1. Basics of nonrelativistic quantum mechanics

1. Basics of nonrelativistic quantum mechanics

- Content:
very brief repitition of some basic elements of nonrelativistic quantum mechanics you probably know already from the introductory courses

1. Basics of nonrelativistic quantum mechanics

- Content:
very brief repitition of some basic elements of nonrelativistic quantum mechanics you probably know already from the introductory courses
- Goals:
- general introduction to this course
- among other things: preparation for the relativistic quantum mechanics

1.1 Heuristic motivation of the Schrödinger equation from wave-particle duality

1.1 Heuristic motivation of the Schrödinger equation from wave-particle duality

- Wave-Particle-Duality

A plane wave $\psi(\vec{r}, t) \sim e^{i(\vec{k} \cdot \vec{r}-\omega t)}$ corresponds to a particle with

- energy $E=\hbar \omega$ (Einstein 1905; photoelectric effect),
- momentum $\vec{p}=\hbar \vec{k} \quad$ (de Broglie 1924).

1.1 Heuristic motivation of the Schrödinger equation from wave-particle duality

- Wave-Particle-Duality

A plane wave $\psi(\vec{r}, t) \sim e^{i(\vec{k} \cdot \vec{r}-\omega t)}$ corresponds to a particle with

- energy $E=\hbar \omega$ (Einstein 1905; photoelectric effect),
- momentum $\vec{p}=\hbar \vec{k} \quad$ (de Broglie 1924).

This motivates the introduction of hermitian operators

- $\hat{E}=i \hbar \frac{\partial}{\partial t} \quad \Rightarrow \quad \hat{E} \psi=\hbar \omega \psi$
- $\hat{\vec{p}}=\frac{\hbar}{i} \vec{\nabla} \quad \Rightarrow \quad \hat{\vec{p}} \psi=\hbar \vec{k} \psi$

1.1 Heuristic motivation of the Schrödinger equation from wave-particle duality

- Wave-Particle-Duality

A plane wave $\psi(\vec{r}, t) \sim e^{i(\vec{k} \cdot \vec{r}-\omega t)}$ corresponds to a particle with

- energy $E=\hbar \omega$ (Einstein 1905; photoelectric effect),
- momentum $\vec{p}=\hbar \vec{k} \quad$ (de Broglie 1924).

This motivates the introduction of hermitian operators

- $\hat{E}=i \hbar \frac{\partial}{\partial t} \quad \Rightarrow \quad \hat{E} \psi=\hbar \omega \psi$
- $\hat{\vec{p}}=\frac{\hbar}{i} \vec{\nabla} \quad \Rightarrow \quad \hat{\vec{p}} \psi=\hbar \vec{k} \psi$
- nonrelativistic energy-momentum relation: $E=\frac{\vec{\rho}^{2}}{2 m}+V$

1.1 Heuristic motivation of the Schrödinger equation from wave-particle duality

- Wave-Particle-Duality

A plane wave $\psi(\vec{r}, t) \sim e^{i(\vec{k} \cdot \vec{r}-\omega t)}$ corresponds to a particle with

- energy $E=\hbar \omega$ (Einstein 1905; photoelectric effect),
- momentum $\vec{p}=\hbar \vec{k} \quad$ (de Broglie 1924).

This motivates the introduction of hermitian operators

- $\hat{E}=i \hbar \frac{\partial}{\partial t} \quad \Rightarrow \quad \hat{E} \psi=\hbar \omega \psi$
- $\hat{\vec{p}}=\frac{\hbar}{i} \vec{\nabla} \quad \Rightarrow \quad \hat{\vec{p}} \psi=\hbar \vec{k} \psi$
- nonrelativistic energy-momentum relation: $\quad E=\frac{\vec{\rho}^{2}}{2 m}+V$
$\Rightarrow \quad$ Schrödinger equation: $i \hbar \frac{\partial}{\partial t} \psi=\left(-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2}+V\right) \psi \equiv H \psi$
- Hamiltonian: $H=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2}+V$

1.2 Probabalistic interpretation and continuity equation

1.2 Probabalistic interpretation and continuity equation

- Wave function $\psi(\vec{r}, t)$: not an observable
$|\psi(\vec{r}, t)|^{2}$: probability density, to find the particle at time t at spatial point \vec{r}

1.2 Probabalistic interpretation and continuity equation

- Wave function $\psi(\vec{r}, t)$: not an observable
$|\psi(\vec{r}, t)|^{2}$: probability density, to find the particle at time t at spatial point \vec{r}
- free Schrödinger equation $(V=0)$:

$$
i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi
$$

1.2 Probabalistic interpretation and continuity equation

- Wave function $\psi(\vec{r}, t)$: not an observable
$|\psi(\vec{r}, t)|^{2}$: probability density, to find the particle at time t at spatial point \vec{r}
- free Schrödinger equation $(V=0)$:

