Charmonium in the QGP

...as a probe of the quark-gluon plasma

16/01/2014 | Seminar: Rel. Schwerionenphysik | Adrian Rost | 1

Vip

Outline

- I. Motivation and the main idea of probing the QGP with charmonium
- II. Quarkonium properties
 - \rightarrow charmonium
- III. Charmonium at different temperatures
 - \rightarrow string breaking, recoupling, color screening
- IV. Theoretical models to describe charmonium dissociation
 - → Schwinger model, potential models, lattice QCD results
- V. Charmonium in heavy-ion collisions
 - \rightarrow suppression or enhancement
 - \rightarrow experimental results
 - \rightarrow statistical hadronization model
- VI. Summary and outlook

I.) Motivation

- At high temperatures or/and pressure strongly interacting matter becomes a plasma of deconfined quarks and gluons → QGP
- Use in-medium behavior of heavy quark bound states (i.e. charmonium) as a probe to study the deconfinement and the properties of the QGP

The main idea of probing the QGP with charmonium

- High mass, heavy-quark pairs are expected to be created predominantly in the early stage of hadronic collisions.
- The evolution of this state of matter is expected to take place in later stages of the collision and is therefore believed to modify the measured rates of quarkonia.
- The main idea: Implant charmonia into the QGP and observe their modification, in terms of suppressed (or enhanced) production in nucleusnucleus collisions with or without plasma formation.

Outline

- I. Motivation and the main idea of probing the QGP with charmonium
- II. Quarkonium properties
 - → charmonium
- III. Charmonium at different temperatures
 - \rightarrow string breaking, recoupling, color screening
- IV. Theoretical models to describe charmonium dissociation
 - → Schwinger model, potential models, lattice QCD results
- V. Charmonium in heavy-ion collisions
 - \rightarrow suppression or enhancement
 - \rightarrow experimental results
 - \rightarrow statistical hadronization model
- VI. Summary and outlook

II.) Short remainder on quarkonium

- Quarkonium (QQ) are flavourless mesons build of a heavy quark and its own antiquark
 - \rightarrow i.e. the **charmonium (** $c\overline{c}$ **)** or bottonium ($b\overline{b}$)

(toponium does not exists \rightarrow very short lifetime of the top quark)

- Build of heavy quarks: $m_c \cong 1.3 \text{ GeV}$, $m_b \cong 4.7 \text{ GeV}$
- Charmonium stable under strong decay until $M_{c\bar{c}} < 2 M_D \cong 2 * 1.9 \text{ GeV}$ with $D = c\bar{u}$ (lightest "open" charm meson) (for bottonium $M_{b\bar{b}} < 2 M_B \cong 2 * 5.3 \text{ GeV}$)

Binding of a quarkonium ($Q\overline{Q}$) system

 Because of heavy quark masses use non-relativistic Schrödinger equation in centre-of-mass system:

$$-\frac{1}{m} \{ \nabla^2(r) + V(r) \} \psi_i(r) = (M_i - 2m) \psi_i(r)$$

• Binding energy:

$$\Delta E = 2M_{D,B} - M_i$$

The charmonium – a heavy quark bound state

- Lowest charmonium bound states: J/ψ, χ_c and ψ'
- Lifetimes about 10^{-13} s
- Small radii ~ 0.3 fm (compared to typical hadron radii ~ 1 fm)

State	J/ψ	χc	ψ'	
Mass (GeV)	3.10	3.53	3.68	
ΔE (GeV)	0.64	0.20	0.05	
Radius (fm)	0.25	0.36	0.45	
			[Satz	

TECHNISCHE

UNIVERSITÄT DARMSTADT

Outline

- I. Motivation and the main idea of probing the QGP with charmonium
- II. Quarkonium properties
 - \rightarrow charmonium
- III. Charmonium at different temperatures
 - → string breaking, recoupling, color screening
- IV. Theoretical models to describe charmonium dissociation
 - → Schwinger model, potential models, lattice QCD results
- V. Charmonium in heavy-ion collisions
 - \rightarrow suppression or enhancement
 - \rightarrow experimental results
 - \rightarrow statistical hadronization model
- VI. Summary and outlook

III.) Charmonia at different temperatures

Question: How do charmonia dissociate?

