Einteilung elektrostatischer Materialien

TECHNISCHE UNIVERSITÄT DARMSTADT

(eigentliche)Dielektrika:

Lokale elektrische Dipole, die ohne äußeres elektrisches Feld nicht existieren, werden vom Feld durch Deformationspolarisation gebildet.

22.06.2023 | Michael Buballa | 1

Einteilung elektrostatischer Materialien

(eigentliche)Dielektrika:

Lokale elektrische Dipole, die ohne äußeres elektrisches Feld nicht existieren, werden vom Feld durch Deformationspolarisation gebildet.

Paraelektrika

Permanente elektrische Dipole, (z.B. H_2O -Moleküle), die ohne äußeres elektrisches Feld statistisch verteilt sind und sich daher im Mittel gegenseitig aufheben, richten sich im Feld aus.

22.06.2023 | Michael Buballa | 1

Einteilung elektrostatischer Materialien

(eigentliche)Dielektrika:

Lokale elektrische Dipole, die ohne äußeres elektrisches Feld nicht existieren, werden vom Feld durch Deformationspolarisation gebildet.

Paraelektrika

Permanente elektrische Dipole, (z.B. H_2O -Moleküle), die ohne äußeres elektrisches Feld statistisch verteilt sind und sich daher im Mittel gegenseitig aufheben, richten sich im Feld aus.

Ferroelektrika

Stoffe mit permanenten elektrische Dipolen, die sich unterhalb einer kritischen Temperatur auch ohne äußeres elektrisches Feld spontan ausrichten

Einteilung elektrostatischer Materialien

 $\vec{E} \neq \vec{0}$

 $\vec{E} = \vec{0}$

 \vec{E}

(eigentliche)Dielektrika:

Lokale elektrische Dipole, die ohne äußeres elektrisches Feld nicht existieren, werden vom Feld durch Deformationspolarisation gebildet.

Paraelektrika

Permanente elektrische Dipole, (z.B. H_2O -Moleküle), die ohne äußeres elektrisches Feld statistisch verteilt sind und sich daher im Mittel gegenseitig aufheben, richten sich im Feld aus.

Ferroelektrika

Stoffe mit permanenten elektrische Dipolen, die sich unterhalb einer kritischen Temperatur auch ohne äußeres elektrisches Feld spontan ausrichten

oft: "Dielektrika" = Oberbegriff für alle nichtleitenden polarisierbaren Medien

$$\Rightarrow \vec{P} = \vec{P}(\vec{E}) \text{ mit } \begin{cases} \vec{P}(\vec{0}) = \vec{0} \text{ Di- und Paraelektrika} \\ \vec{P}(\vec{0}) \neq \vec{0} \text{ Ferroelektrika} \end{cases}$$

$$\Rightarrow \vec{P} = \vec{P}(\vec{E}) \text{ mit } \begin{cases} \vec{P}(\vec{0}) = \vec{0} \text{ Di- und Paraelektrika} \\ \vec{P}(\vec{0}) \neq \vec{0} \text{ Ferroelektrika} \end{cases}$$

► Taylor-Entwicklung für Di- und Paraelektrika:

$$P_i(\vec{E}) = \sum_{j=1}^3 \gamma_{ij} E_j + \sum_{j,k=1}^3 \beta_{ijk} E_j E_k + \dots$$

$$\Rightarrow \vec{P} = \vec{P}(\vec{E}) \text{ mit } \begin{cases} \vec{P}(\vec{0}) = \vec{0} \text{ Di- und Paraelektrika} \\ \vec{P}(\vec{0}) \neq \vec{0} \text{ Ferroelektrika} \end{cases}$$

► Taylor-Entwicklung für Di- und Paraelektrika:

$$P_i(\vec{E}) = \sum_{j=1}^{3} \gamma_{ij} E_j + \sum_{j,k=1}^{3} \beta_{ijk} E_j E_k + \dots \approx \sum_{j=1}^{3} \gamma_{ij} E_j \quad \text{für schwache Felder}$$

$$\Rightarrow \vec{P} = \vec{P}(\vec{E}) \text{ mit } \begin{cases} \vec{P}(\vec{0}) = \vec{0} \text{ Di- und Paraelektrika} \\ \vec{P}(\vec{0}) \neq \vec{0} \text{ Ferroelektrika} \end{cases}$$