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi \\
-i \hbar \frac{\partial}{\partial t} \psi^{*}=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi^{*}
\end{gathered}
$$ complex conjugate equation.:

1.2 Probabalistic interpretation and continuity equation

- Wave function $\psi(\vec{r}, t)$: not an observable
$|\psi(\vec{r}, t)|^{2}$: probability density, to find the particle at time t at spatial point \vec{r}
- free Schrödinger equation $(V=0)$:

$$
\begin{aligned}
i \hbar \frac{\partial}{\partial t} \psi & \left.=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi \right\rvert\, \times \frac{1}{i \hbar} \psi^{*} \\
-i \hbar \frac{\partial}{\partial t} \psi^{*} & =-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi^{*}
\end{aligned}
$$

1.2 Probabalistic interpretation and continuity equation

- Wave function $\psi(\vec{r}, t)$: not an observable $|\psi(\vec{r}, t)|^{2}$: probability density, to find the particle at time t at spatial point \vec{r}
complex conjugate equation.:

$$
\begin{aligned}
\psi^{*}\left(\frac{\partial}{\partial t} \psi\right) & =-\frac{\hbar}{2 m i} \psi^{*}\left(\vec{\nabla}^{2} \psi\right) \\
-i \hbar \frac{\partial}{\partial t} \psi^{*} & =-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi^{*}
\end{aligned}
$$

1.2 Probabalistic interpretation and continuity equation

- Wave function $\psi(\vec{r}, t)$: not an observable $|\psi(\vec{r}, t)|^{2}$: probability density, to find the particle at time t at spatial point \vec{r}
complex conjugate equation.:

$$
\begin{aligned}
& \psi^{*}\left(\frac{\partial}{\partial t} \psi\right)=-\frac{\hbar}{2 m i} \psi^{*}\left(\vec{\nabla}^{2} \psi\right) \\
& \left.-i \hbar \frac{\partial}{\partial t} \psi^{*}=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi^{*} \right\rvert\, \times-\frac{1}{i \hbar} \psi
\end{aligned}
$$

1.2 Probabalistic interpretation and continuity equation

- Wave function $\psi(\vec{r}, t)$: not an observable
$|\psi(\vec{r}, t)|^{2}$: probability density, to find the particle at time t at spatial point \vec{r}

$$
\begin{aligned}
& \psi^{*}\left(\frac{\partial}{\partial t} \psi\right)=-\frac{\hbar}{2 m i} \psi^{*}\left(\vec{\nabla}^{2} \psi\right) \\
& \psi\left(\frac{\partial}{\partial t} \psi^{*}\right)=+\frac{\hbar}{2 m i} \psi\left(\vec{\nabla}^{2} \psi^{*}\right)
\end{aligned}
$$

1.2 Probabalistic interpretation and continuity equation

- Wave function $\psi(\vec{r}, t)$: not an observable
$|\psi(\vec{r}, t)|^{2}$: probability density, to find the particle at time t at spatial point \vec{r}

$$
\begin{aligned}
& \psi^{*}\left(\frac{\partial}{\partial t} \psi\right)=-\frac{\hbar}{2 m i} \psi^{*}\left(\vec{\nabla}^{2} \psi\right) \\
& \psi\left(\frac{\partial}{\partial t} \psi^{*}\right)=+\frac{\hbar}{2 m i} \psi\left(\vec{\nabla}^{2} \psi^{*}\right) \\
& \Rightarrow \quad \psi^{*} \frac{\partial}{\partial t} \psi+\psi \frac{\partial}{\partial t} \psi^{*}=-\frac{\hbar}{2 m i}\left(\psi^{*} \vec{\nabla}^{2} \psi-\psi \vec{\nabla}^{2} \psi^{*}\right)
\end{aligned}
$$

1.2 Probabalistic interpretation and continuity equation

- Wave function $\psi(\vec{r}, t)$: not an observable
$|\psi(\vec{r}, t)|^{2}$: probability density, to find the particle at time t at spatial point \vec{r}

$$
\begin{aligned}
& \psi^{*}\left(\frac{\partial}{\partial t} \psi\right)=-\frac{\hbar}{2 m i} \psi^{*}\left(\vec{\nabla}^{2} \psi\right) \\
& \psi\left(\frac{\partial}{\partial t} \psi^{*}\right)=+\frac{\hbar}{2 m i} \psi\left(\vec{\nabla}^{2} \psi^{*}\right) \\
& \Rightarrow \quad \psi^{*} \frac{\partial}{\partial t} \psi+\psi \frac{\partial}{\partial t} \psi^{*}=-\frac{\hbar}{2 m i}\left(\psi^{*} \vec{\nabla}^{2} \psi-\psi \vec{\nabla}^{2} \psi^{*}\right) \\
& \frac{\partial}{\partial t}\left(\psi^{*} \psi\right)
\end{aligned}
$$

