Klassische Teilchen und Felder

TU Darmstadt, Wintersemester 2018/2019

Koordinaten und Termine

- Michael Buballa Institut für Kernphysik (Theoriezentrum), S211 Raum 305 michael.buballa@physik.tu-darmstadt.de
- Online-informationen:
 - siehe Link unter "Weitere Informationen" auf TUCaN

Koordinaten und Termine

- Michael Buballa Institut für Kernphysik (Theoriezentrum), S211 Raum 305 michael.buballa@physik.tu-darmstadt.de
- Online-informationen:
 - siehe Link unter "Weitere Informationen" auf TUCaN
- ► Vorlesung: S211 | 10
 - dienstags und donnerstags 09:50-11:30

Koordinaten und Termine

- Michael Buballa Institut für Kernphysik (Theoriezentrum), S211 Raum 305 michael.buballa@physik.tu-darmstadt.de
- Online-informationen:
 - siehe Link unter "Weitere Informationen" auf TUCaN
- ► Vorlesung: S211 | 10
 - dienstags und donnerstags 09:50-11:30
- Übungen:
 - Aufgaben: Martin Steil
 - Gruppe A: freitags 11:40 13:20, S103 | 10 Max Schumacher
 - Gruppe B: mittwochs 11:40 13:20, S211 | 10 Robin Dexheimer-Reuter

Prüfungen

- alte Prüfungsordnung (Beginn vor WS 2017/2018):
 - zweistündige Klausur nach Ende der Vorlesungszeit
 - Termin: 22.03.2019
- neue Prüfungsordnung (Beginn WS 2017/2018 oder später):
 - 30-minütige mündliche Prüfung
 - Termine nach Vereinbarung
- ► Bonusregelung (beide Prüfungsordnungen):
 - Verbesserung der Note um 0,3 durch erfolgreich bearbeitete Hausaufgaben (mindestens 50%)
 - nicht möglich bei nicht bestandenen Prüfungen

Inhalt der Vorlesung

- Mechanik
 - 1. Newton'sche Mechanik
 - 2. Kepler-Problem
 - 3. Mechanik des starren Körpers
 - 4. Lagrange-Formalismus
 - 5. Schwingungen
- II. Elektrodynamik
 - 1. Elektrostatik
 - Magnetostatik
 - 3. Maxwell-Theorie und elektromagnetische Wellen
- III. Spezielle Relativitätstheorie
 - 1. Lorentz-Transformationen
 - 2. Kovariante-Formulierung der Elektrodynamik
 - 3. Relativistische Mechanik

Literaturvorschläge

- Mechanik:
 - H. Goldstein: Klassische Mechanik
 - T. Fließbach Mechanik
 - W. Greiner Klassische Mechanik I und II
 - W. Nolting Grundkurs Theoretische Physik I und II
- ▶ Elektrodynamik:
 - ▶ J.D. Jackson: *Klassische Elektrodynamik*
 - ► T. Fließbach *Elektrodynamik*
 - W. Greiner Klassische Elektrodynamik
 - W. Nolting Grundkurs Theoretische Physik III

Literaturvorschläge

- Mechanik:
 - ► H. Goldstein: Klassische Mechanik
 - T. Fließbach Mechanik
 - W. Greiner Klassische Mechanik I und II
 - W. Nolting Grundkurs Theoretische Physik I und II
- Elektrodynamik:
 - J.D. Jackson: Klassische Elektrodynamik
 - ► T. Fließbach Elektrodynamik
 - ▶ W. Greiner Klassische Elektrodynamik
 - W. Nolting Grundkurs Theoretische Physik III

Außerdem wird das Vorlesungsskript / -manusskript ins Netz gestellt.