
gainMgain , where Mgain

and Rgain are the mass contained in the gain region and the
gain radius, respectively (Janka 2001; Summa et al. 2016).
Therefore, the hierarchy of heating rates among the models
mirrors their luminosity hierarchy (Fig. 3). Assuming that
the majority of the ⌫

e

and ⌫̄
e

luminosity is powered by ac-
cretion, one finds Q̇heat / Ṁ(MPNSR

-1
PNS)1+2↵

R

-2
gainMgain, which

implies greater heating for a higher accretion rate and a more
compact PNS for a fixed gain region size and mass. Interest-
ingly, at early times (. 80 - 100ms), the heating efficiency
⌘ = Q̇net(L⌫

e

+L⌫̄
e

)-1 (where Q̇net is the net heating rate; heating
minus cooling) is independent of progenitor. Since the mean
neutrino energies are very similar at early times, this implies
that MgainR

-2
gain is similar for all of the models even though they

have different masses in the gain region (see the top-center
panel of Fig. 3).

Neutrino-driven convection begins to grow at ⇠80-100ms
in all models, as can be seen from the top-right panel of Fig. 3,
showing the radial and nonradial specific turbulent kinetic en-
ergy in the gain region. It is fully developed at 200ms (Fig. 4).

The specific turbulent energy in the gain region is very sim-
ilar in all models and grows with time, although convection
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Ṁ at 400 km

s12WH07
s15WH07
s20WH07
s27WHW02
s40WH07

0 100 200 300 400 500 600
Time [ms]

20

40

60

80

100

L �̄
e,�

x
[1

051
er

g
s�

1 ]

�̄e, �x

thin lines: 1D
thick lines: 3D

�̄e

One �x

100 200 300 400 500 600
Time [ms]

10

12

14

16

18

20

h�
�̄
i[M

eV
]

�̄e, �x

s12WH07
s15WH07
s20WH07
s27WHW02
s40WH07

�̄e

One �x

Figure 2. Basic radiation hydrodynamics results as a function of time after core bounce. The left panel pair depict shock radius (top) and accretion rate Ṁ at
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s27WHW02). In the right panels, we plot the mean electron neutrino (top) and electron antineutrino and heavy-lepton neutrino (bottom) energies. Note the strong
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luminosities on the accretion rate. The mean energies exhibit much less Ṁ sensitivity and their overall increase is driven by the
contraction of the PNS (cf. Fig. 3). Also note that the mean energies of ⌫

x

neutrinos are overestimated by our simulations compared to others (cf. Melson et al.
2015a), since we do not include neutrino-nucleon inelastic scattering. Shock runaway occurs in s20WH07 and s27WHW02 when the Si/Si-O interface reaches the
shock and Ṁ drops. No such drop is necessary to revive s40WH07’s shock. Model s15WH07 begins shock expansion only after ⇠500ms and model s12WH07
does not experience shock runaway by the end of its simulation.
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creases in thermal and turbulent pressure that offset the ac-
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trino heating means more thermal pressure and stronger driv-
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minus cooling) is independent of progenitor. Since the mean
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gain is similar for all of the models even though they

have different masses in the gain region (see the top-center
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Neutrino-driven convection begins to grow at ⇠80-100ms
in all models, as can be seen from the top-right panel of Fig. 3,
showing the radial and nonradial specific turbulent kinetic en-
ergy in the gain region. It is fully developed at 200ms (Fig. 4).

The specific turbulent energy in the gain region is very sim-
ilar in all models and grows with time, although convection
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abled the first detailed 3D CCSN simulations (Hanke et al.
2013; Tamborra et al. 2014; Lentz et al. 2015; Melson et al.
2015b,a; Roberts et al. 2016; Takiwaki et al. 2014, 2016;
Müller et al. 2017; Summa et al. 2017; Chan et al. 2017).
Comparisons with 2D simulations have shown that 3D is
essential for understanding CCSNe, their explosion mecha-
nism, and for predicting their multi-messenger observables
(cf. Couch & Ott 2015; Janka et al. 2016).

In this Letter, we present a first study of the progenitor-star
dependence of neutrino-driven CCSNe in 3D, covering zero-
age main-sequence masses from 12M� to 40M�. All progen-
itors, except for the 12M� star, see shock runaway by 500 ms
after bounce, but in remarkably distinct ways, depending sen-
sitively on their precollapse structure.

2. METHODS AND SETUP

We draw 1D progenitors of 12, 15, 20, and 40M� from
the set of Woosley & Heger (2007) (WH07). In addition, we
use the 27M� model of Woosley et al. (2002) (WHW02) that
was simulated in 3D by Hanke et al. (2013) and Roberts et al.
(2016). We plot the progenitor density profiles in Figure 1.

We simulate core collapse in 1D using GR1D (O’Connor
& Ott 2013; O’Connor 2015) and map to 3D at 20ms af-
ter bounce for all WH07 progenitors. The 27M� model is
mapped at 38ms after bounce due to a transposed-digits er-
ror of the lead author. We carry out the 3D simulations with
the open-source 3D general-relativistic (GR) multi-group
radiation-hydrodynamics CCSN code Zelmani (Roberts
et al. 2016). It is based on the Einstein Toolkit (Löf-
fler et al. 2012; Mösta et al. 2014). Neutrino transport is
handled in the GR M1 multi-group approximation (Shibata
et al. 2011). We use three neutrinos species (⌫

e

, ⌫̄
e

, and
⌫

x

= [⌫µ, ⌫̄µ,⌫⌧ , ⌫̄⌧ ]), and 12 energy groups, spaced logarith-
mically with bin-centers between 1MeV and 248MeV. In the
3D simulations, we employ the subset of Bruenn (1985) neu-
trino opacities used in O’Connor & Ott (2013), but leave out
velocity dependence and inelastic scattering processes. Ve-
locity dependence and inelastic neutrino–electron scattering
are included in the 1D collapse simulatons as described in
O’Connor (2015). All simulations employ the SFHo equation
of state, which is tuned to fit astrophysical and experimental
constraints (Steiner et al. 2013). Upon mapping from 1D, we
observe a short transient in all neutrino quantities for about a
light-crossing time until the radiation field has reached quasi-
steady state. Similarly, there is a small re-adjustment in the
hydrodynamics as the 1D structure relaxes to the 3D Carte-
sian grid.