1.2 Probabalistic interpretation and continuity equation

- Wave function $\psi(\vec{r}, t)$: not an observable
$|\psi(\vec{r}, t)|^{2}$: probability density, to find the particle at time t at spatial point \vec{r}

$$
\begin{aligned}
& \psi^{*}\left(\frac{\partial}{\partial t} \psi\right)=-\frac{\hbar}{2 m i} \psi^{*}\left(\vec{\nabla}^{2} \psi\right) \\
& \psi\left(\frac{\partial}{\partial t} \psi^{*}\right)=+\frac{\hbar}{2 m i} \psi\left(\vec{\nabla}^{2} \psi^{*}\right) \\
& \Rightarrow \quad \psi^{*} \frac{\partial}{\partial t} \psi+\psi \frac{\partial}{\partial t} \psi^{*}=-\frac{\hbar}{2 m i}\left(\psi^{*} \vec{\nabla}^{2} \psi-\psi \vec{\nabla}^{2} \psi^{*}\right) \\
& \text { II }^{\prime \prime}\left(\psi^{*} \psi\right) \quad-\frac{\hbar}{2 m i} \vec{\nabla} \cdot\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)
\end{aligned}
$$

1.2 Probabalistic interpretation and continuity equation

- Wave function $\psi(\vec{r}, t)$: not an observable
$|\psi(\vec{r}, t)|^{2}$: probability density, to find the particle at time t at spatial point \vec{r}

$$
\begin{array}{r}
\psi^{*}\left(\frac{\partial}{\partial t} \psi\right)=-\frac{\hbar}{2 m i} \psi^{*}\left(\vec{\nabla}^{2} \psi\right) \\
\psi\left(\frac{\partial}{\partial t} \psi^{*}\right)=+\frac{\hbar}{2 m i} \psi\left(\vec{\nabla}^{2} \psi^{*}\right) \\
\Rightarrow \quad \psi^{*} \frac{\partial}{\partial t} \psi+\psi \frac{\partial}{\partial t} \psi^{*}=-\frac{\hbar}{2 m i}\left(\psi^{*} \vec{\nabla}^{2} \psi-\psi \vec{\nabla}^{2} \psi^{*}\right) \\
\frac{\partial}{\partial t}\left(\psi^{*} \psi\right)=-\frac{\hbar}{2 m i} \vec{\nabla} \cdot\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)
\end{array}
$$

1.2 Probabalistic interpretation and continuity equation

- Wave function $\psi(\vec{r}, t)$: not an observable
$|\psi(\vec{r}, t)|^{2}$: probability density, to find the particle at time t at spatial point \vec{r}

$$
\begin{aligned}
& \psi^{*}\left(\frac{\partial}{\partial t} \psi\right)=-\frac{\hbar}{2 m i} \psi^{*}\left(\vec{\nabla}^{2} \psi\right) \\
& \psi\left(\frac{\partial}{\partial t} \psi^{*}\right)=+\frac{\hbar}{2 m i} \psi\left(\vec{\nabla}^{2} \psi^{*}\right) \\
& \Rightarrow \quad \psi^{*} \frac{\partial}{\partial t} \psi+\psi \frac{\partial}{\partial t} \psi^{*}=-\frac{\hbar}{2 m i}\left(\psi^{*} \vec{\nabla}^{2} \psi-\psi \vec{\nabla}^{2} \psi^{*}\right) \\
& \frac{\partial}{\partial t}\left(\psi^{*} \psi\right)=-\frac{\hbar}{2 m i} \vec{\nabla} \cdot\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)
\end{aligned}
$$

Obviously, this also works with a real potential V.

