Interpretation by Feynman and Stückelberg

- consider the following process:
- $e^{+} e^{-}$annihilation at time t_{2}
- $e^{+} e^{-}$pair creation at time t_{1}
- hole theory:
- $e^{+}=$missing e^{-}with negative energy

- creation of an $e^{+}=$destruction of an e^{-}with negative energy
- destruction of an $e^{+}=$creation of an e^{-}with negative energy

\rightarrow The e^{-}with negative energy propagates backward in time!

Pair creation in detail

Physical process:

Feynman \& Stückelberg:

energy and charge conserved.

- Postulate:

Particles with positive energy travel forward, particles with negative energy backward in time.
The latter correspond to antiparticles with positive energy, which travel forward in time.

- In scattering theory this can be achieved by choosing appropriate boundary conditions ($\leftrightarrow i \varepsilon$ prescriptions in the Green's functions).
- works for bosons, too!

3.11 Spinor transformations and the Lorentz covariance of the Dirac equation

- Goal:

We want to show that the Dirac equation,

$$
\left(i \gamma^{\mu} \partial_{\mu}-\frac{m c}{\hbar}\right) \psi(x)=0,
$$

is form invariant under Lorentz transformationen $x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$, i.e., that in the transformed frame it takes the form

$$
\left(i \gamma^{\mu} \partial_{\mu}^{\prime}-\frac{m c}{\hbar}\right) \psi^{\prime}\left(x^{\prime}\right)=0 \quad\left(\partial_{\mu}^{\prime} \equiv \frac{\partial}{\partial x^{\prime \mu}}\right) .
$$

- Remarks:
- The γ matrices should not be transformed. In particular they are not the components of a four-vector
- We should expect that the spinor does not behave like a scalar field (cf. Klein-Gordon: $\Phi^{\prime}\left(x^{\prime}\right)=\Phi(x)$), but transforms in a non-trivial way:

$$
\psi^{\prime}\left(x^{\prime}\right)=S(\Lambda) \psi(x), \quad S(\Lambda): \text { matrix in spinor space }
$$

$$
\begin{aligned}
0 & =\left(i \gamma^{\mu} \partial_{\mu}-\frac{m c}{\hbar}\right) \psi(x) \quad \partial_{\mu}=\partial_{\nu}^{\prime} \Lambda^{\nu}{ }_{\mu}, \quad \psi(x)=S^{-1}(\Lambda) \psi^{\prime}\left(x^{\prime}\right) \\
& \left.=\left(i \gamma^{\mu} \partial_{\nu}^{\prime} \Lambda^{\nu}{ }_{\mu}-\frac{m c}{\hbar}\right) S^{-1}(\Lambda) \psi^{\prime}\left(x^{\prime}\right) \quad \right\rvert\, S(\Lambda) \times \\
& =\left(i S(\Lambda) \gamma^{\mu} \partial_{\nu}^{\prime} \Lambda^{\nu}{ }_{\mu} S^{-1}(\Lambda)-\frac{m c}{\hbar}\right) \psi^{\prime}\left(x^{\prime}\right) \\
& =\left(i S(\Lambda) \Lambda^{\nu}{ }_{\mu} \gamma^{\mu} S^{-1}(\Lambda) \partial_{\nu}^{\prime}-\frac{m c}{\hbar}\right) \psi^{\prime}\left(x^{\prime}\right) \\
& !\left(i \gamma^{\nu} \partial_{\nu}^{\prime}-\frac{m c}{\hbar}\right) \psi^{\prime}\left(x^{\prime}\right) \quad \Rightarrow \quad S(\Lambda) \Lambda_{\mu}{ }_{\mu} \gamma^{\mu} S^{-1}(\Lambda) \stackrel{!}{=} \gamma^{\nu} \\
& \Leftrightarrow S^{-1}(\Lambda) \gamma^{\nu} S(\Lambda)=\Lambda^{\nu}{ }_{\mu} \gamma^{\mu}
\end{aligned}
$$

- The right-hand side looks like the transformation of a 4 -vector.

Explicit construction of $\mathbf{S}(\Lambda)$

- infinitesimal proper orthochronous Lorentz transformation:

$$
\Lambda_{\mu}^{\nu}=g_{\mu}^{\nu}+\Delta \omega_{\mu}^{\nu}, \quad \Delta \omega_{\mu}^{\nu}: \text { infinitesimal }
$$