The 3D simulations use 8 levels of Cartesian adaptive mesh
refinement, resolving the PNS with 370m resolution and the
postshock region with 1.5km before shock expansion (see
Abdikamalov et al. 2015; Roberts et al. 2016 for resolution
studies with our code). After the shock has expanded to radii
&300km, we regrid to 3km resolution for the shocked region.
We find that once the shock has begun its runaway, changes
in the postshock resolution have only small effects. Table 1
summarizes key model properties. All times in this letter are
measured relative to core bounce of each model.

3. RESULTS

Core bounce occurs when the inner core reaches nuclear
density and the repulsive short-range component of the nu-
clear force stabilizes its collapse. With little variation between
progenitors, the CCSN shock is launched from a mass coor-
dinate of 0.56 - 0.58M� (Table 1; this is expected, see, e.g.,

Table 1

Model Summary

Model ⇠1.75 Mic,b [M�] tf - tb [ms] hRshock,fi [km]

s12WH07 0.235 0.583 527 123
s15WH07 0.580 0.576 597 526
s20WH07 0.944 0.577 384 523
s27WHW02 0.783 0.573 392 482
s40WH07 1.328 0.562 323 614

Note. — ⇠1.75 is the core compactness (O’Connor & Ott 2011) measured at
bounce at a mass coordinate of 1.75M�. Mic,b is the mass of the homologous
core at bounce. tf - tb is the final simulation time relative to core bounce and
hRshock,fi is the final average shock radius.

Janka et al. 2012). The shock first expands rapidly, but quickly
weakens due to the dissociation of heavy nuclei in accreting
outer core material and neutrino losses. It succumbs to the ac-
cretion ram pressure and stalls at a radius of ⇠150km. At this
point, differences in progenitor structure begin to matter.

In the bottom-left panel of Fig. 2, we plot the time evolution
of the mass accretion rate Ṁ in all progenitors. Within tens of
milliseconds of bounce, the entire iron core has accreted in all
models. Comparing with Fig. 1, we see the subsequent Ṁ is
determined by the progenitor density profile in the overlying
Si and Si-O shells at mass coordinate M & 1.3 - 1.9M�.

One expects the accretion rate to have multiple important
roles, some of which may counteract one another. First, it sets
the accretion ram pressure Pram = ⇢v

2 / ṀM

1/2
PNSr

-5/2
s

(the sec-
ond relationship results from assuming the accreted material
is in free-fall from a large radius), which keeps the stalled
shock from expanding. Second, it regulates the accretion lu-
minosity Lacc / ṀMPNSR

-1
PNS, which is the dominant source

of ⌫
e

and ⌫̄
e

luminosity providing energy to the shock. The
hierarchy of ⌫

e

and ⌫̄
e

luminosities between the different pro-
genitor models shown in the center panels of Fig. 2 directly
reflects the Ṁ order. Finally, the integrated accretion rate de-
termines mass and radius evolution of the PNS. To within an
order of magnitude, the mean neutrino energies are propor-
tional to the temperature at the surface of the PNS. A virial
argument suggests h✏⌫

e

i / (MPNSR

-1
PNS)↵ , which will depend

on the integrated accretion rate8. At early times, MPNSR

-1
PNS is

similar among all progenitors due to the universal structure of
the collapsed cores (Fig. 3) and therefore the mean neutrino
energies are similar (Fig. 2), but they start to deviate with time
due to differing accretion histories. Because of all that, one
expects the accretion history to be a determining factor in the
CCSN evolution of a given progenitor.

The impact of progenitor structure on the shock evolution
toward explosion is depicted by the top-left panel of Fig. 2.
We see three qualitatively different evolution modes:

(1) The 40M� progenitor has the highest postbounce Ṁ,
translating to the highest neutrino luminosities. Its den-
sity profile (Fig. 1) is shallow and smooth and there are
no quick drops in Ṁ. This model’s shock begins to de-
viate substantially from spherical symmetry at ⇠100ms
after bounce and shock runaway ensues at around 200ms.

(2) The 20M� and 27M� models have lower postbounce Ṁ,
but their density profiles have a steep discontinuity at the

8 Empirically, we find that ↵ = 0.35 with an overall scaling factor of
33MeV provides a fit better than 5% for all of the simulations.
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Figure 6. The top panel shows the diagnostic explosion energy (using the
definition of Müller et al. 2012). It is rapidly growing at the end of our simula-
tions. It does not include positive contributions from nuclear recombination.
The shock still has to overcome the binding energy of the overlying stellar
material, which is greater than the diagnostic energy in all models at the final
simulated time. In the bottom panel, we plot the baryonic and gravitational
PNS mass inside the 1011 gcm-3 density contour. Also plotted is the bound
baryonic mass inside the expanding shock. Model s40WH07’s PNS is still
accreting at ⇠0.45M� s

-1 at the end of the simulation. It will thus likely ex-
ceed the maximum mass that can be supported by the SFHo EOS (2.06M�
for a cold NS, ⇠10 - 20% more for a hot PNS; O’Connor & Ott 2011) and
collapse to a black hole.

anemic explosion or complete failure (Chan et al. 2017).
The gravitational PNS mass in the other models has more

or less leveled off at the end of the simulation due to the
competition of neutrino cooling with moderate amounts of
continuing accretion. Using Ebind ⇡ 0.084M�c

2(Mgrav/M�)2

(Lattimer & Prakash 2001) and the bound baryonic masses
shown in Fig. 6, we estimate (lower-limit) final remnant NS
masses of (1.59,1.65,1.54)M� for s15WH07, s20WH07, and
s27WHW02, respectively.