- $\frac{\partial}{\partial t}\left(\psi^{*} \psi\right)=-\frac{\hbar}{2 m i} \vec{\nabla} \cdot\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)$
- $\frac{\partial}{\partial t}\left(\psi^{*} \psi\right)=-\frac{\hbar}{2 m i} \vec{\nabla} \cdot\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)$
$\Rightarrow \quad \frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \quad$ continuity equation
probability density: $\quad \rho=\psi^{*} \psi=|\psi|^{2}$
probability current:

$$
\vec{j}=\frac{\hbar}{2 m i}\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right) \equiv \frac{\hbar}{2 m i} \psi^{*}(\vec{\nabla}-\overleftarrow{\nabla}) \psi
$$

- $\frac{\partial}{\partial t}\left(\psi^{*} \psi\right)=-\frac{\hbar}{2 m i} \vec{\nabla} \cdot\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)$
$\Rightarrow \quad \frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \quad$ continuity equation
probability density: $\quad \rho=\psi^{*} \psi=|\psi|^{2}$
probability current:

$$
\vec{j}=\frac{\hbar}{2 m i}\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right) \equiv \frac{\hbar}{2 m i} \psi^{*}(\vec{\nabla}-\overleftarrow{\nabla}) \psi
$$

- example: $\quad \psi(\vec{r}, t)=\mathcal{N} e^{i(\vec{k} \cdot \vec{r}-\omega t)}$
- $\frac{\partial}{\partial t}\left(\psi^{*} \psi\right)=-\frac{\hbar}{2 m i} \vec{\nabla} \cdot\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)$
$\Rightarrow \quad \frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \quad$ continuity equation
probability density: $\quad \rho=\psi^{*} \psi=|\psi|^{2}$
probability current:

$$
\vec{j}=\frac{\hbar}{2 m i}\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right) \equiv \frac{\hbar}{2 m i} \psi^{*}(\vec{\nabla}-\overleftarrow{\nabla}) \psi
$$

- example: $\psi(\vec{r}, t)=\mathcal{N} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \quad \rightarrow \quad$ exercises

Conservation of probability

Conservation of probability

- Continuity equation $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \Rightarrow$ conserved quantities

Conservation of probability

- Continuity equation $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \Rightarrow$ conserved quantities
- Example: electrodynamics \rightarrow electric charge conservation
- $\rho=$ charge density
- \vec{j} = electric current density

Conservation of probability

- Continuity equation $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \Rightarrow$ conserved quantities
- Example: electrodynamics \rightarrow electric charge conservation
- $\rho=$ charge density
- \vec{j} = electric current density
- Integration over volume $\mathcal{V}: Q(t)=\int_{\mathcal{V}} d^{3} r \rho(\vec{r}, t)=$ charge contained in \mathcal{V}

Conservation of probability

- Continuity equation $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \Rightarrow$ conserved quantities
- Example: electrodynamics \rightarrow electric charge conservation
- $\rho=$ charge density
- \vec{j} = electric current density
- Integration over volume $\mathcal{V}: Q(t)=\int_{\mathcal{V}} d^{3} r \rho(\vec{r}, t)=$ charge contained in \mathcal{V}
$\Rightarrow \quad \frac{d Q}{d t}=\int_{\mathcal{V}} d^{3} r \frac{\partial \rho}{\partial t}$

Conservation of probability

- Continuity equation $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \Rightarrow$ conserved quantities
- Example: electrodynamics \rightarrow electric charge conservation
- $\rho=$ charge density
- \vec{j} = electric current density
- Integration over volume $\mathcal{V}: Q(t)=\int_{\mathcal{V}} d^{3} r \rho(\vec{r}, t)=$ charge contained in \mathcal{V}

$$
\Rightarrow \quad \frac{d Q}{d t}=\int_{\mathcal{V}} d^{3} r \frac{\partial \rho}{\partial t} \stackrel{\text { cont. eq. }}{=}-\int_{\mathcal{V}} d^{3} r \vec{\nabla} \cdot \vec{j}
$$

Conservation of probability

- Continuity equation $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \Rightarrow$ conserved quantities
- Example: electrodynamics \rightarrow electric charge conservation
- $\rho=$ charge density
- \vec{j} = electric current density
- Integration over volume $\mathcal{V}: Q(t)=\int_{\mathcal{V}} d^{3} r \rho(\vec{r}, t)=$ charge contained in \mathcal{V}

$$
\Rightarrow \quad \frac{d Q}{d t}=\int_{\mathcal{V}} d^{3} r \frac{\partial \rho}{\partial t} \stackrel{\text { cont. eq. }}{=}-\int_{\mathcal{V}} d^{3} r \vec{\nabla} \cdot \vec{j} \stackrel{\text { Gauß }}{=}-\oint_{\partial \mathcal{V}} d^{2} \vec{\sigma} \cdot \vec{j}
$$

