
Simplifying assumptions

1. only prozesses A + B → A + B,

i.e., no production, absorption or decay of particles

2. only elastistic scattering,

i.e., no internal excitations of projectile or target (will be relaxed later)

3. no coherence effects by scattering from multiple target particles

(like Bragg scattering at crystals)
I theoretical treatment: only one target particle
I comparison with the experiment:

divide measured counting rate by the number of target particles
I prerequisite: ∆x � d

∆x : spatial extension of the wave packet of the projectile
d : distance of the target particles
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Example:

scattering electrons (mc2 = 511 keV)
from nuclei in a crystal (d = 1 Å = 105 fm)

Momentum uncertainty:

∆p > ~
2∆x �

~
2d = ~c

2dc = 200 MeV fm
2·105 fm c = 1 keV/c

Energy:

E = ~p 2

2m ⇒ ∆E = p ∆p
m +O((∆p)2) ⇒ ∆E

E ≈ 2∆p
p

⇒ ∆E
E ≈ 2∆pc

pc = 2 keV√
2mc2 E

e.g., E = 10 keV ⇒ ∆E
E ≈

2 keV√
1000 keV· 10 keV

= 2%
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4. no spin

5. The potential V (~r ) describing the interaction depends only on the difference~r
between projectile’s and target’s positions.

Separation of relative and center-of-mass motion

Þ equivalent one-body problem in the CM frame:

scattering of a single particle with reduced mass µ =
(

1
mp

+ 1
mt

)−1

from the potential V (~r )
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6. The scattering process can be treated as stationary problem.

Þ time independent Schrödinger equation

I visualization:

diffraction of a continuously incoming wave of water or light at a barrier

I precondition:

The potential has a finite range or its value drops fast enough,
and the wave packets are much larger than the range of the potential
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2.2 The scattering amplitude

I time dependent Schrödinger equation:(
− ~2

2µ∇
2 + V (~r )

)
Ψ(t ,~r ) = i~ ∂∂t Ψ(t ,~r )

I stationary solution: Ψ(t ,~r ) = ψ(~r )e−
i
~ Et

Þ time independent Schrödinger equation:
(
− ~2

2µ∇
2 + V (~r )

)
ψ(~r ) = E ψ(~r )

I goal: find solutions in the continuum (= not bound states) with waves coming
in from and scattered to infinite distances

I spatially localized potential: V (~r )
|~r |→∞−→ 0

Þ E > 0 for unbound solutions

I E can be fixed to arbitrary values by corresponding preparation of the beam.

Þ Boundary value problem for given E > 0
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I Ansatz: ψ(~r ) = ψin(~r ) + ψsc(~r )

I ψin: Solution in absence of the potential;

determined by the particle source

Þ choose plane wave with energy E going in z direction:

ψin(~r ) ∝ ei~k·~r = eikz , ~k = k~ez , ~p = ~~k , E = ~2~k 2

2µ

I ψsc: correction due to the potential

V (~r )
|~r |→∞−→ 0 ⇒ − ~2

2µ∇
2 ψsc(~r ) = E ψsc(~r ) for |~r | → ∞

(i.e., ψsc(~r ) is asymptotically a solution of the free Schrödinger equation)
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I intuitive expectation:

ψsc is not a plane wave but
asymptotically outgoing in radial
direction

ψsc(~r ) r→∞−→ fk (θ,ϕ) eikr

r , r ≡ |~r | , fk : ,,scattering amplitude”

⇒ ∇2fk (θ,ϕ) eikr

r = ∆ fk (θ,ϕ) eikr

r

= 1
r2
∂
∂r

[
r2 ∂
∂r fk (θ,ϕ) eikr

r

]
+ 1

r2 sin2 θ

[
∂
∂θ

(
sin θ ∂∂θ fk (θ,ϕ) eikr

r

)
+ ∂2

∂ϕ2 fk (θ,ϕ) eikr

r

]
= −k2 fk (θ,ϕ) eikr

r +O( 1
r2 )

Þ asymptotically a solution of the free Schrödinger equation X
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I total asymptotics: ψ(~r ) r→∞−→ N
(

eikz + fk (θ,ϕ) eikr

r

)
I N : normalization constant (drops out in calculations of the cross section

Þ can be omitted)

I alternative notation for the scattering amplitude: fk (θ,ϕ) ≡ f (~k ′,~k )

I ~k = wave vector of the incoming wave (= k~ez )

I ~k ′ = wave vector of the outgoing wave

(|~k ′| = |~k | for elastic scattering, (θ,ϕ)=̂ direction of ~k ′)

I isotropic potentials (almost always assumed in these lectures):

V (~r ) = V (r ) ⇒ fk (θ,ϕ) = fk (θ)
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I Relation to the cross section:

dσ =
~jsc·d~S
|~jin|

= (~jsc)r r2 dΩ
|~jin|

(r →∞)

⇒ dσ
dΩ = lim

r→∞
(~jsc)r r2

|~jin|

I Probability current: ~j = ~
2µi

(
ψ∗~∇ψ − ψ~∇ψ∗

)
I incoming wave: ~jin = ~k

µ
~ez

I scattered wave:

(~jsc)r = ~
2µi

(
ψ∗sc

∂
∂rψsc − ψsc

∂
∂rψ
∗
sc

) r→∞−→ ~k
µ |fk |

2 1
r2

⇒ dσ
dΩ

(θ,ϕ) = |fk (θ,ϕ)|2
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2.3 Green’s functions

I Aim: Solve the Schrödinger equation(
− ~2

2µ∇
2 + V (~r )

)
ψ~k (~r ) = Ek ψ~k (~r ) ≡ ~2k2

2µ ψ~k (~r )

⇔
(
∇2 + k2

)
ψ~k (~r ) = 2µ

~2 V (~r )ψ~k (~r )

with the boundary condition

ψ~k (~r ) r→∞−→ eikz + fk (θ,ϕ) eikr

r ≡ ei~k·~r + f (~k ′,~k ) eikr

r

I Green’s function:
(
∇2 + k2

)
Gk (~r ,~r ′) = δ3(~r −~r ′) (= definition of Gk )

Þ general solution of the Schrödinger equation (formally):

ψ~k (~r ) = ϕ~k (~r ) +
∫

d3r ′Gk (~r ,~r ′)
2µ
~2 V (~r ′)ψ~k (~r ′)

ϕ~k (~r ) = eikz ≡ ei~k·~r : solution of the homogeneous equation(
∇2 + k2

)
ϕ~k (~r ) = 0 with the correct boundary condition
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