4. DISCUSSION AND CONCLUSIONS

Simple answers are not to be had in 3D CCSN theory. Our
simulations suggest a complicated interplay of accretion rate,
neutrino heating, and 3D fluid dynamics that determines the

resulting CCSN dynamics and final outcome.
The three “CCSN evolution modes” we identify depend on

progenitor structure as follows:
(1) Massive cores with high compactness (⇠

M

=
(M/M�)(R[M]/1000km)-1,M = 1.75 - 2.5M�;O’Connor &
Ott 2011) and without large density drops at shell interfaces
develop early neutrino-driven, turbulence-facilitated shock
runaway, but likely make black holes, with or without the
shock exploding the star.

(2) Cores with intermediate compactness and with a sub-
stantial density drop at the Si/Si-O interface develop neutrino-
driven, turbulence-facilitated explosions when this interface
reaches the shock. They make relatively massive NSs with
M & 1.5M�.

(3) Cores with moderate to low compactness and without
precipitous density drop have receding shocks that develop
SASI and run away only at late times once SASI, neutrino
heating, and turbulence have established favorable conditions.
Due to the late explosions, the resulting NSs are also relatively
massive (M & 1.4 - 1.5M�).

Modes (2) and (3) were seen previously in the 2D simula-
tions of O’Connor & Couch (2015) and Summa et al. (2016).
Mode (1), for the most extreme progenitors like s40WH07,
is new. Pan et al. (2017) recently simulated this progenitor
in 2D with the same EOS, but did not find an explosion.
Chan et al. (2017) simulated a different 40M� progenitor
in 3D and modified neutrino opacities to obtain an explo-
sion. In our simulation of s40WH07, turbulence driven by
neutrino heating is essential for creating conditions allowing
shock runaway. The simulation of Pan et al. (2017) appears
to have much weaker turbulence. The strength of CCSN tur-
bulence is sensitive not only to neutrino heating, but also to
the magnitude of perturbations that enter through the shock
(e.g., Couch & Ott 2013; Müller & Janka 2015; Müller et al.
2017). Hence, the differences between our simulations and
those of others could be due to the relatively large numerical
perturbations imposed by our Cartesian grid (e.g., Ott et al.
2013). This could, perhaps, explain why we find explosions
for s27WHW02 and s20WH07 that did not explode in the
spherical-coordinates 3D simulations of Hanke et al. (2013)
and Tamborra et al. (2014), and Melson et al. (2015a), re-
spectively. Another piece of evidence for this argument is that
our simulations of s20WH07 and s27WHW02 are at all times
closer to explosion than their 2D counterparts in Summa et al.
(2016), despite the fact that other studies have shown that 2D
is more conducive to explosion than 3D due to its (unphysi-
cal) inverse turbulent cascade (e.g., Couch 2013; Couch & Ott
2015; Lentz et al. 2015). However, one should keep in mind
that Hanke et al. (2013), Tamborra et al. (2014), Melson et al.
(2015a), and Summa et al. (2016) used a different EOS, as
well as different approximations to the neutrino transport and
different neutrino opacities.

Presupernova stars in the wild have physical perturbations
in their iron cores, Si, and Si-O shells. Determining their prop-
erties requires full 3D stellar evolution simulations of the final
phase before core collapse (Couch et al. 2015; Müller et al.
2016; Cristini et al. 2017).

Our simulations show that the development of large-scale
asymmetric explosions with dominant ` = 1 components is a
generic outcome and independent of progenitor in the mass
range considered here. While we do not investigate them here,
NS and black hole birth kicks require such asymmetric mass
ejection (e.g., Müller et al. 2017; Janka 2013).
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Figure 6. The top panel shows the diagnostic explosion energy (using the
definition of Müller et al. 2012). It is rapidly growing at the end of our simula-
tions. It does not include positive contributions from nuclear recombination.
The shock still has to overcome the binding energy of the overlying stellar
material, which is greater than the diagnostic energy in all models at the final
simulated time. In the bottom panel, we plot the baryonic and gravitational
PNS mass inside the 1011 gcm-3 density contour. Also plotted is the bound
baryonic mass inside the expanding shock. Model s40WH07’s PNS is still
accreting at ⇠0.45M� s

-1 at the end of the simulation. It will thus likely ex-
ceed the maximum mass that can be supported by the SFHo EOS (2.06M�
for a cold NS, ⇠10 - 20% more for a hot PNS; O’Connor & Ott 2011) and
collapse to a black hole.

anemic explosion or complete failure (Chan et al. 2017).
The gravitational PNS mass in the other models has more

or less leveled off at the end of the simulation due to the
competition of neutrino cooling with moderate amounts of
continuing accretion. Using Ebind ⇡ 0.084M�c

2(Mgrav/M�)2

(Lattimer & Prakash 2001) and the bound baryonic masses
shown in Fig. 6, we estimate (lower-limit) final remnant NS
masses of (1.59,1.65,1.54)M� for s15WH07, s20WH07, and
s27WHW02, respectively.

4. DISCUSSION AND CONCLUSIONS

Simple answers are not to be had in 3D CCSN theory. Our
simulations suggest a complicated interplay of accretion rate,
neutrino heating, and 3D fluid dynamics that determines the

resulting CCSN dynamics and final outcome.
The three “CCSN evolution modes” we identify depend on

progenitor structure as follows:
(1) Massive cores with high compactness (⇠

M

=
(M/M�)(R[M]/1000km)-1,M = 1.75 - 2.5M�;O’Connor &
Ott 2011) and without large density drops at shell interfaces
develop early neutrino-driven, turbulence-facilitated shock
runaway, but likely make black holes, with or without the
shock exploding the star.

(2) Cores with intermediate compactness and with a sub-
stantial density drop at the Si/Si-O interface develop neutrino-
driven, turbulence-facilitated explosions when this interface
reaches the shock. They make relatively massive NSs with
M & 1.5M�.