Conservation of probability

- Continuity equation $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \Rightarrow$ conserved quantities
- Example: electrodynamics \rightarrow electric charge conservation
- $\rho=$ charge density
- \vec{j} = electric current density
- Integration over volume $\mathcal{V}: Q(t)=\int_{\mathcal{V}} d^{3} r \rho(\vec{r}, t)=$ charge contained in \mathcal{V}
$\Rightarrow \quad \frac{d Q}{d t}=\int_{\mathcal{V}} d^{3} r \frac{\partial \rho}{\partial t} \stackrel{\text { cont. eq. }}{=}-\int_{\mathcal{V}} d^{3} r \vec{\nabla} \cdot \vec{j} \stackrel{\text { Gauß }}{=}-\oint_{\partial V} d^{2} \vec{\sigma} \cdot \vec{j}$
variation of charge in \mathcal{V} with time $=-$ current through the surface of \mathcal{V}

Conservation of probability

- Continuity equation $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \Rightarrow$ conserved quantities
- Example: electrodynamics \rightarrow electric charge conservation
- $\rho=$ charge density
- \vec{j} = electric current density
- Integration over volume $\mathcal{V}: Q(t)=\int_{\mathcal{V}} d^{3} r \rho(\vec{r}, t)=$ charge contained in \mathcal{V}
$\Rightarrow \quad \frac{d Q}{d t}=\int_{\mathcal{V}} d^{3} r \frac{\partial \rho}{\partial t} \stackrel{\text { cont. eq. }}{=}-\int_{\mathcal{V}} d^{3} r \vec{\nabla} \cdot \vec{j} \stackrel{\text { Gauß }}{=}-\oint_{\partial \mathcal{V}} d^{2} \vec{\sigma} \cdot \vec{j}$
variation of charge in \mathcal{V} with time $=-$ current through the surface of \mathcal{V}
- Quantum mechanics: $Q=$ probability to find a particle in \mathcal{V}
(if correctly normalized as $\int_{\mathbb{R}^{3}} d^{3} r|\psi|^{2}=1$)

1.3 More formal approach to quantum mechanics

1.3 More formal approach to quantum mechanics

- So far: wave mechanics in coordinate-space representation
- (relatively) easy to imagine
- not always the simplest way to solve a problem

1.3 More formal approach to quantum mechanics

- So far: wave mechanics in coordinate-space representation
- (relatively) easy to imagine
- not always the simplest way to solve a problem
- More general approach:

1.3 More formal approach to quantum mechanics

- So far: wave mechanics in coordinate-space representation
- (relatively) easy to imagine
- not always the simplest way to solve a problem
- More general approach:
(i) Physical systems are described by states $|\psi\rangle$, which are vectors in a Hilbert space.

1.3 More formal approach to quantum mechanics

- So far: wave mechanics in coordinate-space representation
- (relatively) easy to imagine
- not always the simplest way to solve a problem
- More general approach:
(i) Physical systems are described by states $|\psi\rangle$, which are vectors in a Hilbert space.
(ii) Observables are represented by hermitian operators \hat{O}.

1.3 More formal approach to quantum mechanics

- So far: wave mechanics in coordinate-space representation
- (relatively) easy to imagine
- not always the simplest way to solve a problem
- More general approach:
(i) Physical systems are described by states $|\psi\rangle$, which are vectors in a Hilbert space.
(ii) Observables are represented by hermitian operators \hat{O}.
(iii) Possible measurements correspond to the eigenvalues of \hat{O}.
(iv) The corresponding eigenstates $|n\rangle$, i.e., $\hat{O}|n\rangle=\lambda_{n}|n\rangle$, form a complete orthonormal basis of the Hilbert space.

$$
\langle m \mid n\rangle=\delta_{m n}, \quad \sum_{n}|n\rangle\langle n|=11
$$

(For continuous spectra one can generalize this to δ-functions and integrals.)
(iv) The corresponding eigenstates $|n\rangle$, i.e., $\hat{O}|n\rangle=\lambda_{n}|n\rangle$, form a complete orthonormal basis of the Hilbert space.
$\langle m \mid n\rangle=\delta_{m n}, \quad \sum_{n}|n\rangle\langle n|=11$.
(For continuous spectra one can generalize this to δ-functions and integrals.)
(v) Let $|\psi\rangle=\sum_{n} c_{n}|n\rangle$
(iv) The corresponding eigenstates $|n\rangle$, i.e., $\hat{O}|n\rangle=\lambda_{n}|n\rangle$, form a complete orthonormal basis of the Hilbert space.
$\langle m \mid n\rangle=\delta_{m n}, \quad \sum_{n}|n\rangle\langle n|=11$.
(For continuous spectra one can generalize this to δ-functions and integrals.)
(v) Let $|\psi\rangle=\sum_{n} c_{n}|n\rangle$

