
3.8 Nonrelativistic limit of the
free Dirac equation

I Dirac equation in non-covariant form: i~ ∂∂t ψ =
(~c

i ~α · ~∇ + βmc2
)
ψ

I solutions with positive energy and ~p = ~0: ψ = us(~p = ~0) e−
i
~ mc2t

I small nonvanishing momenta: ~p 2 � m2c2

⇒ E −mc2 ≈ ~p 2

2m � mc2 Þ ansatz: ψ(t ,~x) = e−
i
~ mc2t

(
ϕ(t ,~x)

χ(t ,~x)

)
I ϕ, χ: two-component spinors,

only slowly varying in time in comparison with e−
i
~ mc2t :

|i~ ∂∂tϕ| � |mc2 ϕ| , |i~ ∂∂tχ| � |mc2 χ|
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ψ(t ,~x) = e−
i
~ mc2t

(
ϕ(t ,~x)

χ(t ,~x)

)

⇒ i~ ∂∂t ψ =
(

mc2ϕ + i~ ∂ϕ
∂t

mc2χ + i~ ∂χ
∂t

)
e−

i
~ mc2t

!=
(~c

i ~α · ~∇ + βmc2
)
ψ =

[
~c
i

(
0 ~σ · ~∇

~σ · ~∇ 0

)
+

(
mc2 0

0 −mc2

)]
ψ

=

(
mc2ϕ + ~c

i ~σ · ~∇χ
−mc2χ + ~c

i ~σ · ~∇ϕ

)
e−

i
~ mc2t

⇒ i~∂ϕ∂t = ~c
i ~σ · ~∇χ

⇒ i~∂ϕ∂t ≈ −
~2

2m

(
~σ · ~∇

)2
ϕ

i~∂χ∂t = ~c
i ~σ · ~∇ϕ− 2mc2χ

|i~ ∂
∂t χ|�|mc2 χ|
⇒ χ ≈ ~

2imc~σ · ~∇ϕ
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i~∂ϕ∂t ≈ −
~2

2m

(
~σ · ~∇

)2
ϕ

I reminder: (~σ · ~a)(~σ · ~b) = ~a · ~b + i(~a× ~b) · ~σ

⇒ i~
∂

∂t
ϕ ≈ − ~2

2m
~∇2ϕ

I Schrödinger-like equation for the two-component spinor ϕ

(→ Pauli spinor, spin 1
2 , see later)

I plane waves: ϕ ∝ e−
i
~ (Enrt−~p·~x ), Enr = ~p 2

2m

⇒ χ ≈ ~
2imc~σ · ~∇ϕ = ~σ·~p

2mcϕ
|~p|�mc⇒ |χ| � |ϕ|

Þ sensible non-relativistic limit X
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3.9 Dirac equation with elektromagnetic field

I minimal substitution: ∂µ → Dµ = ∂µ + iq
~c Aµ

insert into the free Dirac equation:

⇒
(

i /D − mc
~

)
ψ ≡

(
i /∂ − q

~c
/A− mc

~

)
ψ = 0

I non-covariant form:

i~ ∂∂t → i~ ∂∂t − qφ , ~
i
~∇ → ~

i
~∇− q

c
~A

⇒
(
i~ ∂∂t − qφ)ψ =

[
~α · ~c

i

(
~∇− iq

~c
~A
)

+ βmc2
]
ψ

⇔ i~ ∂∂t ψ =
[
~α · ~c

i

(
~∇− iq

~c
~A
)

+ βmc2 + qφ
]
ψ
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i~ ∂∂t ψ =
[
~α · ~c

i

(
~∇− iq

~c
~A
)

+ βmc2 + qφ
]
ψ

I nonrelativistic approximation + weak electric fields: |~p|c, qφ� mc2

Þ ansatz as before: ψ =
(
ϕ

χ

)
e−

i
~ mc2t

⇒ i~ ∂∂t ϕ =
[
− ~2

2m~σ ·
(
~∇− iq

~c
~A
)
~σ ·
(
~∇− iq

~c
~A
)

+ qφ
]
ϕ

exercises⇒ i~
∂

∂t
ϕ =

[
− ~2

2m

(
~∇− iq

~c
~A
)2 − ~q

2mc
~σ · ~B + qφ

]
ϕ (~B = ~∇× ~A)

Pauli equation for nonrelativistic spin- 1
2 particles in an electromagnetic field
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I Simplifications:
I homogeneous magnetic field: ~B = const .