(3) Cores with moderate to low compactness and without
precipitous density drop have receding shocks that develop
SASI and run away only at late times once SASI, neutrino
heating, and turbulence have established favorable conditions.
Due to the late explosions, the resulting NSs are also relatively
massive (M & 1.4 - 1.5M�).

Modes (2) and (3) were seen previously in the 2D simula-
tions of O’Connor & Couch (2015) and Summa et al. (2016).
Mode (1), for the most extreme progenitors like s40WH07,
is new. Pan et al. (2017) recently simulated this progenitor
in 2D with the same EOS, but did not find an explosion.
Chan et al. (2017) simulated a different 40M� progenitor
in 3D and modified neutrino opacities to obtain an explo-
sion. In our simulation of s40WH07, turbulence driven by
neutrino heating is essential for creating conditions allowing
shock runaway. The simulation of Pan et al. (2017) appears
to have much weaker turbulence. The strength of CCSN tur-
bulence is sensitive not only to neutrino heating, but also to
the magnitude of perturbations that enter through the shock
(e.g., Couch & Ott 2013; Müller & Janka 2015; Müller et al.
2017). Hence, the differences between our simulations and
those of others could be due to the relatively large numerical
perturbations imposed by our Cartesian grid (e.g., Ott et al.
2013). This could, perhaps, explain why we find explosions
for s27WHW02 and s20WH07 that did not explode in the
spherical-coordinates 3D simulations of Hanke et al. (2013)
and Tamborra et al. (2014), and Melson et al. (2015a), re-
spectively. Another piece of evidence for this argument is that
our simulations of s20WH07 and s27WHW02 are at all times
closer to explosion than their 2D counterparts in Summa et al.
(2016), despite the fact that other studies have shown that 2D
is more conducive to explosion than 3D due to its (unphysi-
cal) inverse turbulent cascade (e.g., Couch 2013; Couch & Ott
2015; Lentz et al. 2015). However, one should keep in mind
that Hanke et al. (2013), Tamborra et al. (2014), Melson et al.
(2015a), and Summa et al. (2016) used a different EOS, as
well as different approximations to the neutrino transport and
different neutrino opacities.

Presupernova stars in the wild have physical perturbations
in their iron cores, Si, and Si-O shells. Determining their prop-
erties requires full 3D stellar evolution simulations of the final
phase before core collapse (Couch et al. 2015; Müller et al.
2016; Cristini et al. 2017).

Our simulations show that the development of large-scale
asymmetric explosions with dominant ` = 1 components is a
generic outcome and independent of progenitor in the mass
range considered here. While we do not investigate them here,
NS and black hole birth kicks require such asymmetric mass
ejection (e.g., Müller et al. 2017; Janka 2013).

SUBMITTED ON 2017 DECEMBER 4 OTT et al. 7

10�3

10�2

10�1

D
ia

gn
os

tic
En

er
gy

[1
051

er
g]

Diagnostic
Energy

s12WH07
s15WH07
s20WH07
s27WHW02
s40WH07

100 200 300 400 500 600
Time [ms]

1.2

1.4

1.6

1.8

2.0

2.2

PN
S

M
as

s
[M

�]

PNS Mass

Baryonic
Gravitational
Bound

Figure 6. The top panel shows the diagnostic explosion energy (using the
definition of Müller et al. 2012). It is rapidly growing at the end of our simula-
tions. It does not include positive contributions from nuclear recombination.
The shock still has to overcome the binding energy of the overlying stellar
material, which is greater than the diagnostic energy in all models at the final
simulated time. In the bottom panel, we plot the baryonic and gravitational
PNS mass inside the 1011 gcm-3 density contour. Also plotted is the bound
baryonic mass inside the expanding shock. Model s40WH07’s PNS is still
accreting at ⇠0.45M� s

-1 at the end of the simulation. It will thus likely ex-
ceed the maximum mass that can be supported by the SFHo EOS (2.06M�
for a cold NS, ⇠10 - 20% more for a hot PNS; O’Connor & Ott 2011) and
collapse to a black hole.

anemic explosion or complete failure (Chan et al. 2017).
The gravitational PNS mass in the other models has more

or less leveled off at the end of the simulation due to the
competition of neutrino cooling with moderate amounts of
continuing accretion. Using Ebind ⇡ 0.084M�c

2(Mgrav/M�)2

(Lattimer & Prakash 2001) and the bound baryonic masses
shown in Fig. 6, we estimate (lower-limit) final remnant NS
masses of (1.59,1.65,1.54)M� for s15WH07, s20WH07, and
s27WHW02, respectively.

4. DISCUSSION AND CONCLUSIONS

Simple answers are not to be had in 3D CCSN theory. Our
simulations suggest a complicated interplay of accretion rate,
neutrino heating, and 3D fluid dynamics that determines the

resulting CCSN dynamics and final outcome.
The three “CCSN evolution modes” we identify depend on

progenitor structure as follows:
(1) Massive cores with high compactness (⇠

M

=
(M/M�)(R[M]/1000km)-1,M = 1.75 - 2.5M�;O’Connor &
Ott 2011) and without large density drops at shell interfaces
develop early neutrino-driven, turbulence-facilitated shock
runaway, but likely make black holes, with or without the
shock exploding the star.

(2) Cores with intermediate compactness and with a sub-
stantial density drop at the Si/Si-O interface develop neutrino-
driven, turbulence-facilitated explosions when this interface
reaches the shock. They make relatively massive NSs with
M & 1.5M�.

(3) Cores with moderate to low compactness and without
precipitous density drop have receding shocks that develop
SASI and run away only at late times once SASI, neutrino
heating, and turbulence have established favorable conditions.
Due to the late explosions, the resulting NSs are also relatively
massive (M & 1.4 - 1.5M�).

