3.8 Nonrelativistic limit of the
free Dirac equation
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» Dirac equation in non-covariant form: ih2 ¢ = (2£a-V +Bmc?)
» solutions with positive energy and g = 0: ¢ = us(B = 0)

» small nonvanishing momenta: p2 < m?c?

. ; t,X
= E—mc? p < mc® — ansatz: (t,X)=e Mt 4 q)
x(t, X)

» ¢, x: two-component spinors, o
only slowly varying in time in comparison with e~ %™ ¢

ihZ ol < |mc® |, |ihZx| < |mc® x|
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in%e ~ — 12 (5.9)%

Q

ot T 2m
» reminder: (G-3)(G-b)=8-b+i(@xb) &
2 —
= |ihgp~ 7%V2@

» Schrddinger-like equation for the two-component spinor ¢
(— Pauli spinor, spin % see later)

» plane waves: @ o e %

2
I 5B |pl<me
= XR gt Ve=gEe TS X <yl

— sensible non-relativistic limit v
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3.9 Dirac equation with elektromagnetic field
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» minimal substitution: 9, — D, =0, + % A,

insert into the free Dirac equation:

- [ ) = (1 o=y

» non-covariant form:

ihg — ihg—qo, 4V - AV 24

olQ

—

= (ih2 —qe) = [&- he (V7 — 19 4) +ﬁmcz} "

o g =|a (V- LA)+sme +qo|
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in = [07- fie (V — 4 A) +Bmcz+q¢} 0
» nonrelativistic approximation + weak electric fields: |g|c, g¢ < mc?

— ansatz as before: ¢ = (SD) e~ K met
X

= ih%gp: {—i5~(§—%ﬁ)6~(6—%ﬁ)+q¢}gp

2m

exergises | ., O I (o NP hg ., = T,
et /ha@_[—%(V—%A) ——2mCU-B+q¢}<p (B=V x A)

Pauli equation for nonrelativistic spin-% particles in an electromagnetic field
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» Simplifications:
» homogeneous magnetic field: B = const.
(e.g., choose A = 1B x X)
» weak magnetic field:  neglect B2 terms

v |0 o [~ g2 9 (128). B qu
at? " 2m 2me v
with L[=Xxp=Xx 2V orbital angular momentum
S= g& spin
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» Reminder of nonrelativistic quantum mechanics:

R 1 0
i o> sz=ggs=g(0 _1>

-

S:

NI

82=2(2+02+03) = 3121 = s(s+ )21 withs=]

» simultaneous eigenstates of S2and S;:
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> We had:  ih2 o= [—”LVE (L+2S>~§+q¢}<p
— magnetic interaction energy:
Ermagn = — 5 (L+2s) = _[-B
> magnetic moment: i = fiop + [Lspin
> Horb = 27mc_’

> [ispin = zo 25 = T gS, g=2 “gyromagnetic ratio”

» experimental value: ge- =2 -(1.001 159652 180 73(28))
T

QED corrections

go =2-2.79 not a pointlike “Dirac particle”
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3.10 Interpretation of the solutions
with negative energy

4 TECHNISCHE
UNIVERSITAT
DARMSTADT

19/12/2022 | Michael Buballa | 9



3.10 Interpretation of the solutions
with negative energy
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» Instability problem:
E

An electron could lower its energy further
and further by emitting photons.

E:_.I/E)2+ i

(all figures in this section in “natural units”: ¢ = 1)
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3.10 Interpretation of the solutions
with negative energy
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» Instability problem:

E
R

An electron could lower its energy further
and further by emitting photons.

mi

E:_.I/E)2+ i

(all figures in this section in “natural units”: ¢ = 1)

= All atoms would be unstable (live time 7 = 0)!
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E

» physical vacuum (“Dirac sea”): ‘ unbesetzt
m

» states with E > 0 empty
» states with E < 0 occupied

etzt

bes
7
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» physical vacuum (“Dirac sea”):

» states with E > 0 empty
» states with E < 0 occupied

= Transitions of additional E > 0 fermions into
negative-energy states Pauli forbidden!

E
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» occupied Dirac sea:

» energy and charge of the vacuum = —oo (for electrons)
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Dirac’s solution: “hole theory”
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E

» physical vacuum (“Dirac sea”): ‘ unbesetzt
m

» states with E > 0 empty
» states with E < 0 occupied

= Transitions of additional E > 0 fermions into
negative-energy states Pauli forbidden!

etzt

bes
7

» occupied Dirac sea:
» energy and charge of the vacuum = —oo (for electrons)

» “renormalization”:
Energy and charge are measured relative to the occupied Dirac sea.
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» Consequence: E

Adding an amount of energy AE > 2mc? to the
system (e.g., by radiation), an electron in the Dirac [ J
sea can be lifted into a positive-energy state:

Creation of a “particle” with energy E > 0
and a “hole” in the Dirac sea -m i
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» Consequence: E

Adding an amount of energy AE > 2mc? to the
system (e.g., by radiation), an electron in the Dirac [ J
sea can be lifted into a positive-energy state: m

Creation of a “particle” with energy E > 0
and a “hole” in the Dirac sea -m \

» Interpretation of the holes: 7
missing particle with energy E, < 0, momentum By, spin sy, charge gp, ...
= antiparticle w/ energy —Ep > 0, momentum —pp, spin —sp,, charge —qp, ...
— pair creation: ~* — ete™

> inverse reaction: e*e~ — ~* (pair annihilation)
recombination of particle and hole
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» most spectacular success:

Based on these considerations Dirac predicted the positron
before its detection by Anderson 1932.
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» most spectacular success:
Based on these considerations Dirac predicted the positron
before its detection by Anderson 1932.
> problems:
» conceptionally: The hole theory does not work for bosons.
» technically: It is unavoidably an infinite many-body theory.

» modern perspective:
» The boson problem is solved within quantum field theory,
which makes the hole theory obsolet for fermions as well.

» However, the QFT vacuum has certain similarities to the Dirac sea.
QFT extends this concept in a way that is also applicable for bosons.

» The infinite many-body problem remains.
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Fermi sea
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» The concept of the hole theory is still used in
many-body theory, e.g., in condensed-matter physics
or nuclear physics.

Fermi-See”Z

There one considers particle-hole excitations in the
Fermi sea, whereas the Dirac sea is often neglected.

Dirac-See/
7
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