Elementarteilchenphysik

Priv.-Doz. Dr. M. Buballa M. Schramm

Wintersemester 2015/16

1. Übungsblatt

30. Oktober 2015

Aufgabe 1: Natürliche Einheiten

Zeigen Sie, dass die Gravitationskonstante $G=6,67\cdot 10^{-11}\frac{\mathrm{N}\,\mathrm{m}^2}{\mathrm{kg}^2}$ in natürlichen Einheiten ($\hbar=c=1$) durch $G=M_p^{-2}$ gegeben ist, wobei $M_p=1,2\cdot 10^{19}$ GeV die so genannte Planckmasse ist.

Hinweis:

1 eV =
$$1, 6 \cdot 10^{-19}$$
 J, $c = 3 \cdot 10^8$ m s⁻¹, $\hbar c = 0, 2$ GeV fm.

Aufgabe 2: Erhaltungsgrößen in Reaktionen

Welche der folgenden Reaktionen sind im Standardmodell möglich? Bestimmen Sie die Quantenzahlen der Reaktionen und geben Sie an welche Wechselwirkungen zugrunde liegen.

a)
$$\Lambda^0 \rightarrow \bar{n} + \pi^0$$

d)
$$e^+ \rightarrow \pi^+ + \bar{\nu}_e$$

b)
$$\pi^0 \rightarrow \gamma + \gamma$$

e)
$$\tau^{-} \to \pi^{0} + e^{-} + \nu_{\tau}$$

c)
$$\Lambda^0 \rightarrow p + \pi^-$$

f)
$$e^+ + e^- \to \pi^0$$

Hinweis: Λ^0 ist ein Baryon, bestehend aus u, d und s Quark

Aufgabe 3: Permutationen

Die Elemente der Gruppe S_3 entsprechen den sechs verschiedenen Permutationen dreier Objekte, die sich an drei verschiedenen Orten 1, 2 und 3 befinden:

- e: keine Änderung
- t_{ij} : Vertauschung der Objekte an den Orten i und j (i < j)
- z_1 : zyklische Vertauschung von 1, 2, 3 nach 2, 3, 1
- z_2 : zyklische Vertauschung von 1, 2, 3 nach 3, 1, 2
- a) Geben Sie das Produkt $g_i \cdot g_j$, daher die Permutation, die nacheinander ausgeführte Permutationen g_i und g_j ergeben, in einer Tabelle an.
- b) Finden Sie eine Darstellung der Gruppe S_3 durch 3×3 -Matrizen. Identifizieren Sie dazu die Anordnungen der drei Objekte vor und nach der Permutation mit einem dreikomponentigen Zustandsvektor und bestimmen Sie die Matrizen, die diese Zustände in gewünschter Weise ineinander überführen.
- c) Überprüfen Sie, dass die in b) gefundenen Matrizen tatsächlich die in a) bestimmten Multiplikationseigenschaften besitzen.