Taylor-Entwicklung f
ür Di- und Paraelektrika:

$$P_i(\vec{E}) = \sum_{j=1}^{3} \gamma_{ij} E_j + \sum_{j,k=1}^{3} \beta_{ijk} E_j E_k + \dots \approx \sum_{j=1}^{3} \gamma_{ij} E_j \quad \text{für schwache Felder}$$

► isotrope Medien: $\gamma_{ij} = \gamma \delta_{ij}$ $\Rightarrow \vec{P} \approx \gamma \vec{E} \equiv \chi_e \varepsilon_0 \vec{E}$ χ_e : elektrische Suszeptibilität

$$\Rightarrow \vec{P} = \vec{P}(\vec{E}) \text{ mit } \begin{cases} \vec{P}(\vec{0}) = \vec{0} \text{ Di- und Paraelektrika} \\ \vec{P}(\vec{0}) \neq \vec{0} \text{ Ferroelektrika} \end{cases}$$

Taylor-Entwicklung f
ür Di- und Paraelektrika:

$$P_i(\vec{E}) = \sum_{j=1}^{3} \gamma_{ij} E_j + \sum_{j,k=1}^{3} \beta_{ijk} E_j E_k + \dots \approx \sum_{j=1}^{3} \gamma_{ij} E_j \quad \text{für schwache Felder}$$

• isotrope Medien:
$$\gamma_{ij} = \gamma \delta_{ij}$$

- $\Rightarrow \vec{P} \approx \gamma \vec{E} \equiv \chi_e \varepsilon_0 \vec{E} \qquad \qquad \chi_e: \text{ elektrische Suszeptibilität}$
- $\Rightarrow \vec{D} = \varepsilon_0 \vec{E} + \vec{P} \approx (1 + \chi_e) \varepsilon_0 \vec{E} \equiv \varepsilon_r \varepsilon_0 \vec{E} \quad \varepsilon_r: \text{ (relative) Dielektrizitätskonstante} \\ = \text{Materialkonstante}$

 $\pm Q$: freie Überschussladungen auf den Kondensatorplatten

A: Fläche der Platten

$$\Rightarrow \sigma = \pm \frac{Q}{A}$$

- ±Q: freie Überschussladungen auf den Kondensatorplatten
 - A: Fläche der Platten

$$\Rightarrow \sigma = \pm \frac{Q}{A}$$

gesucht: Kapazität $C = \frac{Q}{U}$

• vernachlässige Randeffekte \Rightarrow außerhalb: $\vec{D} = \vec{E} = \vec{0}$

- ±Q: freie Überschussladungen auf den Kondensatorplatten
 - A: Fläche der Platten

$$\Rightarrow \sigma = \pm \frac{Q}{A}$$

- ▶ vernachlässige Randeffekte \Rightarrow außerhalb: $\vec{D} = \vec{E} = \vec{0}$
- ► zwischen den Platten: $\vec{D} = \varepsilon_r \varepsilon_0 \vec{E} = const. \perp$ Platten

- ±Q: freie Überschussladungen auf den Kondensatorplatten
 - A: Fläche der Platten

$$\Rightarrow \sigma = \pm \frac{Q}{A}$$

- vernachlässige Randeffekte \Rightarrow außerhalb: $\vec{D} = \vec{E} = \vec{0}$
- ► zwischen den Platten: $\vec{D} = \varepsilon_r \varepsilon_0 \vec{E} = const. \perp$ Platten

$$\Rightarrow D = \vec{D} \cdot \vec{n} = \sigma = \frac{Q}{A}$$

- ±Q: freie Überschussladungen auf den Kondensatorplatten
 - A: Fläche der Platten

$$\Rightarrow \quad \sigma = \pm \frac{Q}{A}$$

- vernachlässige Randeffekte \Rightarrow außerhalb: $\vec{D} = \vec{E} = \vec{0}$
- ► zwischen den Platten: $\vec{D} = \varepsilon_r \varepsilon_0 \vec{E} = const. \perp$ Platten

$$\Rightarrow D = \vec{D} \cdot \vec{n} = \sigma = \frac{Q}{A} \quad \Rightarrow E = \frac{D}{\varepsilon_0 \varepsilon_r} = \frac{Q}{\varepsilon_0 \varepsilon_r A}$$