- Three mechanisms have been identified, corresponding to the behaviour for T = 0, $0 < T < T_c$ and $T \ge T_c$
- T_c is the critical temperature of deconfinement ~ 160 170 MeV (obtained by lattice QCD studies) [F. Karsch, J. Phys. G 31 (2005) S633]
 [Z. Fodor, PoS CROD07 (2007)]

T = 0: String breaking of a static $Q\overline{Q}$ pair

Assumptions:

- A $Q\overline{Q}$ pair in vacuum at T = 0, with the limit $M_O \rightarrow \infty$
- Cornell Potential: $V(r) = \sigma r \frac{\alpha}{r}$
- Free Energy: $F(r) \sim \sigma r$
- String tension: $\sigma \approx 0.2 \text{ GeV}^2 = 1 \text{ GeV/fm}$
- Gauge coupling: $\alpha \cong \frac{\pi}{12}$

16/01/2014 | Seminar: Rel. Schwerionenphysik | Adrian Rost | 12

T = 0: String breaking of a static $Q\overline{Q}$ pair

• String breaks if energy is above production threshold of D or B Meson: $F_0 = 2(M_D - m_c) \cong 1.2 \text{ GeV}$

 $F_0 = 2(M_B - m_c) = 1.2 \text{ GeV}$ $F_0 = 2(M_B - m_b) \approx 1.2 \text{ GeV}$

 From this deduce the string-breaking radius for charmonium and bottomium:

$$r_0 = \frac{1.2 \text{ GeV}}{\sigma} \cong 1.5 \text{ fm}$$

→ energy required for string breaking is a property of the vacuum itself, virtual QQ pairs are brought on-shell by the field between the heavy quarks

 \rightarrow confinement

οō

TECHNISCHE

UNIVERSITÄT DARMSTADT

[Satz1]

$0 < T < T_c$: QQ in-medium string breaking with the help of recoupling

- Now light mesons (i.e. pions) are included
- By a switch in bonding a $Q\overline{Q}$ meson is turned into two heavy-light mesons

If temperature is increased

- \rightarrow the hadron density also increases
- \rightarrow this increases the recoupling probability
- \rightarrow distance up to which the heavy quarks are still bind also becomes shorter

\rightarrow the potential will break earlier

What happens if we go closer to T_c ?

- Density of produced hadrons will increase strongly.
- Form lattice results: The free energy and the string-breaking radius r_T decrease rapidly near T_c

<u>Slide-in:</u> Debye screening in a plasma

- To understand charmonium at $T \ge T_c$ in QGP, first have a short look on Debye screening in a electromagnetic plasma.
- A test charge in a plasma is surrounded by charges of the opposite charge.
- This reduces the long range Coulomb potential:

$$\frac{e^2}{r} \to \frac{e^2}{r} \exp(-\mu r)$$

with Debye radius
$$\lambda_D = \sqrt{rac{arepsilon_0 k_B}{n_e e^2}}$$

and Debye mass $\mu_D = 1/\lambda_D$

[[]http://de.wikipedia.org/wiki/Debye-H%C3%BCckel-Theorie]

→ At λ_D the Coulomb potential of a test charge drops to 1/e. → Thus the test charge is effectively screened from charges outside the Debye sphere.

$T \ge T_c$: Colour screening in the QGP

[original idea: T.Matsui & H.Satz, Physics Letter B178 (1986) 416]

- Now: charge → colour charge
- QGP: a medium of unbound colour charges
 → <u>here</u> it is assumed to be at full thermal equilibrium!
- Quarks and gluons are screened, just as electric charges in a plasma experience Debye screening.
- Simple screened "Schwinger potential" form: $V(r,T) = \frac{\sigma}{\mu}(1 - e^{-\mu r}) - \frac{\alpha}{r}e^{-\mu r}$ with colour screening mass $\mu(T) = \frac{1}{r_D(T)}$ and colour screening radius $r_D(T)$

→ For
$$\mu = 0$$
, vacuum form is recovered
→ For large $r: V(r,T) \rightarrow \frac{\sigma}{\mu} \rightarrow interesting implication!!!$

