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Zusammenfassung

Durch numerische Integration der Tolman-Oppenheimer-Volkoff (TOV)
Gleichung wird, unter Anwendung einer thermodynamischen Zustands-
gleichung, die Struktur, d.h. eine Druck-Radius Funktion, und die Masse
eines kompakten Sterns berechnet. In dieser Arbeit wird neben den Zu-
standsgleichungen idealer Fermi-Gase aus Neutronen bzw. Neutronen,
Protonen und Elektronen, auch die des Bag-Modells angewandt. Dabei
wird insbesondere darauf eingegangen, wie das Variieren der Bagkonstante
und der Strange Quark Masse die für diese Parameter mögliche Maximal-
masse der Strange Stars beeinflusst. Auf die Diskussion der Strange Stars
folgt eine kurze Betrachtung von Hybridsternen.

Abstract

By integrating the Tolman-Oppenheimer-Volkoff (TOV) equation numer-
ically and by applying an equation of state (EoS), the structure, i.e. the
pressure as a function of the radius, and the mass of a compact star are
computed. Beside the EoS of ideal Fermi gases consisting of neutrons or
neutrons, portons, and electrons, the EoS of the bag model is employed in
this work. Moreover, it is investigated how variing the bag constant and
the strange quark mass affects the mass limit of strange stars. After the
discussion of strange stars, hybrid stars are briefly discussed.
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1 Introduction

In 1939, Tolman [1] and Oppenheimer and Volkoff [2] were the first to solve the Ein-
stein field equations for stars that are relativistic, static, and spherically symmetric.
By adopting their result, the Tolman-Oppenheimer-Volkoff equation, and by employ-
ing an equation of state (EoS), it is possible to (numerically) compute the pressure
inside a compact star as a function of its radius. With the EoS other quantities like
the energy density and number density can be obtained.

Moreover, knowing the pressure in terms of the radius enables us to find the star’s
radius and even its mass. Inside the star the pressure has to be positive to support
matter against being torn towards the center. However, at the surface, the pressure
has to be 0, because the star would otherwise expand. By applying this condition, the
radius can be obtained from the solution of the Tolman-Oppenheimer-Volkoff equa-
tion. Consequently, the mass is a by-product of the above calculations. If one carries
out these calculations for several parameters, one finds that there is a maximum of
the mass.

This mass limit (as well as a star’s structure) strongly depends on the applied EoS.
Although four different EoS are applied in this work, the emphasis is on the bag
model. The model is similar to an ideal, degenerate Fermi gas of quarks, whereas
pressure and energy density are shifted by the bag constant B. The bag constant
represents confinement, an effect preventing quarks from being isolated. This work
aims to investigate the influence of B and of the strange quark mass ms on compact
stars computed with the EoS of the bag model. The strange quark mass is of interest,
because quark masses cannot be determined like the mass of e.g. electrons. The
strange quark mass is chosen, since it is by far the heaviest compared to the other
quark masses. Hence, the effects are expected to be strongest for strange quarks.

This work starts by giving a succinct derivation of the Tolman-Oppenheimer-Volkoff
equation (section 2.1), some information on the equation of state for cold Fermi gases
(section 2.2) and details on how the computing was accomplished (section 3).

After this, there are four sections, each tackling the Tolman-Oppenheimer-Volkoff
equation for another equation of state. The first two EoS handle cold ideal and
degenerate Fermi gases: the first one (section 4) consisting only of neutrons and the
second one consisting of neutrons, protons and electrons (section 5). In section 6, the
above mentioned bag model will be dealt with. In section 7, hybrid stars, i.e. stars
consisting of a quark and a hadronic phase, will be briefly discussed. While the first
two EoS were mainly calculated for testing reasons and while the hybrid star section
was included as an add-on, this work’s emphasis is on the bag model.
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2 The Underlying Theory

2.0.1 Units

Throughout this work, units were chosen that c = ~ = 1 for convenience. When
employing constants and parameters, units have to be converted to this system by
multiplying the right combination of c and ~. Length units are, for example, converted
into reciprocal energy units by multiplying (~c)−1. More information on units and
their conversion may be found in chapter 3.3 of [3].

2.0.2 Zero Temperature

Although the temperature in compact stars cannot be considered cold on any earthy
scale, the effect of temperature can be neglected when calculating pressure and energy.
Shortly after neutron stars are born, they have temperatures of about 1010 K. Within
1 million years, a neutron star’s temperature decreases to 106 K [3]. This temperature
corresponds to about 0.1 keV, which is small compared to the energies of several
hundred MeV that we will encounter in the following sections.