- probability to find the value λ_{n} in a single measurement: $\left|c_{n}\right|^{2}$.
(iv) The corresponding eigenstates $|n\rangle$, i.e., $\hat{O}|n\rangle=\lambda_{n}|n\rangle$, form a complete orthonormal basis of the Hilbert space.
$\langle m \mid n\rangle=\delta_{m n}, \quad \sum_{n}|n\rangle\langle n|=11$.
(For continuous spectra one can generalize this to δ-functions and integrals.)
(v) Let $|\psi\rangle=\sum_{n} c_{n}|n\rangle$
- probability to find the value λ_{n} in a single measurement: $\left|c_{n}\right|^{2}$.
- "expectation value" $\langle\hat{O}\rangle=\langle\psi| \hat{O}|\psi\rangle$
= average over many measurements at identically prepared systems
(iv) The corresponding eigenstates $|n\rangle$, i.e., $\hat{O}|n\rangle=\lambda_{n}|n\rangle$, form a complete orthonormal basis of the Hilbert space.
$\langle m \mid n\rangle=\delta_{m n}, \quad \sum_{n}|n\rangle\langle n|=11$.
(For continuous spectra one can generalize this to δ-functions and integrals.)
(v) Let $|\psi\rangle=\sum_{n} c_{n}|n\rangle$
- probability to find the value λ_{n} in a single measurement: $\left|c_{n}\right|^{2}$.
- "expectation value" $\langle\hat{O}\rangle=\langle\psi| \hat{O}|\psi\rangle$
= average over many measurements at identically prepared systems:

$$
\langle\psi| \hat{O}|\psi\rangle=\sum_{m, n} c_{m}^{*} c_{n}\langle m| \hat{O}|n\rangle=\sum_{m, n} c_{m}^{*} c_{n} \lambda_{n} \underbrace{\langle m \mid n\rangle}_{\delta_{m n}}=\sum_{n}\left|c_{n}\right|^{2} \lambda_{n}
$$

(iv) The corresponding eigenstates $|n\rangle$, i.e., $\hat{O}|n\rangle=\lambda_{n}|n\rangle$, form a complete orthonormal basis of the Hilbert space.

$$
\langle m \mid n\rangle=\delta_{m n}, \quad \sum_{n}|n\rangle\langle n|=11
$$

(For continuous spectra one can generalize this to δ-functions and integrals.)
(v) Let $|\psi\rangle=\sum_{n} c_{n}|n\rangle$

- probability to find the value λ_{n} in a single measurement: $\left|c_{n}\right|^{2}$.
- "expectation value" $\langle\hat{O}\rangle=\langle\psi| \hat{O}|\psi\rangle$
= average over many measurements at identically prepared systems:
$\langle\psi| \hat{O}|\psi\rangle=\sum_{m, n} c_{m}^{*} c_{n}\langle m| \hat{O}|n\rangle=\sum_{m, n} c_{m}^{*} c_{n} \lambda_{n} \underbrace{\langle m \mid n\rangle}_{\delta_{m n}}=\sum_{n}\left|c_{n}\right|^{2} \lambda_{n}$
$=$ sum over the possible measurements, weighted by their probability \checkmark

Time evolution

Time evolution

(vi) Immediately after a measurement of the value λ_{n}, the system is in the eigenstate $|n\rangle$.

Time evolution

(vi) Immediately after a measurement of the value λ_{n}, the system is in the eigenstate $|n\rangle$.
(vii) As long as no measurement is performed, the time evolution of $|\psi\rangle$ is determined by the Schrödinger equation:

$$
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle
$$

Time evolution

(vi) Immediately after a measurement of the value λ_{n}, the system is in the eigenstate $|n\rangle$.
(vii) As long as no measurement is performed, the time evolution of $|\psi\rangle$ is determined by the Schrödinger equation:
$i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$
Formal solution for time independent Hamiltonians:
$|\psi(t)\rangle=\exp \left(-\frac{i}{\hbar} \hat{H} t\right)|\psi(0)\rangle$

Time evolution

(vi) Immediately after a measurement of the value λ_{n}, the system is in the eigenstate $|n\rangle$.
(vii) As long as no measurement is performed, the time evolution of $|\psi\rangle$ is determined by the Schrödinger equation:
$i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$
Formal solution for time independent Hamiltonians:

$$
|\psi(t)\rangle=\exp \left(-\frac{i}{\hbar} \hat{H} t\right)|\psi(0)\rangle \equiv \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{i}{\hbar} \hat{H} t\right)^{n}|\psi(0)\rangle
$$

Time evolution

(vi) Immediately after a measurement of the value λ_{n}, the system is in the eigenstate $|n\rangle$.
(vii) As long as no measurement is performed, the time evolution of $|\psi\rangle$ is determined by the Schrödinger equation:

$$
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle
$$

Formal solution for time independent Hamiltonians:

$$
|\psi(t)\rangle=\exp \left(-\frac{i}{\hbar} \hat{H} t\right)|\psi(0)\rangle \equiv \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{i}{\hbar} \hat{H} t\right)^{n}|\psi(0)\rangle
$$