- ±Q: freie Überschussladungen auf den Kondensatorplatten
 - A: Fläche der Platten

$$\Rightarrow \sigma = \pm \frac{Q}{A}$$

- vernachlässige Randeffekte \Rightarrow außerhalb: $\vec{D} = \vec{E} = \vec{0}$
- ► zwischen den Platten: $\vec{D} = \varepsilon_r \varepsilon_0 \vec{E} = const. \perp$ Platten

$$\Rightarrow D = \vec{D} \cdot \vec{n} = \sigma = \frac{Q}{A} \quad \Rightarrow E = \frac{D}{\varepsilon_0 \varepsilon_r} = \frac{Q}{\varepsilon_0 \varepsilon_r A}$$

$$\vec{E} = -\vec{\nabla}\phi \quad \Rightarrow \quad U = \left| \int d\vec{r} \cdot \vec{E} \right| = Ed = \frac{Qd}{\varepsilon_0 \varepsilon_r A}$$

- ±Q: freie Überschussladungen auf den Kondensatorplatten
 - A: Fläche der Platten

$$\Rightarrow \quad \sigma = \pm \frac{Q}{A}$$

- vernachlässige Randeffekte \Rightarrow außerhalb: $\vec{D} = \vec{E} = \vec{0}$
- ► zwischen den Platten: $\vec{D} = \varepsilon_r \varepsilon_0 \vec{E} = const. \perp$ Platten

$$\Rightarrow D = \vec{D} \cdot \vec{n} = \sigma = \frac{Q}{A} \quad \Rightarrow E = \frac{D}{\varepsilon_0 \varepsilon_r} = \frac{Q}{\varepsilon_0 \varepsilon_r A}$$
$$\bullet \vec{E} = -\vec{\nabla}\phi \quad \Rightarrow U = \left| \int d\vec{r} \cdot \vec{E} \right| = Ed = \frac{Qd}{\varepsilon_0 \varepsilon_r A} \quad \Rightarrow C = \epsilon_0 \epsilon_r \frac{A}{d}$$

Dielektrikum: keine freien Ladungen $\Rightarrow \sigma = 0$ $\Rightarrow \vec{D} = const.$ zwischen den Platten $\Rightarrow \vec{E} = \frac{\vec{D}}{\varepsilon_0 \varepsilon_r}$ im Dielektrikum kleiner als im Vakuum

 \vec{E} ist das "wirkliche" (gemittelte) elektrische Feld, \vec{D} nur eine praktische Größe.

$$\blacktriangleright \vec{B}_m = \vec{\nabla} \times \vec{A}_m, \quad \vec{\nabla} \cdot \vec{B}_m = 0, \quad \vec{\nabla} \times \vec{B}_m = \mu_0 \vec{j}_m$$

$$\vec{B}_m = \vec{\nabla} \times \vec{A}_m, \quad \vec{\nabla} \cdot \vec{B}_m = 0, \quad \vec{\nabla} \times \vec{B}_m = \mu_0 \vec{j}_m$$

$$\vec{A}_m(\vec{r}) = \vec{A}_{m,frei}(\vec{r}) + \sum_{j=1}^N \vec{A}_{m,j}(\vec{r})$$

mikroskopisch:

$$\vec{B}_m = \vec{\nabla} \times \vec{A}_m, \quad \vec{\nabla} \cdot \vec{B}_m = 0, \quad \vec{\nabla} \times \vec{B}_m = \mu_0 \vec{j}_m$$