Modes (2) and (3) were seen previously in the 2D simula-
tions of O’Connor & Couch (2015) and Summa et al. (2016).
Mode (1), for the most extreme progenitors like s40WH07,
is new. Pan et al. (2017) recently simulated this progenitor
in 2D with the same EOS, but did not find an explosion.
Chan et al. (2017) simulated a different 40M� progenitor
in 3D and modified neutrino opacities to obtain an explo-
sion. In our simulation of s40WH07, turbulence driven by
neutrino heating is essential for creating conditions allowing
shock runaway. The simulation of Pan et al. (2017) appears
to have much weaker turbulence. The strength of CCSN tur-
bulence is sensitive not only to neutrino heating, but also to
the magnitude of perturbations that enter through the shock
(e.g., Couch & Ott 2013; Müller & Janka 2015; Müller et al.
2017). Hence, the differences between our simulations and
those of others could be due to the relatively large numerical
perturbations imposed by our Cartesian grid (e.g., Ott et al.
2013). This could, perhaps, explain why we find explosions
for s27WHW02 and s20WH07 that did not explode in the
spherical-coordinates 3D simulations of Hanke et al. (2013)
and Tamborra et al. (2014), and Melson et al. (2015a), re-
spectively. Another piece of evidence for this argument is that
our simulations of s20WH07 and s27WHW02 are at all times
closer to explosion than their 2D counterparts in Summa et al.
(2016), despite the fact that other studies have shown that 2D
is more conducive to explosion than 3D due to its (unphysi-
cal) inverse turbulent cascade (e.g., Couch 2013; Couch & Ott
2015; Lentz et al. 2015). However, one should keep in mind
that Hanke et al. (2013), Tamborra et al. (2014), Melson et al.
(2015a), and Summa et al. (2016) used a different EOS, as
well as different approximations to the neutrino transport and
different neutrino opacities.

Presupernova stars in the wild have physical perturbations
in their iron cores, Si, and Si-O shells. Determining their prop-
erties requires full 3D stellar evolution simulations of the final
phase before core collapse (Couch et al. 2015; Müller et al.
2016; Cristini et al. 2017).

Our simulations show that the development of large-scale
asymmetric explosions with dominant ` = 1 components is a
generic outcome and independent of progenitor in the mass
range considered here. While we do not investigate them here,
NS and black hole birth kicks require such asymmetric mass
ejection (e.g., Müller et al. 2017; Janka 2013).
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Melson	et	al.	’15,	Bollig	et	al.,	’17,	Yassin	et	al.	‘19

{n , ϵ ,K , ϵ , L ,K ,m⋆,∆m⋆, P (4) , P (4) }

n = 0.155 −3

ρ = 2.7 × 1014 −3

ϵ = −15.8

2 M⊙

L
L = 60±15 L = 45±7.5

L

L

ϵ
L

4n P (4)

2 M⊙ L

sM m⋆ 0.75 ± 0.10 0.75 ± 0.10 mn

∆m⋆ 0.10 ± 0.10 0.10 ± 0.10 mn

− n 0.155 ± 0.005 0.155 −3

ϵ −15.8 ± 0.3 −15.8 −1

sS ϵ 32 ± 2 32 ± 2 −1

L 60 ± 15 45 ± 7.5 −1

sK K 230 ± 20 230 ± 15 −1

K −100 ± 100 −100 ± 100 −1

sP P (4) 100 ± 50 125 ± 12.5 −3

P (4) 160 ± 80 200 ± 20 −3

sM = {m⋆,∆m⋆} ,
sS = {ϵ , L } ,
sK = {K ,K } ,

sP = {P (4) , P (4) } .

sM m⋆ ∆m⋆

m⋆ = 0.75 ∆m⋆ = 0.10
m⋆ =

0.75 ± 0.10 ∆m⋆ = 0.10 ± 0.10
m⋆ = 0.75± 0.20 ∆m⋆ = 0.10± 0.20

σs = 1.15 −2 q = 16
λ = 3.0 p = 1.5

SS = 57.8

s

Vary within experimental  
constraints using  
Schneider ’16 EoS  

framework:
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{n , ϵ ,K , ϵ , L ,K ,m⋆,∆m⋆, P (4) , P (4) }

n = 0.155 −3

ρ = 2.7 × 1014 −3

ϵ = −15.8

2 M⊙

L
L = 60±15 L = 45±7.5

L

L

ϵ
L

4n P (4)

2 M⊙ L

sM m⋆ 0.75 ± 0.10 0.75 ± 0.10 mn

∆m⋆ 0.10 ± 0.10 0.10 ± 0.10 mn

− n 0.155 ± 0.005 0.155 −3

ϵ −15.8 ± 0.3 −15.8 −1

sS ϵ 32 ± 2 32 ± 2 −1

L 60 ± 15 45 ± 7.5 −1

sK K 230 ± 20 230 ± 15 −1

K −100 ± 100 −100 ± 100 −1

sP P (4) 100 ± 50 125 ± 12.5 −3

P (4) 160 ± 80 200 ± 20 −3

sM = {m⋆,∆m⋆} ,
sS = {ϵ , L } ,
sK = {K ,K } ,

sP = {P (4) , P (4) } .

sM m⋆ ∆m⋆

m⋆ = 0.75 ∆m⋆ = 0.10
m⋆ =

0.75 ± 0.10 ∆m⋆ = 0.10 ± 0.10
m⋆ = 0.75± 0.20 ∆m⋆ = 0.10± 0.20

σs = 1.15 −2 q = 16
λ = 3.0 p = 1.5

SS = 57.8

s

Vary the effective 
mass:
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3D Octant simulations see similar impact of effective mass to spherically symmetric simulations
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• Driven	by	cooling	and	deleptonization	of	the	remnant		
• Coupled	neutron	star	structure	and	neutrino	transport		
• Sensitive	to	dense	matter	equation	of	state,	neutrino	opacities

See	e.g.	Burrows	&	Lattimer	’86,	Pons	et	al.	‘99,	Huedepohl	et	al.	‘10,	Fischer	et	al.	’10,	LR	’12,	Nakazato	‘13		
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• Driven	by	cooling	and	deleptonization	of	the	remnant		
• Coupled	neutron	star	structure	and	neutrino	transport		
• Sensitive	to	dense	matter	equation	of	state,	neutrino	opacities
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Proto-Neutron	Star	Convection

Region	of	convective	instability	determined	by	the	Ledoux	Criterion:

L. F. Roberts

and self-refraction can be important for predicting the detailed spectrum at earth (Mirizzi et al.,
2016). As a first step to including these e↵ects, we will post-process the neutrino signals produced
by our codes in the single-angle approximation for neutrino oscillations (Duan et al., 2010) and
investigate the impacts on detector signals. In particular, we will consider how much information
about the PNS deleptonization rate can be recovered from detections of both ⌫

e

and ⌫̄

e

(and po-
tentially bolometric neutrino detections from neutral current detectors) on Earth when oscillations
are included.