(e.g., choose ~A = 1
2
~B × ~x)

I weak magnetic field: neglect ~B 2 terms

exercises⇒ i~
∂

∂t
ϕ =

[
− ~2

2m
~∇2 − q

2mc

(
~L + 2~S

)
· ~B + qφ

]
ϕ

with ~L = ~x × ~p = ~x × ~
i
~∇ orbital angular momentum

~S = ~
2~σ spin
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Spin

I Reminder of nonrelativistic quantum mechanics:

~S = ~
2~σ ⇒ Sz = ~

2σ3 = ~
2

(
1 0

0 −1

)
~S 2 = ~2

4 (σ2
1 + σ2

2 + σ2
3) = 3

4~
211 = s(s + 1)~211 with s = 1

2

I simultaneous eigenstates of ~S 2 and Sz :

|s = 1
2 , ms = + 1

2 〉 ≡ ϕ↑ ≡
(

1

0

)
⇒ Szϕ↑ = ~

2ϕ↑

|s = 1
2 , ms = − 1

2 〉 ≡ ϕ↓ ≡
(

0

1

)
⇒ Szϕ↓ = −~

2ϕ↓
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I We had: i~ ∂∂t ϕ =
[
− ~2

2m
~∇2 − q

2mc

(
~L + 2~S

)
· ~B + qφ

]
ϕ

Þ magnetic interaction energy:

Emagn = − q
2mc

(
~L + 2~S

)
· ~B ≡ −~µ · ~B

I magnetic moment: ~µ = ~µorb + ~µspin

I ~µorb = q
2mc

~L

I ~µspin = q
2mc 2~S ≡ q

2mc g~S, g = 2 “gyromagnetic ratio”

I experimental value: ge− = 2 · (1.001 159 652 180 73(28))
↑

QED corrections

gp = 2 · 2.79 not a pointlike “Dirac particle”
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3.10 Interpretation of the solutions
with negative energy

I Instability problem:
An electron could lower its energy further
and further by emitting photons.

(all figures in this section in “natural units”: c = 1)

⇒ All atoms would be unstable (live time τ = 0)!
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Dirac’s solution: “hole theory”

I physical vacuum (“Dirac sea”):

I states with E > 0 empty
I states with E < 0 occupied

⇒ Transitions of additional E > 0 fermions into
negative-energy states Pauli forbidden!

E

m

m

unbesetzt

 besetzt 

I occupied Dirac sea:

I energy and charge of the vacuum = −∞ (for electrons)
I “renormalization”:

Energy and charge are measured relative to the occupied Dirac sea.
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I Consequence:

Adding an amount of energy ∆E > 2mc2 to the
system (e.g., by radiation), an electron in the Dirac
sea can be lifted into a positive-energy state:

Creation of a “particle” with energy E > 0
and a “hole” in the Dirac sea

E

m

m

I Interpretation of the holes:

missing particle with energy Eh < 0, momentum ~ph, spin sh, charge qh, ...

= antiparticle w/ energy −Eh > 0, momentum −~ph, spin −sh, charge −qh, ...

→ pair creation: γ∗ → e+e−

I inverse reaction: e+e− → γ∗ (pair annihilation)

recombination of particle and hole
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Discussion

I most spectacular success:

Based on these considerations Dirac predicted the positron
before its detection by Anderson 1932.

I problems:
I conceptionally: The hole theory does not work for bosons.

I technically: It is unavoidably an infinite many-body theory.

I modern perspective:

I The boson problem is solved within quantum field theory,
which makes the hole theory obsolet for fermions as well.

I However, the QFT vacuum has certain similarities to the Dirac sea.
QFT extends this concept in a way that is also applicable for bosons.

I The infinite many-body problem remains.
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Fermi sea

I The concept of the hole theory is still used in
many-body theory, e.g., in condensed-matter physics
or nuclear physics.

There one considers particle-hole excitations in the
Fermi sea, whereas the Dirac sea is often neglected.

E

m

m

 Fermi-See 

 Dirac-See 

εF
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