•
$$\vec{A}_m(\vec{r}) = \vec{A}_{m,frei}(\vec{r}) + \sum_{j=1}^N \vec{A}_{m,j}(\vec{r})$$

Beitrag "freier" (= kontrollierbarer) Ströme:

$$\vec{A}_{m,frei}(\vec{r}) = \frac{\mu_0}{4\pi} \int d^3r' \frac{\vec{j}_{frei}(\vec{r}\,')}{|\vec{r}-\vec{r}\,'|}$$

mikroskopisch:

 $\blacktriangleright \vec{B}_m = \vec{\nabla} \times \vec{A}_m, \quad \vec{\nabla} \cdot \vec{B}_m = 0, \quad \vec{\nabla} \times \vec{B}_m = \mu_0 \vec{j}_m$

•
$$\vec{A}_m(\vec{r}) = \vec{A}_{m,frei}(\vec{r}) + \sum_{j=1}^N \vec{A}_{m,j}(\vec{r})$$

Beitrag "freier" (= kontrollierbarer) Ströme:

$$\vec{A}_{m,frei}(\vec{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\vec{j}_{frei}(\vec{r}\,')}{|\vec{r}-\vec{r}\,'|}$$

• Beitrag des magnetischen Moments des *j*-ten Atoms:

$$\vec{A}_{m,j}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{\vec{m}_j \times (\vec{r} - \vec{R}_j)}{|\vec{r} - \vec{R}_j|^3} = \frac{\mu_0}{4\pi} \int d^3 r' \, \vec{m}_j \, \delta(\vec{r}\,' - \vec{R}_j) \times \frac{\vec{r} - \vec{r}\,'}{|\vec{r} - \vec{r}\,'|^3}$$

mikroskopisch:

 $\blacktriangleright \vec{B}_m = \vec{\nabla} \times \vec{A}_m, \quad \vec{\nabla} \cdot \vec{B}_m = 0, \quad \vec{\nabla} \times \vec{B}_m = \mu_0 \vec{j}_m$

•
$$\vec{A}_{m}(\vec{r}) = \vec{A}_{m,frei}(\vec{r}) + \sum_{j=1}^{N} \vec{A}_{m,j}(\vec{r})$$

Beitrag "freier" (= kontrollierbarer) Ströme:

$$\vec{A}_{m,frei}(\vec{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\vec{j}_{frei}(\vec{r}\,')}{|\vec{r}-\vec{r}\,'|}$$

• Beitrag des magnetischen Moments des *j*-ten Atoms:

$$\vec{A}_{m,j}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{\vec{m}_j \times (\vec{r} - \vec{R}_j)}{|\vec{r} - \vec{R}_j|^3} = \frac{\mu_0}{4\pi} \int d^3 r' \, \vec{m}_j \, \delta(\vec{r}\,' - \vec{R}_j) \times \frac{\vec{r} - \vec{r}\,'}{|\vec{r} - \vec{r}\,'|^3}$$

$$\Rightarrow \vec{A}_m(\vec{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \left(\frac{\vec{I}_{moi}(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|} + \frac{\vec{M}_m(\vec{r}\,') \times (\vec{r} - \vec{r}\,')}{|\vec{r} - \vec{r}\,'|^3} \right)$$

mit $\vec{M}_m(\vec{r}) := \sum_{j=1}^{N} \vec{m}_j \,\delta(\vec{r} - \vec{R}_j)$ "mikroskopische Magnetisierung"

$$\bullet \ \vec{B} \equiv \overline{\vec{B}_m}, \quad \vec{A} \equiv \overline{\vec{A}_m}, \quad \Rightarrow \quad \vec{B} = \vec{\nabla} \times \vec{A}$$

$$\vec{B} \equiv \overline{\vec{B}_m}, \quad \vec{A} \equiv \overline{\vec{A}_m}, \quad \Rightarrow \quad \vec{B} = \vec{\nabla} \times \vec{A}$$
$$\vec{j}(\vec{r}) \equiv \overline{\vec{j}_{frei}}(\vec{r})$$