2.1 General Relativity and the Tolman-Oppenheimer-Volkoff Equation

To fully understand where the Tolman-Oppenheimer-Volkoff (TOV) equations origi-
nate, it is crucial to understand general relativity. If necessary, the reader may consult
[4] or any other book on General Relativity.

2.1.1 Expressions from General Relativity

At first, we want to recapitulate some definitions and relations of general relativity.
All relations shown here are taken from [3] to avoid confusion in respect of notations.
In general relativity, the metric tensor gµν has the same function that the Minkowski
tensor ηµν has in special relativity. In contrast to the Minkowski tensor, gµν is a
function of space and time. gµν can be employed to transform any contravariant four
quantity into its covariant counterpart (one says that an index is ”lowered”). For the
converse transformation (for ”raising” an index) one defines the inverse of gµν , that
is gµν .

The affine connection Γλ
µν can be defined as

Γλ
µν ≡

∂xλ

∂ξα

∂2ξα

∂xµ∂xν
(2.1)

where ξα are the coordinates of a freely falling, locally inertial frame. xµ are the
coordinates of the chosen frame. The motivation for this definition is that the equation
of motion of a freely falling particle is determined by d2xλ

dτ2 +Γλ
µν

dxµ

dτ
dxν

dτ = 0. The path
of such a particle, which is described by the line element dτ (dτ will be introduced
for spherical coordinates in (2.12)), is called a geodesic.

We may also express the affine connection Γλ
µν in terms of the metric tensor

Γλ
µν = 1

2gλκ (gκν,µ + gκµ,ν − gµν,κ) (2.2)
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where the comma subscript notation (e.g. ,µ) represents the coordinate derivative,
i.e. for example gκν,µ = d

dxµ gκν .
The definition of covariant divergence for an arbitrary contravariant/covariant vector
is given by

Aµ
;ν ≡ Aµ

,ν + Γµ
σνA

σ Aµ;ν ≡ Aµ,ν + Γλ
µνAλ (2.3)

The Riemann(-Christoffel curvature) tensor Rρ
σµν is defined as

Rρ
σµν ≡ Γρ

σν,µ − Γρ
σµ,ν + Γα

σνΓ
ρ
αµ − Γα

σµΓρ
αν (2.4)

From the Riemann tensor we obtain the Ricci tensor

Rµν = Rρ
µνρ (2.5)

Using the definition of the Riemann tensor (2.4), we rewrite the Ricci tensor as

Rµν = Γα
µα,ν − Γα

µν,α − Γα
µνΓ

β
αβ + Γα

µβΓβ
να (2.6)

We now define the scalar curvature R

R = gµνRµν (2.7)

By applying (2.3) multiple times, one may acquire the third covariant derivative of
an arbitrary covariant vector, and use the result to obtain the Bianchi identity

Rα
µνρ;σ + Rα

µσν;ρ + Rα
µρσ;ν = 0 (2.8)

The Bianchi identity (2.8) can now be multiplied by gµν and transformed, so that we
arrive at (

Rµν − 1
2gµνR

)
;ν

= 0 (2.9)

From the above equation, on may derive the Einstein field equations

Rµν − 1
2
gµνR ≡ Gµν = −8πGTµν (2.10)

where Gµν is the Einstein curvature tensor. Tµν denotes the energy-momentum
tensor. For a static star the energy-momentum tensor is given by

T 0
0 = ε, T µ

µ = −p, (µ 6= 0); T ν
µ = 0 for µ 6= ν (2.11)

with the pressure p and the energy density ε. We apply the relations found above to
a spherical star. There, it is advisable to use spherical coordinates. The line element
can then be expressed as

dτ2 = e2ν(r)dt2 − e2λ(r)dr2 − r2dθ2 − r2sin2θ dφ2 (2.12)

Comparison with dτ2 = gµνdxµdxν shows that

g00 = e2ν(r) , g11 = −e2λ(r) , g22 = −r2 , g33 = −r2sin2θ ; gµν = 0 for µ 6= ν (2.13)
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For this metric, we find the following components of the Ricci tensor

R00 =
(
−ν ′′ + λ′ν ′ − ν ′2 − 2ν ′

r

)
e2(ν−λ)

R11 = ν ′′ − λ′ν ′ + ν ′2 − 2λ′

r

R22 = (1 + rν ′ − rλ′)e−2λ − 1

R33 = R22 sin2 θ

(2.14)

The primes denote differentiation with respect to r.