- We have (see section 3.2): $\Lambda_{\mu}{ }^{\alpha} \Lambda^{\mu}{ }_{\beta}=g^{\alpha}{ }_{\beta}$
$\Rightarrow \quad g^{\alpha}{ }_{\beta}=\left(g_{\mu}{ }^{\alpha}+\Delta \omega_{\mu}{ }^{\alpha}\right)\left(g^{\mu}{ }_{\beta}+\Delta \omega^{\mu}{ }_{\beta}\right)=g^{\alpha}{ }_{\beta}+\Delta \omega^{\alpha}{ }_{\beta}+\Delta \omega_{\beta}{ }^{\alpha}+\mathcal{O}\left(\Delta \omega^{2}\right)$
$\Rightarrow \Delta \omega^{\alpha}{ }_{\beta}+\Delta \omega_{\beta}{ }^{\alpha}=0 \Leftrightarrow \Delta \omega^{\alpha \beta}+\Delta \omega^{\beta \alpha}=0$
$\rightarrow\left(\Delta \omega^{\alpha \beta}\right)$ is an antisymmetric 4×4 matrix
$\rightarrow 6$ independent components: $\Delta \omega^{01}, \Delta \omega^{02}, \Delta \omega^{03}, \Delta \omega^{23}, \Delta \omega^{13}, \Delta \omega^{12}$
$\hat{=} 6$ generators of the Lorentz group:
- 3 boosts in x-, y - and z direction
- 3 rotations around the x-, y - and z axis
- Ansatz: $S(\Lambda)=11+\tau, \quad \tau=$ infinitesimal 4×4 matrix

$$
\Rightarrow S^{-1}(\Lambda)=11-\tau \quad\left(\Rightarrow S^{-1} S=11+\mathcal{O}\left(\tau^{2}\right) \quad \checkmark\right)
$$

- $S^{-1} \gamma^{\nu} S \stackrel{!}{=} \Lambda^{\nu}{ }_{\mu} \gamma^{\mu}$
$\Rightarrow \quad(\mathbb{\|}-\tau) \gamma^{\nu}(\mathbb{1}+\tau)=\left(g^{\nu}{ }_{\mu}+\Delta \omega^{\nu}{ }_{\mu}\right) \gamma^{\mu}$
$\Leftrightarrow \quad \gamma^{\nu}+\gamma^{\nu} \tau-\tau \gamma^{\nu}=\gamma^{\nu}+\Delta \omega_{\mu}^{\nu} \gamma^{\mu}$
$\Leftrightarrow\left[\gamma^{\nu}, \tau\right]=\Delta \omega^{\nu}{ }_{\mu} \gamma^{\mu}$
- Solution: $\tau=-\frac{i}{4} \Delta \omega^{\alpha \beta} \sigma_{\alpha \beta} \quad$ with $\quad \sigma_{\alpha \beta} \equiv \frac{i}{2}\left[\gamma_{\alpha}, \gamma_{\beta}\right]$

Proof: explicit evaluation of $\left[\gamma^{\nu}, \tau\right] \quad(\rightarrow$ exercises $)$

- infinitesimal transformations:

$$
S\left(\wedge^{\mu}{ }_{\nu}=g^{\mu}{ }_{\nu}+\Delta \omega^{\mu}{ }_{\nu}\right)=\|-\frac{i}{4} \Delta \omega^{\alpha \beta} \sigma_{\alpha \beta}
$$

- finite transformations
$=$ series of infinitely many infinitesimal transformations.

TECHNISCHE
UNIVERSITATT
DARMSTADT

- 1st example: Boost along the x axis

$$
\Lambda(\chi) \equiv\left(\Lambda_{\nu}^{\mu}\right)=\left(\begin{array}{cccc}
\cosh \chi & -\sinh \chi & 0 & 0 \\
-\sinh \chi & \cosh \chi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

divide χ into N intervals $\frac{\chi}{N}, N \rightarrow \infty$
$\rightarrow \Lambda\left(\frac{\chi}{N}\right)=\left(\begin{array}{rrrr}1 & -\frac{\chi}{N} & 0 & 0 \\ -\frac{\chi}{N} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)=\mathbb{1}+\frac{\chi}{N} \mathcal{I} \equiv\left(g^{\mu}{ }_{\nu}\right)+\left(\Delta \omega^{\mu}{ }_{\nu}\right)$
with $\mathcal{I} \equiv\left(\mathcal{I}^{\mu}{ }_{\nu}\right)=\left(\begin{array}{rrrr}0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \quad$ ($\equiv i K_{x}, \quad K_{x}$: generator of the boost)
$\Rightarrow \Lambda(\chi)=\lim _{N \rightarrow \infty} \Lambda^{N}\left(\frac{\chi}{N}\right)=\lim _{N \rightarrow \infty}\left(\mathbb{1}+\frac{\chi}{N} \mathcal{I}\right)^{N}=\exp (\chi \mathcal{I})=\sum_{n=0}^{\infty} \frac{\chi^{n}}{n!} \mathcal{I}^{n}$