►
$$\vec{B} \equiv \overline{\vec{B}_m}$$
, $\vec{A} \equiv \overline{\vec{A}_m}$, $\Rightarrow \vec{B} = \vec{\nabla} \times \vec{A}$
 $\vec{j}(\vec{r}) \equiv \overline{\vec{j}_{frei}}(\vec{r})$
 $\vec{M}(\vec{r}) \equiv \overline{\vec{M}_m}(\vec{r})$ "Magnetisierung"

•
$$\vec{B} \equiv \overline{\vec{B}_m}, \quad \vec{A} \equiv \overline{\vec{A}_m}, \quad \Rightarrow \quad \vec{B} = \vec{\nabla} \times \vec{A}$$

 $\vec{j}(\vec{r}) \equiv \overline{\vec{j}_{frei}}(\vec{r})$
 $\vec{M}(\vec{r}) \equiv \overline{\vec{M}_m}(\vec{r}) \quad \text{"Magnetisierung"}$
 $\Rightarrow \vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int d^3r' \left(\frac{\vec{j}(\vec{r}\,')}{|\vec{r}-\vec{r}\,'|} + \frac{\vec{M}(\vec{r}\,') \times (\vec{r}-\vec{r}\,')}{|\vec{r}-\vec{r}\,'|^3} \right)$

$$\vec{B} \equiv \vec{B}_{m}, \quad \vec{A} \equiv \vec{A}_{m}, \quad \Rightarrow \quad \vec{B} = \vec{\nabla} \times \vec{A}$$

$$\vec{j}(\vec{r}) \equiv \vec{j}_{frei}(\vec{r})$$

$$\vec{M}(\vec{r}) \equiv \vec{M}_{m}(\vec{r}) \quad \text{"Magnetisierung"}$$

$$\Rightarrow \vec{A}(\vec{r}) = \frac{\mu_{0}}{4\pi} \int d^{3}r' \left(\frac{\vec{j}(\vec{r}\,')}{|\vec{r}-\vec{r}\,'|} + \frac{\vec{M}(\vec{r}\,') \times (\vec{r}-\vec{r}\,')}{|\vec{r}-\vec{r}\,'|^{3}} \right)$$

$$= \frac{\mu_{0}}{4\pi} \int d^{3}r' \left(\frac{\vec{j}(\vec{r}\,')}{|\vec{r}-\vec{r}\,'|} + \vec{M}(\vec{r}\,') \times \vec{\nabla}_{\vec{r}\,'} \frac{1}{|\vec{r}-\vec{r}\,'|} \right)$$

$$\vec{B} \equiv \overline{\vec{B}_m}, \quad \vec{A} \equiv \overline{\vec{A}_m}, \quad \Rightarrow \quad \vec{B} = \vec{\nabla} \times \vec{A}$$

$$\vec{j}(\vec{r}) \equiv \overline{\vec{j}_{frei}}(\vec{r})$$

$$\vec{M}(\vec{r}) \equiv \overline{\vec{M}_m}(\vec{r}) \quad \text{"Magnetisierung"}$$

$$\Rightarrow \vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \left(\frac{\vec{j}(\vec{r}')}{|\vec{r} - \vec{r}'|} + \frac{\vec{M}(\vec{r}') \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} \right)$$

$$= \frac{\mu_0}{4\pi} \int d^3 r' \left(\frac{\vec{j}(\vec{r}')}{|\vec{r} - \vec{r}'|} + \vec{M}(\vec{r}') \times \vec{\nabla}_{\vec{r}'} \frac{1}{|\vec{r} - \vec{r}'|} \right) = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\vec{j}(\vec{r}') + \vec{\nabla} \times \vec{M}(\vec{r}')}{|\vec{r} - \vec{r}'|}$$

►
$$\vec{B} \equiv \overline{\vec{B}_m}, \quad \vec{A} \equiv \overline{\vec{A}_m}, \quad \Rightarrow \quad \vec{B} = \vec{\nabla} \times \vec{A}$$