3.2 Multi-Dimensional PNS Evolution and Convection

10�1 100 101 102

Time [s]

101
R
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iu

s
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m
]

R�e

R�̄e

R�x

Figure 3: The evolution of the convectively unstable
region within the supernova core. The blue region de-
notes material that is unstable by the Ledoux criterion,
while the dashed black lines show shells of constant en-
closed mass. The red lines show the evolution of the
neutrinosphere radii.

After the bounce shock propagates through the
innermost regions of the star, it leaves behind
unstable entropy and lepton number gradients
(Epstein, 1979). Therefore, a large portion
of the PNS becomes convective (see figure 3),
which significantly a↵ects the rate of energy and
lepton number transport below the neutrino de-
coupling region. This can strongly influence the
cooling and deleptonization timescales of the
PNS. Additionally, it is possible that larger re-
gions of the PNS are secularly unstable on neu-
trino di↵usion timescales. These are so-called
double di↵usive instabilities, including neutron
fingering (Wilson & Mayle, 1988; Bruenn &
Dineva, 1996; Miralles et al., 2000).

Previously, most detailed studies of PNS
convection have only been carried out in two
dimensions (Keil et al., 1996; Dessart et al.,
2006; Buras et al., 2006), but the character of
turbulent convection exhibits significant varia-
tions when going from two to three dimensions
(Meakin & Arnett, 2007). Additionally, these
studies have only addressed convection soon after formation of the neutron star and for single
EoSs. Therefore, there is significant uncertainty concerning the e↵ects of PNS convection on the
supernova neutrino signal even though it is clear that the presence of PNS convection strongly
influences the neutrino cooling timescale and that convection depends on the assumed nuclear EoS
(Roberts et al., 2012).

I will use the three-dimensional general relativistic radiation hydrodynamics code ZelmaniM1

(Roberts et al., 2016a) that I and collaborators have developed within the open-source Einstein

Toolkit (??) to evolve PNSs over timescales of a few seconds to investigate the non-linear evolution
of these instabilities. These long evolution timescales will be enabled by using energy independent
radiation transport, which is highly accurate in the PNS interior where the neutrino mean free
path is short. Approaching this problem without any artificial symmetries and with fully three-
dimensional neutrino transport including advection will allow us to determine if double di↵usive
instabilities can actually occur in protoneutron stars and how they might impact the timescale of
neutrino emission and lepton number transport in the PNS. We will then use this information to
constrain the simplified prescriptions for convective transport in our spherically symmetric models
and extend the Ledoux mixing length theory framework to include regions that possibly undergo

6
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Proto-Neutron	Star	Convection

Pressure	derivatives	are	sensitive	to	the	symmetry	energy	derivative:

Dependence on the EoS
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FIG. 1: The symmetry energy as function of density for the
IU-FSU and GM3 EoSs. Inset: n0E

′
sym versus Esym at nuclear

saturation density, for IU-FSU (circle), GM3 (square), and
QMC (diamonds). The shaded regions correspond to various
experimental constraints taken from Ref. [18].

instabilities and convection enhanced the neutrino lumi-
nosity to successfully power a neutrino driven explosion.
However, more recent two dimensional studies found no
evidence of these doubly diffusive instabilities [14, 15].
Because of this and the increased complexity of treating
the doubly diffusive instabilities, we do not include them
in our study.

The EoS and neutrino interaction rates are modeled
using a relativistic mean field (RMF) model of nuclear
interactions. We adopt a non-linear generalization of
the original Walecka model described in [19]. Here,
the nucleon-nucleon interaction energy is calculated in
the mean field approximation using effective interactions,
which are tuned to reproduce gross observed properties
of nuclei and empirical properties of symmetric nuclear
matter at saturation density. Although these empiri-
cal constraints provide valuable guidance to constrain
aspects of the symmetric nuclear EoS at nuclear den-
sities, the experimental constraints on the properties of
neutron-rich matter are relatively weak. The difference
between the energy of symmetric matter (equal num-
bers of neutrons and protons) and pure neutron matter is
called the symmetry energy, Esym(nB), and is defined by
E(nB, xp) = E(nB, xp = 1/2) + Esym(nB)δ2 + · · ·. Here,
δ = (1− 2xp) and E(nB , xp) is the energy per particle of
uniform matter composed of neutrons and protons with
total baryon density nB and proton fraction xp. In charge
neutral matter xp = Ye where Ye is the electron fraction.
Various experimental probes of the nuclear symmetry en-
ergy and its density dependence in nuclei and heavy-ion
collisions are actively being pursued in terrestrial exper-
iments, but are yet to yield strong constraints. These
constraints are shown in the inset in Fig. 1 and are dis-
cussed in Refs. [18, 19]. Quantum Monte Carlo (QMC)
results are also shown in the inset in Fig. 1. The linear
correlation between Esym and E′

sym in the QMC results

is obtained by varying values of the poorly known three-
neutron interaction [20].