2.1.2 The Schwarzschild Solution

In the empty space outside a star, pressure and energy density have to vanish. We
may thus formulate the field equations as

Rµν − 1
2
gµνR ≡ Gµν = 0 (2.15)

With the definition of R (2.7), it can be shown that R = 0. Applying (2.14), one
determines eν(r) and eλ(r). Employing these two functions in (2.13), one finds the
Schwarzschild solution:

g00 = e2ν(r) =
(

1− 2GM

r

)
g11 = −e2λ(r) = −

(
1− 2GM

r

)−1

g22 = −r2 , g33 = −r2sin2θ ; gµν = 0 for µ 6= ν (as in (2.13))

(2.16)

M and G were introduced as constants of integration. G corresponds to Newton’s
Gravitational constant. M denotes the star’s mass.

2.1.3 The Tolman-Oppenheimer-Volkoff Equation

Inside a spherical star, pressure and energy density are not vanishing quantities.
Employing (2.14) in (2.10), we obtain the function e−2λ(r), which now depends on ε.

e−2λ(r) = 1− 8πG

r

∫ r

0
ε(r8)r82 dr8 (2.17)

At the surface, the same results have to be returned by the Tolman-Oppenheimer-
Volkoff solution and the Schwarzschild solution. Comparing (2.17) with (2.16), we
may define

M(r) = 4π

∫ r

0
r82ε dr8 (2.18)

M(r) gives the mass included in a sphere with the same center as the neutron star
and the radius r. With this definition, we find MSchwarzschild = MTOV (R)1 (with R
being the star’s radius).

1In this equation the masses defined in the two solutions have been labeled with indices for clarity
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We apply (2.14) to the Einstein field equations to obtain λ′, ν ′, ν ′′, and ν ′2 in terms
of p, p′, and ε. With these relations, p′ can be expressed in terms of p and ε. We
emerge with the Tolman-Oppenheimer-Volkoff (TOV) equation.

dp(r)
dr

= −G (p(r) + ε(r)) (M(r) + 4πr3p(r))
r(r − 2GM(r))

(2.19)

2.1.4 The TOV Equation as an Equation of the Chemical Potential µµµ

For most thermodynamic models, it is much easier to obtain ε and p in terms of
the chemical potential µ instead of obtaining ε in terms of p. Therefore, a modified
version of the TOV equation is derived in this subsection. As discussed in this section,
the modification applies only to models consisting of only one chemical potential, i.e.
only of one kind of particle. We will extend the modification to models that have
multiple chemical potentials in section 5. As for now, the pressure can be expressed
as a function of only the chemical potential, which is defined as the energy needed
to add a particle to the system. We may then write the left hand side of the TOV
equation as

dp

dr
=

dp

dµ

dµ

dr
(2.20)

From the Gibbs-Duhem relation

0 = S dT − V dp +
∑

i

Ni dµi (2.21)

it can be seen that, under the prerequisites that dT = 0 2 and that we have only one
chemical potential, dp

dµ is given by:

dp

dµ
=

N

V
= ρ (2.22)

where ρ is the particle density. The pressure p is defined as

p = −∂E

∂V
(2.23)

The equation has still to be valid, if E and V are interpreted as the energy per particle
and volume per particle. With this interpretation, p can be written as

p = −
∂
(

E
N

)
∂
(

V
N

) = − ∂

∂ 1
ρ

(
ε

ρ

)
= ρ2 ∂

∂ρ

(
ε

ρ

)
= ρµ− ε (2.24)

where µ ≡ dε
dρ was used. The above equations can also be found in [3].

With (2.20), (2.22), and (2.24), the TOV equation (2.19) can be written as

dµ

dr
= −Gµ(M + 4πr3p)

r(r − 2GM)
(2.25)

2This is a consequence of our approximation that T = 0. We implied that T = 0 everywhere in the
star, which leads to dT = 0.
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2.2 The Equation of State for a Cold Degenerate Ideal Fermi Gas

For an ideal cold quantum gas, the momentum of a particle in a cube with the side
length L is given by [5]

~kn =
2π~
L

~n =
2π

L
~n (2.26)

with the components of ~n (nx, ny, and nz) denoting the states of the three spatial
coordinates x, y, and z. In the second step, we have applied that ~ = 1 in our units.