 $\vec{j}(\vec{r}) \equiv \overline{\vec{j}_{frei}}(\vec{r})$
 $\vec{M}(\vec{r}) \equiv \overline{\vec{M}_m}(\vec{r}) \quad \text{"Magnetisierung"}$
 $\Rightarrow \vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int d^3r' \left(\frac{\vec{j}(\vec{r}')}{|\vec{r}-\vec{r}'|} + \frac{\vec{M}(\vec{r}') \times (\vec{r}-\vec{r}')}{|\vec{r}-\vec{r}'|^3} \right)$
 $= \frac{\mu_0}{4\pi} \int d^3r' \left(\frac{\vec{j}(\vec{r}')}{|\vec{r}-\vec{r}'|} + \vec{M}(\vec{r}') \times \vec{\nabla}_{\vec{r}'} \frac{1}{|\vec{r}-\vec{r}'|} \right) = \frac{\mu_0}{4\pi} \int d^3r' \frac{\vec{i}(\vec{r}') + \vec{\nabla} \times \vec{M}(\vec{r}')}{|\vec{r}-\vec{r}'|}$
 $\Rightarrow \vec{j}_M(\vec{r}) \equiv \vec{\nabla} \times \vec{M}(\vec{r}) \quad \text{"Magnetisierungsstromdichte"}$

$$\vec{B} \equiv \vec{B}_{m}, \quad \vec{A} \equiv \vec{A}_{m}, \quad \Rightarrow \quad \vec{B} = \vec{\nabla} \times \vec{A}$$

$$\vec{j}(\vec{r}) \equiv \vec{j}_{frei}(\vec{r})$$

$$\vec{M}(\vec{r}) \equiv \vec{M}_{m}(\vec{r}) \quad \text{"Magnetisierung"}$$

$$\Rightarrow \vec{A}(\vec{r}) = \frac{\mu_{0}}{4\pi} \int d^{3}r' \left(\frac{\vec{j}(\vec{r}')}{|\vec{r} - \vec{r}'|} + \frac{\vec{M}(\vec{r}') \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^{3}} \right)$$

$$= \frac{\mu_{0}}{4\pi} \int d^{3}r' \left(\frac{\vec{j}(\vec{r}')}{|\vec{r} - \vec{r}'|} + \vec{M}(\vec{r}') \times \vec{\nabla}_{\vec{r}'} \frac{1}{|\vec{r} - \vec{r}'|} \right) = \frac{\mu_{0}}{4\pi} \int d^{3}r' \frac{\vec{i}(\vec{r}') + \vec{\nabla} \times \vec{M}(\vec{r}')}{|\vec{r} - \vec{r}'|}$$

$$\Rightarrow \vec{j}_{M}(\vec{r}) \equiv \vec{\nabla} \times \vec{M}(\vec{r}) \quad \text{"Magnetisierungsstromdichte"}$$

$$\Rightarrow \vec{\nabla} \times \vec{B} = \mu_{0}(\vec{j} + \vec{j}_{M}) = \mu_{0}(\vec{j} + \vec{\nabla} \times \vec{M})$$

$$\vec{\nabla}\times\vec{B}=\mu_0\big(\vec{j}+\vec{j}_M\big)=\mu_0\big(\vec{j}+\vec{\nabla}\times\vec{M}\big)$$

$$\vec{\nabla}\times\vec{B}=\mu_0\left(\vec{j}+\vec{j}_M\right)=\mu_0\left(\vec{j}+\vec{\nabla}\times\vec{M}\right) \quad \Leftrightarrow \quad \vec{\nabla}\times\left(\tfrac{1}{\mu_0}\vec{B}-\vec{M}\right)=\vec{j}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \left(\vec{j} + \vec{j}_M \right) = \mu_0 \left(\vec{j} + \vec{\nabla} \times \vec{M} \right) \quad \Leftrightarrow \quad \vec{\nabla} \times \left(\frac{1}{\mu_0} \vec{B} - \vec{M} \right) = \vec{j}$$
$$\rightarrow \vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M} \quad \text{,Magnetfeld}^{"} \quad \Leftrightarrow \quad \vec{\nabla} \times \vec{H} = \vec{j}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \left(\vec{j} + \vec{j}_M \right) = \mu_0 \left(\vec{j} + \vec{\nabla} \times \vec{M} \right) \quad \Leftrightarrow \quad \vec{\nabla} \times \left(\frac{1}{\mu_0} \vec{B} - \vec{M} \right) = \vec{j}$$