Recent work has shown that the derivative of the sym-
metry energy with respect to density, denoted as E′

sym =
∂Esym/∂nB, plays a crucial role both in the terrestrial
context where it affects the neutron density distribution
in neutron-rich nuclei and in astrophysics where it affects
the structure and thermal evolution of neutron stars (for
a recent review see Ref. [22]). The pressure of neutron
matter at saturation density, Pneutron(n0) = n2

0E
′

sym, in-
fluences the radii of cold neutron stars [23]. In neutron-
rich nuclei, the neutron-skin thickness is also sensitive
to E′

sym(ρ0), so that there exists a linear correlation be-
tween the neutron-skin thickness and neutron star radius
[24].

To study the sensitivity of PNS evolution to the nu-
clear symmetry energy we employ two RMF models with
different predictions for E′

sym(ρ0). The first EoS is the
IU-FSU EoS taken from [19], which includes a non-linear
coupling between the vector and iso-vector mesons that
allows the symmetry energy to be tuned at high den-
sity. The second EoS employed is the GM3 parameter
set, where non-linear coupling of the vector meson fields
is neglected [21]. The symmetry energy as a function of
density is shown in Fig. 1 for the two EoS. The inset in
Fig. 1 shows current theoretical estimates and experimen-
tal constraints on Esym and n0E′

sym at nuclear density.
In the rest of this letter, we demonstrate that E′

sym(ρ0)
plays a role in stabilizing PNS convection at late times
and thereby directly affects the PNS neutrino signal. The
logarithmic derivatives γs and γnB

are always positive, so
that negative entropy gradients always provide a destabi-
lizing influence. For given entropy and lepton gradients,
stability is then determined by the ratio γYL

/γs. The
sign and magnitude of γYL

is strongly influenced by the
density dependence of the nuclear asymmetry energy, so
that negative gradients in lepton number can be either
stabilizing or destabilizing and the degree to which they
are stabilizing varies from EoS to EoS. To clarify this we
note that at T = 0 and when the neutrino contribution
to the pressure is small

(

∂P

∂YL

)

nB

≃ n4/3
B Y 1/3

e − 4n2
BE′

sym(1 − 2Ye), (2)

which is a reasonable approximation to the finite tem-
perature result. The first term comes from the electron
contribution to the pressure, while the second term is
due to nucleons and is negative since both the Fermi and
interaction energies favor a symmetric state. For high
densities and low electron fractions, for realistic values
of E′

sym, this leads to negative γYL
. Therefore, a larger

E′

sym leads to negative lepton gradients in the PNS pro-
viding a larger stabilizing influence. E′

sym also partially
determines the equilibrium value of Ye, which can alter
the value of γYL

, but this is a smaller effect. In our nu-
merical PNS simulations this effect is accounted for. In
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FIG. 3: Count rates as a function of time for a number of
1.6M⊙ PNS models with and without convection. The black
line is for neutrino opacities calculated in the mean field ap-
proximation, while all the other lines are for models that use
RPA opacities with g′ = 0.6. The inset plot shows the inte-
grated number of counts from 0.1 s to 1 s divided by the total
number of counts for t > 0.1 second on the horizontal axis,
and the number of counts for t > 3 seconds on divided by the
total number of counts for t > 0.1 second. The stars corre-
spond to the IU-FSU EoS and the circles to the GM3 EoS.
Symbol sizes correspond to various neutron star rest masses
ranging from 1.2M⊙ to 2.1M⊙. Colors correspond to different
values of the Migdal parameter, g′.

models that do not include convection. This is reason-
ably consistent with the early time enhancement seen in
multi-dimensional models [15]. After a second, the count
rates between the two EoSs begin to diverge. The most
obvious feature in the count rate for GM3 appears at ∼ 3
seconds, which is coincident with the end of convection
in the mantle. For the IU-FSU EoS, the break is also
at the time at which mantle convection ends (∼ 10 sec-
onds), although it is hard to distinguish from the point
at which the PNS becomes optically thin. As was ar-
gued previously, the position of this break reflects the
density dependence of the nuclear symmetry energy at
nB > n0 and therefore provides a direct observable of
the properties of nuclear matter in the PNS neutrino sig-
nal. Although core convection does not seem to affect the
break, it may impact the subsequent cooling timescale.

In the inset in Fig. 3, integrated neutrino counts over
two time windows are shown for a number of PNS masses.
There is a clear separation between the two EoSs inde-
pendent of mass. The time of the convective break cre-
ates this separation. This illustrates that this diagnostic
of the symmetry energy does not require an accurate de-
termination of the PNS mass.

The inclusion of nucleon correlations through the RPA
begins to significantly affect the neutrino emission after
about three seconds. Initially, the luminosities are in-
creased as energy and lepton number are able to more
rapidly diffuse out of the core, but at later times the

neutrino signal is significantly reduced and drops below
the detectable threshold at an earlier time.

In summary, using a self-consistent model for the PNS
core physics, we find that the late time neutrino signal
from a core collapse supernova is likely to contain a di-
rect diagnostic of the nuclear symmetry energy at high
density. With current neutrino detectors, these effects
should be readily discernible in the neutrino light curve
of a single nearby supernova.
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Conclusions

• 3D	explosion	models	becoming	available	for	a	range	of	progenitors	
• Early-time	neutrino	emission	is	sensitive	to	finite	temperature	properties	of	
nuclear	equation	of	state,	larger	nucleon	effective	masses	result	in	conditions	
more	favorable	for	explosion	

• PNS	convection	significantly	impacts	the	neutrino	cooling	timescale,	produces	a	
break	in	the	neutrino	emission,	sensitive	to	the	nuclear	EoS	through	the	density	
dependence	of	the	symmetry	energy	

• Nuclear	correlations	and	nuclear	pasta	have	possibility	of	impacting	late	tie	
cooling,	but	the	critical	temperature	for	pasta	formation	may	be	too	low	and		
neutrino	opacity	in	the	relevant	range	suppressed	
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4

nuclear saturation number density n

sat

= 0.155 fm

�3

(mass density ⇢

sat

= 2.7 ⇥ 10

14

g cm

�3) and of the energy
at nuclear saturation density ✏

sat

= �15.8 MeV. Other
saturation density quantities are allowed to vary within their
experimental or theoretical uncertainties (as compiled in
[7]) as long as they are able to produce 2-M