Since we have made the assumption that the particles do not interact, we expect
to find a particle of a state in a volume, independently of the existence of particles
of different states within the same volume. Hence, summing over all states will give
us the total particle density. In the limit of a continuum (V → ∞), there is an
infinite number of states. Instead of computing a sum, we now have to carry out an
integration. We write

ρ =
N

V
=

∫∞
0 d3n f(~n)

V
(2.27)

f(~n) is the distribution function, which gives the particle density for every state.
Substituting n with k for all dimensions yields

ρ =
1
V

∫ ∞

0
d3k f(~k)

(
∂nx

∂kx

)(
∂ny

∂ky

)(
∂nz

∂kz

)
(2.28)

The derivatives can be obtained from (2.26). We have

∂ni

∂ki
=

L

2π
for i = x, y, z (2.29)

From the assumption of T = 0 (see sec. 2.0.2) and the Pauli exclusion principle,
we know that all states with energies below the chemical potential µ are completely
filled. The particle distribution function in terms of the particle’s momentum k may
now be written as f(~k) = 2Θ(kF − k), where Θ denotes the step function and kF the
Fermi momentum (the maximum momentum allowed for a given µ). The factor of 2
originates from the two spin options neutrons (as well as protons and electrons) have.
Consequently, we may write ρ as

ρ =
∫ ∞

0

d3k

(2π)3
L3

V
2Θ(kF − k) =

∫ kF

0

8πk2dk

(2π)3
(2.30)

In the last step, we used the isotropy of space, which allows us to integrate in spherical
coordinates. We carry out the integration to obtain

ρ =
kF

3

3π2
(2.31)

In order to obtain the energy density ε, we have to multiply the integrand of (2.30)
with the energy per state εi. This energy can be expressed as

εi =
√

k2 + m2 (2.32)
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Analogously to (2.30), we find

ε =
∫ kF

0
dk

8π

(2π)3
k2
√

k2 + m2 (2.33)

This integral can be looked up in tables like the one in [6].

ε =
1
π2

(
kF

4
(
k2

F + m2
)3/2 − m2

8

(
kF

√
k2

F + m2 + m2 ln

(
kF +

√
kF + m2

m

)))
(2.34)

Using that with (2.32) µ can be identified as

µ =
√

k2
F + m2 (2.35)

we arrive at

ε =
1

8π2

(
µkF

(
2µ2 −m2

)
−m4 ln

(
kF + µ

m

))
(2.36)

Having derived ρ and ε, the pressure can be obtained by applying (2.24).

p = − 1
8π2

(
µkF

(
2µ2 −m2

)
−m4 ln

(
kF + µ

m

))
+ µ

kF
3

3π2

=
1

24π2

(
µkF

(
2µ2 − 5m2

)
+ 3m4 ln

(
kF + µ

m

)) (2.37)
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3 Calculational Details

3.1 Constants

Except for the quark masses, all necessary constants were taken from the GSL [7]. The
GSL constants are mostly identical to the constants of the Review of Particle Physics
[8] within the uncertainty given in [8]. Only the solar mass M� and gravitational
constant G were found to be slightly smaller in the GSL libraries. The up and down
quark masses in section 6 were taken from [3]. The strange quark mass was taken as
a parameter and will be varied in the strange star section.

3.2 Integration

The actual calculation of a star’s structure is done by integrating from the star’s
center to its surface. Starting at the center, we need a given initial value for p or µ
and have to choose a stepwidth. The stepwidth should be small enough, so that we
can assume that µ, p, ε, and M are constant within a step.

All calculations in this work were performed with the modified equation (2.25).
Nevertheless, most steps in this section could be done for calculations with (2.19) in
an analogous manner. For every step, the change of µ and M is calculated with

∆µ = −Gµ(M + 4πr3p)
r(r − 2GM)

∆r (3.1)

∆M = 4πr2ε∆r (3.2)

(3.2) is based on the idea that with every step, a thin layer is added to the sphere for
which the mass is calculated. This approximation works well for large radii. As for
the first few steps (r is of the same magnitude as the stepwidth) the layer is not thin
compared to the sphere. For this area, a formula that gives better results should be
used. With (2.18) and the assumption that ε is constant within a step, we find that

∆M =
∫ r+∆r

r
4πr82ε dr8 = 4πε

(
r2∆r + r(∆r)2 +

1
3
(∆r)3

)
(3.3)