$T \ge T_c$: Colour screening of charmonium

- Implant a charmonium into such a medium.
- By increasing the temperature

 → the medium increases in density
 → characteristic colour screening radius r_D decreases
- If $r_D \ll r_{Q\bar{Q}}$: the two heavy charm quarks cannot "see" each other and hence the bound state will "melt".
- A single charm quark sees many other quarks and antiquarks and therefore can move around freely (surrounded by a gluon polarised cloud).
 → deconfinement

TECHNISCHE

UNIVERSITÄT DARMSTADT

Sequential melting of charmonium in the QGP

[original idea: T.Matsui & H.Satz, Physics Letter B178 (1986) 416]

- For each quarkonium state *i* the resulting Schrödinger equation provides the dissociation value r_i : $r > r_i$ bound state, $r \le r_i$ dissociated.
- If temperature dependence of the screening radius is known, the dissociation radius r_i then determines the corresponding dissociation temperature T_i
- Each charmonium state dissociates at a different temperature, depending on the binding energy/radius
- \rightarrow this could provide a **thermometer of the QGP**

Outline

- I. Motivation and the main idea of probing the QGP with charmonium
- II. Quarkonium properties

 \rightarrow charmonium

- III. Charmonium at different temperatures
 - → string breaking, recoupling, color screening
- IV. Theoretical models to describe charmonium dissociation
 - → Schwinger model, potential models, lattice QCD results
- V. Charmonium in heavy-ion collisions
 - \rightarrow suppression or enhancement
 - \rightarrow experimental results
 - \rightarrow statistical hadronization model
- VI. Summary and outlook

IV.) Theoretical models to calculate quarkonium dissociation points in a QGP

TECHNISCHE UNIVERSITÄT DARMSTADT

Two different approaches are used:

- Solve the Schrödinger equation with a temperature-dependent potential V(r,T) with estimations from lattice QCD:
 → a) use Schwinger Model, b) use Lattice Potential Models
- 2) Calculate the quarkonium spectrum directly in **finite temperature lattice QCD**

1a) The Schwinger Model

[F. Karsch, M.-T. Mehr and H. Satz, Z. Phys. C 37 (1988) 617]

Schrödinger equation: $-\frac{1}{m} \{ \nabla^2(r) + V(r,T) \} \psi_i(r) = (M_i - 2m) \psi_i(r)$

Screened "Schwinger potential": $V(r,T) = \frac{\sigma}{\mu}(1 - e^{-\mu r}) - \frac{\alpha}{r}e^{-\mu r}, T > 0$, with screening mass: $\mu(T) = \frac{1}{r_D(T)}$

- Solve Schrödinger equation and determine bound-state energies M_i(μ)
- Bound states disappears at some μ = μ_i
 → use μ(T) ≅ 4T from first lattice estimates to determine T_i
- <u>Results for charmonium</u>: ψ' and χ_c become dissociated around $T = T_c$ J/ψ survives up to about $T = 1.2T_c$

 $\rightarrow \mu(T)$ assumed in its high energy form, lattice studies today show different behaviour near T_c

 \rightarrow Schwinger form is 1D the reality is 3D

1b) Lattice Potential Models

[S. Digal, P. Petreczky and H. Satz, Phys. Lett. B 514 (2001) 57]

- Determine the internal energy U(r,T) of a $Q\overline{Q}$ pair at separation distance r from lattice results for the corresponding free energy F(r,T).
- Use thermodynamic relation of the free energy:

$$F(T) = U(T) - TS(T)$$
$$U(r,T) = F(r,T) - T\left(\frac{\partial F(r,T)}{\partial T}\right)_{V}$$

- Assuming that the internal energy provides the temperature dependence of the heavy quark potential, use results from $N_f = 2$ lattice QCD and solve the Schrödinger equation with V(r, T) = U(r, T)
- <u>Results for charmonium</u>: ψ' and χ_c become dissociated around $T = 1.1T_c$ J/ψ survives up to about $T = 2T_c$
- → J/ ψ internal energy leads to much higher binding than the Schwinger Model → still some ambiguity if U or F is the right potential → aU + (1 - a)F, with $0 \le a \le 1$