�

NSs [42–44].
�e exception to this choice is the slope of the symmetry
energy L

sym

. Instead of using the average values of Ref. [7],
L

sym

= 60 ± 15 MeV, we set L

sym

= 45 ± 7.5 MeV.
Although this choice only probes the lower half of possible
values compiled in Ref. [7], we choose these limits so that the
mass-radius relationships of NSs in this work are centered
near the center of the constraints computed from obser-
vations of x-ray bursts [45]. �ese limits also agree with
combined theoretical calculations of pure neutronma�er and
astrophysical observations [38, 46, 47]. Even though L

sym

is
correlated with radii of low mass NSs [48], for the systems
we study, our limited choice for L

sym

has li�le e�ect on PNS
properties in the �rst second a�er core collapse. Finally, we
ignore existing correlations between the di�erent empirical
nuclear ma�er parameters [11, 38, 48]. Note, however, that
the allowed ranges for empirical parameters contain EOSs
that do not ful�ll expected correlation between ✏

sym

and
L

sym

determined on the basis of unitary gas considerations
[38]. We justify our choice with our primary interest in how
di�erent parameters of the EOS a�ect CCSNe. Our focus is
less on particularly intricate details of the EOS. In Tab. I we
summarize the constraints used in this work.

TABLE I: Constraints of nuclear ma�er properties used in this work
grouped in sets de�ned in Sec. II C. Nuclear ma�er empirical pa-
rameters were compiled in Ref. [7], see references therein for de-
tails. Meanwhile, nuclear ma�er pressure at 4n

sat

, P (4), for SNM
and PNM is from Ref. [40]. We use values similar to the ones in
Refs. [7, 40], but exclude from our analysis regions of parameter
space that fail to reproduce 2-M

�

NSs and, in the case of L
sym

, val-
ues that lead to too large radii for NSs [45]. We show the averages
and one-standard deviations compiled or assumed in this work.

Set �antity Range �is work Units
s
M

m?

0.75±0.10 0.75±0.10 m
n

�m?

0.10±0.10 0.10±0.10 m
n

� n
sat

0.155±0.005 0.155 fm

�3

✏
sat

�15.8±0.3 �15.8 MeVbaryon

�1

s
S

✏
sym

32±2 32±2 MeVbaryon

�1

L
sym

60±15 45±7.5 MeVbaryon

�1

s
K

K
sat

230±20 230±15 MeVbaryon

�1

K
sym

�100±100 �100±100 MeVbaryon

�1

s
P

P (4)

SNM

100±50 125±12.5 MeV fm

�3

P (4)

PNM

160±80 200±20 MeV fm

�3

C. Empirically Constrained Skyrme EOS Models

For a given set of Skyrme parameters, the empirical pa-
rameters described in the last section can be calculated from
the Skyrme energy density (Eq. 1), its derivatives, and the
Skyrme expression for the e�ective masses (Eq. 4). Con-
versely, for a given choice of the ten empirical parameters

given above, the ten Skyrme parameters are �xed. Our
method for �nding the Skyrme parameters from the em-
pirical parameters is given in Appendix B. We stress that
the ��ed Skyrme parameterization only matches the satu-
ration density expansion (Eq. 8) at saturation density since
the Skyrme model has a di�erent functional form from the
polynomial expansion.
To investigate the impact of EOS uncertainties on cold NSs

and core collapse, we build a set of 97 Skyrme EOSs by pick-
ing 97 sets of the empirical parameters in the ranges given
in Tab. I. We initially set the quantities used to obtain the
Skyrme parametrization to their average values. �en, two-
sigma variations in the nuclear properties are implemented
for four sets of nuclear properties with two quantities each.
�e sets are

s

M

= {m

?

, �m

?} , (11a)
s

S

= {✏

sym

, L

sym

} , (11b)
s

K

= {K

sat

, K

sym

} , (11c)

s

P

= {P

(4)

SNM

, P

(4)

PNM

} . (11d)

�us, for set s

M

the values of m

? and �m

? can be their av-
erage values (m?

= 0.75 and �m

?

= 0.10), or their av-
erage values plus or minus one standard deviation (m?

=

0.75 ± 0.10 and �m

?

= 0.10 ± 0.10) or two standard devi-
ations (m?

= 0.75 ± 0.20 and �m

?

= 0.10 ± 0.20). Similar
variations are implemented for all other sets, leading to a to-
tal of 97 di�erent parametrization for the EOS3. For each of
the parametrizations we build an EOS table using the open-
source SROEOS code we have recently developed [12].

D. Non-uniform and low density matter

To limit our focus to the e�ects of the empirical parame-
ters on CCSNe, we set the same parametrization of the nu-
clear surface for all EOSs. �is is di�erent from what we
presented in Ref. [12], where the parametrization of the sur-
face properties was computed self-consistently based on the
Skyrme parameters. We defer to future work a detailed study
of nuclear surface e�ects on CCSNe. Here, the surface pa-
rameters are chosen to be �

s

= 1.15 MeV fm

�2, q = 16,
� = 3.0, and p = 1.5, see Eqs. (19) and (20) in Ref. [12]. �e
surface parametrization chosen here leads to a surface sym-
metry energy S

S

= 57.8 MeV, in agreement with the value
S

S

= 58.9±1.1 MeV of Ref. [49], and a surface level density
A

S

= 0.13 MeV fm

�1.
Once empirical and surface parametrizations are set, we

use the SROEOS code to obtain the EOS table. �e EOSs
in the Skyrme model are obtained in the single nucleus ap-
proximation (SNA) [12, 13] although extensions to accommo-
date multiple nuclear species have recently been proposed
[50, 51]. We take the same approach discussed in our pre-
vious work and match our Skyrme-type EOSs to an EOS of

3 �ere are 25 EOSs in each set s. However, the baseline EOS with the
average values of the observables is the same for all 4 sets.