$$\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M} \quad \text{,Magnetfeld}^{"} \quad \Leftrightarrow \quad \left[\vec{\nabla} \times \vec{H} = \vec{j} \right]$$

$$\vec{Divergenz} : \quad \vec{\nabla} \cdot \vec{B}_m = 0 \qquad \Leftrightarrow \quad \left[\vec{\nabla} \cdot \vec{B} = 0 \right]$$

$$\vec{\nabla}\times\vec{B}=\mu_0\big(\vec{j}+\vec{j}_M\big)=\mu_0\big(\vec{j}+\vec{\nabla}\times\vec{M}\big)\qquad\Leftrightarrow\quad\vec{\nabla}\times\big(\tfrac{1}{\mu_0}\vec{B}-\vec{M}\big)=\vec{j}$$

- $\rightarrow \vec{H} = \frac{1}{\mu_0} \vec{B} \vec{M} \quad \text{"Magnetfeld"} \quad \Leftrightarrow \quad \vec{\nabla} \times \vec{H} = \vec{j}$
 - Divergenz: $\vec{\nabla} \cdot \vec{B}_m = 0$ \Leftrightarrow $\vec{\nabla} \cdot \vec{B} = 0$
 - Verhalten an Grenzflächen:

Maxwell-Gln. in Abwesenheit freier Ströme: $\vec{\nabla} \cdot \vec{B} = 0$ $\vec{\nabla} \times \vec{H} = \vec{0}$

→ Normalkomponenten von \vec{B} und Tangentialkomponenten von \vec{H} sind stetig

$$\vec{\nabla}\times\vec{B}=\mu_0\big(\vec{j}+\vec{j}_M\big)=\mu_0\big(\vec{j}+\vec{\nabla}\times\vec{M}\big)\qquad\Leftrightarrow\quad\vec{\nabla}\times\big(\tfrac{1}{\mu_0}\vec{B}-\vec{M}\big)=\vec{j}$$

- $\rightarrow \vec{H} = \frac{1}{\mu_0} \vec{B} \vec{M} \quad \text{"Magnetfeld"} \quad \Leftrightarrow \quad \vec{\nabla} \times \vec{H} = \vec{j}$
 - Divergenz: $\vec{\nabla} \cdot \vec{B}_m = 0$ \Leftrightarrow $\vec{\nabla} \cdot \vec{B} = 0$
 - Verhalten an Grenzflächen:

Maxwell-Gln. in Abwesenheit freier Ströme: $\vec{\nabla} \cdot \vec{B} = 0$ $\vec{\nabla} \times \vec{H} = \vec{0}$

- \rightarrow Normalkomponenten von \vec{B} und Tangentialkomponenten von \vec{H} sind stetig
- ► isotrope Medien ohne permanente Magnetisierung :

 $\vec{M} = \chi_m \vec{H}$, χ_m : "magnetische Suszeptibilität"

$$\vec{\nabla}\times\vec{B}=\mu_0\big(\vec{j}+\vec{j}_M\big)=\mu_0\big(\vec{j}+\vec{\nabla}\times\vec{M}\big)\qquad\Leftrightarrow\quad\vec{\nabla}\times\big(\tfrac{1}{\mu_0}\vec{B}-\vec{M}\big)=\vec{j}$$