(viii) representations $=$ expansions of states in complete bases

Time evolution

(vi) Immediately after a measurement of the value λ_{n}, the system is in the eigenstate $|n\rangle$.
(vii) As long as no measurement is performed, the time evolution of $|\psi\rangle$ is determined by the Schrödinger equation:

$$
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle
$$

Formal solution for time independent Hamiltonians:

$$
|\psi(t)\rangle=\exp \left(-\frac{i}{\hbar} \hat{H} t\right)|\psi(0)\rangle \equiv \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{i}{\hbar} \hat{H} t\right)^{n}|\psi(0)\rangle
$$

(viii) representations $=$ expansions of states in complete bases

- coordinate-space rep.: $\quad \psi(\vec{r}, t)=\langle\vec{r} \mid \psi(t)\rangle$,
$|\vec{r}\rangle$: eigenstate of the coordinate operator

Time evolution

(vi) Immediately after a measurement of the value λ_{n}, the system is in the eigenstate $|n\rangle$.
(vii) As long as no measurement is performed, the time evolution of $|\psi\rangle$ is determined by the Schrödinger equation:

$$
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle
$$

Formal solution for time independent Hamiltonians:

$$
|\psi(t)\rangle=\exp \left(-\frac{i}{\hbar} \hat{H} t\right)|\psi(0)\rangle \equiv \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{i}{\hbar} \hat{H} t\right)^{n}|\psi(0)\rangle
$$

(viii) representations $=$ expansions of states in complete bases

- coordinate-space rep.: $\quad \psi(\vec{r}, t)=\langle\vec{r} \mid \psi(t)\rangle$,
$|\vec{r}\rangle$: eigenstate of the coordinate operator
- momentum-space rep.: $\tilde{\psi}(\vec{p}, t)=\langle\vec{p} \mid \psi(t)\rangle$,
$|\vec{p}\rangle$: eigenstate of the momentum operator

1.4 Schrödinger vs. Heisenberg picture

1.4 Schrödinger vs. Heisenberg picture

- Equivalent descriptions:
- Schrödinger picture: states time dependent, operators time independent
- Heisenberg picture: states time independent, operators time dependent

1.4 Schrödinger vs. Heisenberg picture

- Equivalent descriptions:
- Schrödinger picture: states time dependent, operators time independent
- Heisenberg picture: states time independent, operators time dependent
- Expectation value in the Schrödinger picture (operator \hat{O}_{S}, state $\left.\left|\psi_{S}(t)\right\rangle\right)$:
$\left\langle\psi_{S}(t)\right| \hat{O}_{S}\left|\psi_{S}(t)\right\rangle$

1.4 Schrödinger vs. Heisenberg picture

- Equivalent descriptions:
- Schrödinger picture: states time dependent, operators time independent
- Heisenberg picture: states time independent, operators time dependent
- Expectation value in the Schrödinger picture (operator \hat{O}_{S}, state $\left.\left|\psi_{S}(t)\right\rangle\right)$:

$$
\left\langle\psi_{S}(t)\right| \hat{O}_{S}\left|\psi_{S}(t)\right\rangle=\left\langle\psi_{S}(0)\right| e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}\left|\psi_{S}(0)\right\rangle
$$

1.4 Schrödinger vs. Heisenberg picture

- Equivalent descriptions:
- Schrödinger picture: states time dependent, operators time independent
- Heisenberg picture: states time independent, operators time dependent
- Expectation value in the Schrödinger picture (operator \hat{O}_{S}, state $\left.\left|\psi_{S}(t)\right\rangle\right)$:

$$
\left\langle\psi_{S}(t)\right| \hat{O}_{S}\left|\psi_{S}(t)\right\rangle=\left\langle\psi_{S}(0)\right| e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}\left|\psi_{S}(0)\right\rangle
$$

- Identify: $\quad \hat{O}_{H}(t) \equiv e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}, \quad\left|\psi_{H}\right\rangle \equiv\left|\psi_{S}(0)\right\rangle$

1.4 Schrödinger vs. Heisenberg picture

- Equivalent descriptions:
- Schrödinger picture: states time dependent, operators time independent
- Heisenberg picture: states time independent, operators time dependent
- Expectation value in the Schrödinger picture (operator \hat{O}_{S}, state $\left.\left|\psi_{S}(t)\right\rangle\right)$:

$$
\left\langle\psi_{S}(t)\right| \hat{O}_{S}\left|\psi_{S}(t)\right\rangle=\left\langle\psi_{S}(0)\right| e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}\left|\psi_{S}(0)\right\rangle
$$