For large r (3.3) is still valid; however, since ∆r � r, (3.2) is a good approximation
that slightly accelerates calculations. For the first step, we have to cope with another
problem. The denominator of (2.25) vanishes for r = 0. However, by applying that
M(r) = ε

∫ r
0 4πr82 dr8 = ε4

3πr3 for small r, (3.1) yields

∆µ = lim
r→0

(
−

Gµ(4
3πr3ε + 4πr3p)

r(r − 8
3Gπr3ε)

)
∆r = 0 (3.4)

By comparing different modifications for small radii (like (3.3)), it was found that
their effect is negligible. For the pure neutron model (See sec. 4) the maximum
effect on the star’s mass was below 0.0003%, the effect on the radius was of similar
magnitude.
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3.3 The Break Condition

With the above expressions, the integration can be conducted from the center to the
surface R. We know that the surface is reached, when we find that p = 0 (In the
numerical integration the actual condition is p < 0). Inside the star, the pressure has
to be positive to support matter against falling towards the center. At a point where
p = 0, there is no pressure that could prevent that matter is torn towards the center
by gravitation [3]. This point must thus lie on the surface.

At the surface, the solution of Schwarzschild has to hold true, as well as the so-
lution of Tolman, Oppenheimer, and Volkoff. Therefore, all elements of the energy-
momentum tensor Tµν have to vanish at the surface. This means that p(R) = 0 and
ε(R) = 0. From the above argumentation it is clear that p has to be continous even
at the surface. In section 6, one will see that this does not necessarily hold true for ε.

3.4 The Iteration for Finding the Mass Limit

In the following sections, the maximum mass plays an important role. The rather
simple algorithm for finding those maxima is thus briefly discussed here. At first, the
program calculates a star’s mass for a given initial value of the chemical potential.
After that, the initial chemical potential is raised by a stepwidth j, and the mass is
calculated again for the new parameter. For each step, the program checks, if the new
value of the mass exceeds the last one. If it does, the program proceeds, adding j to
the initial chemical potential. If not, the program has to further investigate the last
two sections. j is then changed to jnew = −j/2. The maximum is then approached
from the other direction with a smaller stepwidth. This procedure is repeated until a
certain number of configurations have been computed (depending on the calculation
30 or 35 stars). Since the maximum is approached form both directions with this
method, we may interpret the variation in the last few steps as an indicator for the
precision of our iteration procedure. The method was found to converge with no
changes occuring on at least the first six significant digits during these last steps.

Note that this method is limited to continous functions with only one maximum.
Continuity is fulfilled, since all EoS treated in this work are continous. The condition
of only one maximum is not fulfilled for all values of the initial chemical potential.
In the unstable region of high pressure (see the end of the next section), we can
find some more maxima. We work around this problem here, by approaching the
maximum from low initial values. Only if the program exceeds the first minimum
after the maximum, it is likely to converge to the wrong maximum. Since much
higher pressures are needed to recieve results in that region, one can assume that the
program will converge to the right maximum for any reasonable choice of the initial
values. One could of course argue that the method described here is heading only for
the first maximum, which is not necessarily the global maximum. Although it is not
proven in this work that there is no maximum higher than the first one, there was
no function giving a hint that it would rise to the level of the first maximum again
at some other point.
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Figure 1: The pressure p inside a pure neutron star plotted over the distance r from
the center for different values of the central pressure p(0). The vertical lines
at the right mark the stars’ surfaces R.

4 Pure Neutron Stars

The simplest model for a neutron star is one consisting of a Fermi gas of non-
interacting neutrons. In this model, we can directly employ the expressions for the
equation of state derived in section 2.2, where the constant m is the neutron mass.
By applying the calculation procedure described in section 3, this section’s results
were obtained.

4.1 A Star’s Structure

In order to compare the results with other calculations that used the ”original”
Oppenheimer-Volkoff equation (2.19), p was plotted as a function of r in figure 1.
By employing the EoS, other quantities like the number density or energy density
could be expressed in terms of the radius. We may therefore say that a star’s struc-
ture is known, when p(r) is known. The obtained results were found to be in very
good accordance with the results of other calculations [9].