- $\rightarrow \vec{H} = \frac{1}{\mu_0} \vec{B} \vec{M} \quad \text{"Magnetfeld"} \quad \Leftrightarrow \quad \vec{\nabla} \times \vec{H} = \vec{j}$
 - Divergenz: $\vec{\nabla} \cdot \vec{B}_m = 0$ \Leftrightarrow $\vec{\nabla} \cdot \vec{B} = 0$
 - Verhalten an Grenzflächen:

Maxwell-Gln. in Abwesenheit freier Ströme: $\vec{\nabla} \cdot \vec{B} = 0$ $\vec{\nabla} \times \vec{H} = \vec{0}$

- → Normalkomponenten von \vec{B} und Tangentialkomponenten von \vec{H} sind stetig
- ► isotrope Medien ohne permanente Magnetisierung :

$$\vec{M} = \chi_m \vec{H}, \qquad \chi_m$$
: "magnetische Suszeptibilität"
 $\Rightarrow \vec{B} = \mu_0 (\vec{H} + \vec{M}) = \mu_0 (1 + \chi_m) \vec{H} = \mu_0 \mu_r \vec{H},$
 $\mu_r \equiv 1 + \chi_m$.: "relative Permeabilität"

Diamagneten:

- keine permanenten magnetischen Dipole
- Einschalten des äußeren Magnetfeldes induziert Ströme
- \rightarrow Magnetfelder, die dem ursprünglichen Feld entgegen wirken (Lenz'sche Regel)

$$\Rightarrow \chi_m < 0 \Rightarrow \mu_r < 1$$

► Supraleiter: $\chi_m = -1 \Rightarrow \mu_r = 0 \Rightarrow \vec{B} = \vec{0}$ (Meißner-Ochsenfeld-Effekt)

Diamagneten:

- keine permanenten magnetischen Dipole
- Einschalten des äußeren Magnetfeldes induziert Ströme
- \rightarrow Magnetfelder, die dem ursprünglichen Feld entgegen wirken (Lenz'sche Regel)

$$\Rightarrow \chi_m < 0 \Rightarrow \mu_r < 1$$

► Supraleiter: $\chi_m = -1 \Rightarrow \mu_r = 0 \Rightarrow \vec{B} = \vec{0}$ (Meißner-Ochsenfeld-Effekt)

Paramagneten:

Auf atomarer Ebene vorhandene magnetische Dipole richten sich im äußeren Magnetfeld aus und verstärken es: $\chi_m > 0 \Rightarrow \mu_r > 1$

Diamagneten:

- keine permanenten magnetischen Dipole
- Einschalten des äußeren Magnetfeldes induziert Ströme
- \rightarrow Magnetfelder, die dem ursprünglichen Feld entgegen wirken (Lenz'sche Regel)

$$\Rightarrow \chi_m < 0 \Rightarrow \mu_r < 1$$

► Supraleiter: $\chi_m = -1 \Rightarrow \mu_r = 0 \Rightarrow \vec{B} = \vec{0}$ (Meißner-Ochsenfeld-Effekt)

Paramagneten:

Auf atomarer Ebene vorhandene magnetische Dipole richten sich im äußeren Magnetfeld aus und verstärken es: $\chi_m > 0 \Rightarrow \mu_r > 1$

kollektiver Magnetismus:

Permanente mikroskopische Dipole richten sich unterhalb einer kritischen Temperatur auch ohne äußeres Magnetfeld spontan aus.

- Ferromagneten: $\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$... $\Rightarrow \vec{M} \neq \vec{0}$
- Antiferromagneten: $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow ... \Rightarrow \vec{M} = \vec{0}$

Maxwell-Gleichungen der Elektro- und Magnetostatik in Materie (differenzielle Form)

 Maxwell-Gleichungen der Elektro- und Magnetostatik in Materieœœ (differenzielle Form):

Ineare isotrope Medien:

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = (1 + \chi_e) \varepsilon_0 \vec{E} = \varepsilon_r \varepsilon_0 \vec{E}$$

$$\vec{B} = \mu_0 (\vec{H} + \vec{M}) = (1 + \chi_m) \mu_0 \vec{H} = \mu_r \mu_0 \vec{H}$$