Spinor transformation:

$$
\begin{aligned}
S(\Lambda(\chi)) & =\lim _{N \rightarrow \infty} S^{N}\left(\Lambda\left(\frac{\chi}{N}\right)\right)=\lim _{N \rightarrow \infty}(1-\frac{i}{4} \underbrace{\Delta \omega^{\alpha \beta}}_{\frac{\chi}{N} \mathcal{I}^{\alpha \beta}} \sigma_{\alpha \beta})^{N}=\exp \left(-\mathrm{i} \frac{\chi}{4} \mathcal{I}^{\alpha \beta} \sigma_{\alpha \beta}\right) \\
\mathcal{I}^{\alpha \beta} \sigma_{\alpha \beta} & =\mathcal{I}^{01} \sigma_{01}+\mathcal{I}^{10} \sigma_{10}=2 \mathcal{I}^{01} \sigma_{01}=2 \mathcal{I}^{0}{ }_{1} \sigma^{01}=-2 \sigma^{01} \\
& =-\mathrm{i}\left[\gamma^{0}, \gamma^{1}\right]=-2 \mathrm{i} \gamma^{0} \gamma^{1}=-2 \mathrm{i} \alpha^{1} \\
\Rightarrow S(\Lambda(\chi)) & =\exp \left(-\frac{\chi}{2} \alpha^{1}\right)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{\chi}{2}\right)^{n}\left(\alpha^{1}\right)^{n}, \quad \alpha^{1}=\left(\begin{array}{cc}
0 & \sigma^{1} \\
\sigma^{1} & 0
\end{array}\right) \Rightarrow\left(\alpha^{1}\right)^{2}=\| \\
& =\sum_{n=0}^{\infty} \frac{1}{(2 n)!!}\left(-\frac{\chi}{2}\right)^{2 n} \pi+\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!}\left(-\frac{\chi}{2}\right)^{2 n+1} \alpha^{1} \\
& =\cosh \left(\frac{\chi}{2}\right) \pi-\sinh \left(\frac{\chi}{2}\right) \alpha^{1}=\left(\begin{array}{cc}
\cosh \left(\frac{\chi}{2}\right) & -\sinh \left(\frac{\chi}{2}\right) \sigma^{1} \\
-\sinh \left(\frac{\chi}{2}\right) \sigma^{1} & \cosh \left(\frac{\chi}{2}\right)
\end{array}\right)
\end{aligned}
$$

- 2nd example: rotation around the z axis

$$
\Lambda(\varphi) \equiv\left(\Lambda_{\nu}^{\mu}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \varphi & \sin \varphi & 0 \\
0 & -\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\sigma^{12}=\frac{i}{2}\left[\gamma^{1}, \gamma^{2}\right]=\mathrm{i} \gamma^{1} \gamma^{2}=\mathrm{i}\left(\begin{array}{cc}
0 & \sigma^{1} \\
-\sigma^{1} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma^{2} \\
-\sigma^{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
\sigma^{3} & 0 \\
0 & \sigma^{3}
\end{array}\right) \equiv \Sigma^{3}
$$

- interesting feature: $\varphi=2 \pi \Rightarrow S=-\| \Rightarrow \psi^{\prime}=-\psi$

$$
\varphi=4 \pi \Rightarrow S=+\| \Rightarrow \psi^{\prime}=\psi
$$

- related to spin $\frac{1}{2}$
- observables: bilinear in ψ (e.g., $\left.j^{\mu}=\bar{\psi} \gamma^{\mu} \psi\right) \Rightarrow$ sign drops out
- Rotation about an arbitrary axis:

$$
\begin{aligned}
S & =\exp \left(i \frac{\vec{\varphi}}{2} \cdot \vec{\Sigma}\right)=\cos \left(\frac{\varphi}{2}\right)+i \sin \left(\frac{\varphi}{2}\right) \vec{\Sigma} \cdot \frac{\vec{\varphi}}{\varphi} \\
& -\varphi=|\vec{\varphi}|=\text { rotation angle, } \quad \vec{\varphi} \varphi=\text { direction of the rotation axis } \\
& -\vec{\Sigma}=\left(\begin{array}{cc}
\vec{\sigma} & 0 \\
0 & \vec{\sigma}
\end{array}\right)
\end{aligned}
$$

- further properties of S :
- rotations: $S^{\dagger}=S^{-1} \quad$ (unitary)
- boosts: $S^{\dagger}=S$ (hermitian)
- both: $\gamma^{0} S^{\dagger} \gamma^{0}=S^{-1}$

$$
\rightarrow \bar{\psi}=\psi^{\dagger} \gamma^{0} \Rightarrow(S \psi)^{\dagger} \gamma^{0}=\psi^{\dagger} S^{\dagger} \gamma^{0}=\bar{\psi} \gamma^{0} S^{\dagger} \gamma^{0}=\bar{\psi} S^{-1}
$$