Deeper look into Lattice Potential Models

Screening can be evaluated more generally for a given free energy

 $F(r) \sim r^q$

with q = 1 (Cornell potential), q = -1 (Coulomb term) in d = 3 dimensions

• Calculate screening separately for the free energy:

$$F(r,T) = F_s(r,T) + F_c(r,T) = \sigma r f_s(r,T) - \frac{\alpha}{r} f_c(r,T)$$

Use boundary conditions:

 $f_s(r,T) = f_c(r,T) = 1$ for $T \to 0$ (there is no medium) $f_s(r,T) = f_c(r,T) = 1$ for $r \to 0$ (medium has no effect)

Resulting free energy F(r, T)

[V. V. Dixit, Mod. Phys. Lett. A5 (1990) 227]

The resulting free energy obtained from Debye-Hückel theory: $F(r,T) = F_s(r,T) + F_c(r,T)$

with Coulomb term:

$$F_c(r,T) = -\frac{\alpha}{r} [e^{-\mu r} + \mu r]$$

and String term:

$$F_{s}(r,T) = -\frac{\sigma}{\mu} \begin{bmatrix} \Gamma(1/4) \\ 2^{3/2}\Gamma(3/4) \end{bmatrix} - \frac{\sqrt{\mu r}}{2^{3/2}\Gamma(3/4)} K_{1/4}[(\mu r)^{2}]$$
Large distance limit due to colour screening
Gaussian cut-off in $x = \mu n$
Bessel function:
 $K_{1/4}(x^{2}) \sim \exp(-x^{2})$

- Screening fits to the $Q\overline{Q}$ free energy F(r,T) for $T \ge T_c$ calculated in two-flavour QCD.
- Debye mass $\mu(T)$ (only parameter), determined from free energy F(r,T) fits. → first increases rapidly, then perturbative form $\mu \sim T$

$Q\overline{Q}$ binding potential

• From resulting free energies $F_c(r,T)$ and $F_s(r,T)$ get for the $Q\overline{Q}$ binding potential by using the thermodynamic relation $V(r,T) = U(r,T) = F(r,T) - T\left(\frac{\partial F(r,T)}{\partial T}\right)_V$ and rewrite the potential:

$$V(r,T) = V(\infty,T) + \tilde{V}(r,T)$$

with

$$\tilde{V}(r\to\infty,T)=0$$

and

$$V(r \to \infty, T) = c_1 \frac{\sigma}{\mu} - \alpha \mu + T \frac{d\mu}{dT} \left[c_1 \frac{\sigma}{\mu^2} + \alpha \right],$$

with $c_1 = \Gamma(1/4) \ 2^{3/2} \Gamma(3/4)$

• $V(\infty, T)$ describes the energy of the cloud of quarks and gluons in a Debye sphere around the heavy quark relative to the cloud without a heavy quark.

Full Schrödinger equation to determine cc dissociation temperature

• Put the potential $\tilde{V}(r,T)$ into the Schrödinger equation:

$$\left\{\frac{1}{m_c}\nabla^2 - \tilde{V}(r,T)\right\}\Phi_i(r) = \Delta E_i(T)\Phi_i(r)$$

where $\Delta E_i(T) = V(\infty, T) - (M_i - 2m_c)$ is the binding energy of the charmonium state *i*.

• $E_i(T) = 0$ determines the dissociation temperature T_i for that state *i*.

2) Ideal case: Finite temperature lattice QCD

- Calculate $c\bar{c}$ spectral function $\sigma(\Omega, T)$ in the appropriate quantum channel as a function of the temperature T and the $c\overline{c}$ energy Ω .
- Bound states show up as resonances
- Simulate at different temperatures to find dissociation points
- Results: χ_c becomes dissociated $T \ge 1.1T_c$ J/ ψ persists up to $1.5 < T/T_c < 2.3$

 \rightarrow discretisation introduced by the lattice limits the resolution of the peak [T. Umeda et al., Int. J. Mod. Phys. A16 (2001) 2215]

[H. lida et al., hep-lat/0509129]

 \rightarrow very powerful computers needed

χc

Outline

- I. Motivation and the main idea of probing the QGP with charmonium
- II. Quarkonium properties