- Identify: $\quad \hat{O}_{H}(t) \equiv e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}, \quad\left|\psi_{H}\right\rangle \equiv\left|\psi_{S}(0)\right\rangle$

$$
\Rightarrow \quad\left\langle\psi_{S}(t)\right| \hat{O}_{S}\left|\psi_{S}(t)\right\rangle=\left\langle\psi_{H}\right| \hat{O}_{H}(t)\left|\psi_{H}\right\rangle
$$

1.4 Schrödinger vs. Heisenberg picture

TECHNISCHE

- Equivalent descriptions:
- Schrödinger picture: states time dependent, operators time independent
- Heisenberg picture: states time independent, operators time dependent
- Expectation value in the Schrödinger picture (operator \hat{O}_{S}, state $\left.\left|\psi_{S}(t)\right\rangle\right)$:

$$
\left\langle\psi_{S}(t)\right| \hat{O}_{S}\left|\psi_{S}(t)\right\rangle=\left\langle\psi_{S}(0)\right| e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}\left|\psi_{S}(0)\right\rangle
$$

- Identify: $\quad \hat{O}_{H}(t) \equiv e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}, \quad\left|\psi_{H}\right\rangle \equiv\left|\psi_{S}(0)\right\rangle$

$$
\Rightarrow \quad\left\langle\psi_{S}(t)\right| \hat{O}_{S}\left|\psi_{S}(t)\right\rangle=\left\langle\psi_{H}\right| \hat{O}_{H}(t)\left|\psi_{H}\right\rangle
$$

- Time derivative of the Heisenberg operator:

$$
\frac{d \hat{O}_{H}}{d t}=\frac{i}{\hbar} \hat{H} e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}-\frac{i}{\hbar} e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t} \hat{H}
$$

1.4 Schrödinger vs. Heisenberg picture

TECHNISCHE

- Equivalent descriptions:
- Schrödinger picture: states time dependent, operators time independent
- Heisenberg picture: states time independent, operators time dependent
- Expectation value in the Schrödinger picture (operator \hat{O}_{S}, state $\left.\left|\psi_{S}(t)\right\rangle\right)$:

$$
\left\langle\psi_{S}(t)\right| \hat{O}_{S}\left|\psi_{S}(t)\right\rangle=\left\langle\psi_{S}(0)\right| e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}\left|\psi_{S}(0)\right\rangle
$$

- Identify: $\quad \hat{O}_{H}(t) \equiv e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}, \quad\left|\psi_{H}\right\rangle \equiv\left|\psi_{S}(0)\right\rangle$

$$
\Rightarrow \quad\left\langle\psi_{S}(t)\right| \hat{O}_{S}\left|\psi_{S}(t)\right\rangle=\left\langle\psi_{H}\right| \hat{O}_{H}(t)\left|\psi_{H}\right\rangle
$$

- Time derivative of the Heisenberg operator:

$$
\frac{d \hat{O}_{H}}{d t}=\frac{i}{\hbar} \hat{H} e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}-\frac{i}{\hbar} e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t} \hat{H}=\frac{1}{i \hbar}\left[\hat{O}_{H}, \hat{H}\right]
$$

1.4 Schrödinger vs. Heisenberg picture

TECHNISCHE

- Equivalent descriptions:
- Schrödinger picture: states time dependent, operators time independent
- Heisenberg picture: states time independent, operators time dependent
- Expectation value in the Schrödinger picture (operator \hat{O}_{S}, state $\left.\left|\psi_{S}(t)\right\rangle\right)$:

$$
\left\langle\psi_{S}(t)\right| \hat{O}_{S}\left|\psi_{S}(t)\right\rangle=\left\langle\psi_{S}(0)\right| e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}\left|\psi_{S}(0)\right\rangle
$$

- Identify: $\quad \hat{O}_{H}(t) \equiv e^{\frac{i}{\hbar} \hat{H} t} \hat{O}_{S} e^{-\frac{i}{\hbar} \hat{H} t}, \quad\left|\psi_{H}\right\rangle \equiv\left|\psi_{S}(0)\right\rangle$

$$
\Rightarrow \quad\left\langle\psi_{S}(t)\right| \hat{O}_{S}\left|\psi_{S}(t)\right\rangle=\left\langle\psi_{H}\right| \hat{O}_{H}(t)\left|\psi_{H}\right\rangle
$$

- Time derivative of the Heisenberg operator: $\frac{d \hat{O}_{H}}{d t}=\frac{1}{i \hbar}\left[\hat{O}_{H}, \hat{H}\right]$ Heisenberg's equation of motion