 \rightarrow charmonium

- III. Charmonium at different temperatures
 - \rightarrow string breaking, recoupling, color screening
- IV. Theoretical models to describe charmonium dissociation
 - → Schwinger model, potential models, lattice QCD results
- V. Charmonium in heavy-ion collisions
 - → suppression or enhancement
 - \rightarrow experimental results
 - → statistical hadronization model
- VI. Summary and outlook

Time scales in nuclear collisions

- The original idea by T.Matsui & H.Satz (1986):
 - 1.) charmonium formation
 - 2.) QGP formation
 - 3.) sequential melting of charmonium in the QGP
 - 4.) decay of remaining charmonia and detection in particle detectors

Sequential charmonium suppression

 J/ψ measured in hadron-hadron collisions are not all directly produced 1S charmonium states:

→Feed-down:

- ➢ 60% (direct J/ψ(1S))
- \succ 40% (χ_c(1*P*) → J/ψ + anything)
- \succ 10% (ψ'(2S) → J/ψ + anything)
- With increasing temperature or energy density,
 →first the J/ψ originating from ψ' decay
 →then those from χ_c decay,
 →then the directly produced J/ψ's will disappear

<u>Slide in:</u> What is the suppression factor *R*_{AA}?

[P. Braun-Munzinger, J. Stachel, arXiv:0901.2500v1]

• <u>Note</u>: charmonium suppression (or enhancement) is quantified by the **nuclear** modification factor R_{AA} .

$$R_{AA} = \frac{dN_{AA,J/\Psi}/dy}{N_{coll} \, dN_{pp,J/\Psi}/dy}$$

- It relates the charmonium yield in nucleus-nucleus (AA) collisions to that expected for superposition of independent nucleon-nucleon (pp) collisions.
- $dN_{AA,J/\Psi}/dy$ is the rapidity density of the J/ ψ yield integrated over transverse momentum and N_{coll} the number of binary collisions for a given centrality class.
- (simple: R_{AA} = medium/vacuum)

Experimental results from SPS, RHIC and

LHC [N. Brambilla et al., arXiv:1010.5827 (2011)] [B. Abelev et al., Phys. Rev. Lett. 109, 072301 (2012)] [ALICE, ATLAS, CMS, arXiv:1208.1615 (2012)]

• SPS and RHIC data ($\sqrt{s} = 17 - 200 \text{ GeV}$):

→ anomalous J/ ψ suppression of about 40 – 50% for central collisions

→ *explanation:* suppression of the excited states χ_c and ψ ' and the survival of the directly produced J/ ψ → "fingerprint" of a QGP

• LHC data ($\sqrt{s} = 2.76$ TeV):

→ difference between results from RHIC and LHC
 → less suppression when increasing the energy density

p_T dependence of J/ ψ R_{AA}

[ALICE, arXiv:1311.0214, 2013]

- Clear p_T dependence of J/ ψ suppression observed.
- At forward-rapidity the J/ψ R_{AA} exhibits a strong p_T dependence and decreases by a factor of 2 from low p_T to high p_T.
- This behavior exhibits a large difference with that observed by PHENIX at $\sqrt{s_{NN}} = 200 \text{ GeV}$.
- This result suggests that a fraction of the J/ψ yield is produced via (re)combination of charm quarks

 \rightarrow enhancement of J/ ψ takes place dominantly at low p_T

Statistical regeneration of charmonium

- Medium produced in high energy nuclear collisions differs from deconfined state of matter studied in finite temperature QCD
 → it is not at full thermal equilibrium
- <u>Basic idea</u>: Nuclear collisions at very high energies initially produce more then thermally expected charm, leading to a new form of combinatorial charmonium production at hadronization.

TECHNISCHE

UNIVERSITÄT DARMSTADT

New model: statistical hadronization model

[original idea: P. Braun-Munzinger & J. Stachel, Phys. Lett. B490, 196 (2000)] [A. Andronic et al., J. Phys. G38, 124081 (2011)]

At high LHC energies:

- → different time scales: $t_{collision} \ll \tau_{QGP}$ (at SPS and RHIC $t_{collision} \cong \tau_{QGP}$)
- \rightarrow much more charm quark pairs are produced
- → all charm quarks are produced in hard collisions, $N_{c\bar{c}} = const$.
- \rightarrow all charmonia are dissolved in QGP
- \rightarrow no feed-down from higher charmonia
- \rightarrow J/ ψ production through statistical regeneration at the "cooler" base boundary

Outline

- I. Motivation and the main idea of probing the QGP with charmonium
- II. Quarkonium properties

 \rightarrow charmonium

- III. Charmonium at different temperatures
 - \rightarrow string breaking, recoupling, color screening
- IV. Theoretical models to describe charmonium dissociation
 - → Schwinger model, potential models, lattice QCD results
- V. Charmonium in heavy-ion collisions
 - \rightarrow suppression or enhancement
 - \rightarrow experimental results
 - \rightarrow statistical hadronization model

VI. Summary and outlook

Summary & outlook

Consequences at high LHC energies:

- → It seems that charmonium could not any longer serve as a thermometer?
- → <u>BUT</u>: The enhancement of J/ψ is a also a "fingerprint" of a QGP, in which charm quarks are effectively **deconfined**.
- → Have to turn to bottomium stages, where (re)formation through recombination appears unlikely (CMS Collaboration, arXiv:1105.4894 (2011))

1/(r) [fm⁻¹]

Y(15)

Bibliography

[Satz1] H.Satz, *Extreme States of Matter in Strong Interaction Physics*, Springer 2012, Lecture Notes in Physics Volume 841

H.Satz et al., *The Physics of the Quark-Gluon Plasma*, Springer 2010, Lecture Notes in Physics Volume 785

T. Matsui and H. Satz, Physics Letter B178 (1986) 416

H.Satz, arXiv:hep-ph/0512217 (2005)

P. Braun-Munzinger, J. Stachel, arXiv:0901.2500 (2009)

P. Braun-Munzinger, Lecture 3: the charmonium story, 2013

Thank you for your attention!!!

Backup

J/ ψ decay channels -> e+e- (~6%) or -> μ + μ - (~6%) Γ = 93 keV, T~1/ Γ ~10^-20 s

Also bottomium states can be usefully to probe the QGP

bb i.e. Y states have higher binding energies
 → useful at high LHC energies

State	J/ψ	χc	ψ'	Υ	χb	Υ'	χ_b'	Υ″	
exp. mass [GeV]	3.07	3.53	3.68	9.46	9.99	10.02	10.26	10.36	
ΔM [GeV]	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07	
ΔE [GeV]	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20	
radius [fm]	0.25	0.36	0.45	0.14	0.22	0.28	0.34	0.39	
						_			
	cha	charmonium			bottomium				

- \rightarrow Y(2S) and Y(3S) suppression ~70%
- \rightarrow Y(1S) suppression ~ 40%

Y Suppression

Energy Density

(3S) (2P)

ε(3S) ε(2P)

(2S) (1P)

ε(2S) ε(1P)

(1S)

ε(1S)

[Satz1]

Y Survival Probability

Bottomonium production in pp (up) and Pb-Pb (down) collisions

[Phys. Rev. Lett. 107, 052302 (2011)]

16/01/2014 | Seminar: Rel. Schwerionenphysik | Adrian Rost | 41

Charmonium production in hadronic collisions

TECHNISCHE UNIVERSITÄT DARMSTADT

- Quarkonium production in hadron-hadron collisions:
- 1.) production of a heavy quark pair by gluon fusion in early hard scattering processes
- 2.) colour neutralization to a colour singlet state (very small fraction)
- 3.) physical bound state, i.e. J/ψ
- Different models to calculate production rate:
 - * Color Singlet Model (CSM),
 - * Color Evaporation Model (CEM)
 - * NRQCD, includes Color Octet (CO) contributions

Outlook: Formation of charmonia by transport model IX. Zhao and R. Rapp. Nucl. Phys. A859, 114 (20)

[X. Zhao and R. Rapp, Nucl. Phys. A859, 114 (2011)] [Y.-P. Liu et al., Phys. Lett. B678, 72 (2009)]

- Spectral properties of charmonia are constrained by correlators from thermal lattice QCD and subsequently implemented into a Boltzmann equation accounting for both suppression and regeneration reactions.
- Cold nuclear matter effects (shadowing, absorption)
- Suppression in hot medium
- Feed down from B mesons
- J/ ψ from regeneration ($\geq 50\%$)