4.2 M(R)M(R)M(R) and the Mass Limit

If one carries out the above calculations for various initial values of µ, the stars’
mass M can be plotted over the stars’ radii R.
In figure 2, we find that there is a maximum mass. Although it may sound surprising
at first, the explanation of the occurrence of a mass limit is simple. Stars of high mass
have to have high pressure at the center, because all mass is attracted to the center
by gravitation [3]. In (2.25) one finds µ on the right side of the TOV equation. The
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Figure 2: This plot depicts the mass over the radius for different values of the initial
chemical potential. The maximum of the mass is 0.7102 M� (M� being
the solar mass) at 9142 m. Low initial pressures have big radii, high initial
pressures small radii.

energy density and the pressure are both strictly monotonic functions of µ as (2.37)
and (2.36) reveal. With this in mind, we may conclude that for a large pressure, i.e.
a large chemical potential µ, the derivative will be even larger. The star’s surface will
then be reached at a small radius. However, for a small radius, there will not be much
mass included in the star. If a star exceeds the mass limit, it will collapse to a black
hole [3]. The phenomenon of a limiting mass is not limited to this model. In fact, it
is shown in [3] that with only a few basic assumptions, such a maximum mass will
be encountered in any model. The pure neutron model has a rather small limiting
mass. In a model including nucleon interaction the limiting mass would be found to
be higher, since repulsive forces would increase the pressure and thus support the star
against collapse [3].

For all solutions to the left of the maximum in figure 2 (stars with a higher initial
pressure), the star’s mass is decreased for an increased pressure, according to our
calculations. However, if mass is added to a star, the pressure at the center has to be
increased due to the gravitational attraction of the mass. This contradiction shows
that these solutions of the TOV equation must be unstable.
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5 Compact Stars of Neutrons, Protons and Electrons

The model we employed in section 4 is as simple as unrealistic. One of the phenomena
that we have totally neglected so far is neutron decay. Free neutrons have a mean
lifetime of about 15 minutes [8]. Their decay is given by

n→ p + e− + νe (5.1)

Due to beta decay, we expect that there will be electrons and protons besides the neu-
trons. However, if there are protons and electrons in the star, we will also encounter
electron capture reactions - the inverse process of (5.1). The antineutrinos νe and the
neutrinos νe that evolve from the decay reactions are able to escape the star due to
their extremly small cross section with nucleons and electrons. Having in mind that
we are handling a cold Fermi gas, we can conclude from the Pauli exclusion principle
that the equilibrium state of these two reactions will be achieved, when

µn = µp + µe (5.2)

As a consequence, we now have only two independent chemical potentials. We choose
to write

µn = µB

µp = µB + µQ

µe = −µQ

(5.3)

where µB denotes the baryon potential and µQ the chemical potential of charge. The
factors in front of µQ and µB represent electric charge (in e) and the baryon number of
the corresponding particle. Both, electric charge and baryon number, are conserved
under all other processes observed in physics. Due to their negative charge, µQ has
to be negative for electrons to exist.

In section 2.1.4, we have shown that we can modify the TOV to obtain a differential
equation in terms of µ instead of p. We still have to show that there is a modified TOV
for two chemical potentials under the condition of charge neutrality (see section 5.2
for the discussion of charge neutrality) and baryon number conservation. Employing
the Gibbs-Duhem relation

0 = S dT − V dp +
∑

i

Ni dµi (5.4)

we find for T = dT = 0
dp =

∑
i

Ni

V
dµi =

∑
i

ρi dµi (5.5)

Due to charge neutrality, we may express all chemical potentials as functions of one
chemical potential µk. Hence, we may write

dp =

(∑
i

ρi
dµi

dµk

)
dµk (5.6)

Since we have chosen µQ as a chemical potential, we may express charge neutrality as
ρQ = 0. With µB as the other chemical potential, the above equation is then reduced
to

dp = ρB dµB (5.7)
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The relation (2.24) connecting p and ε for the case of one chemical potential can
be extended to the case of more than one chemical potential. There, we find

p =
∑

i

ρiµi − ε (5.8)

Applying charge neutrality, i.e. ρQ = 0, again, the above equation yields

p = ρBµB − ε (5.9)

We can now rewrite the TOV as
dµB

dr
= −GµB(M + 4πr3p)

r(r − 2GM)
(5.10)

5.1 The Equation of State

With the conditions of section 2.2 (especially the disregard of any particle-particle
interaction), we obtain the same number densities as in (2.31) for each kind of particle.

ρn =
kn

3

3π2
, ρp =

kp
3

3π2
, ρe =

ke
3

3π2
(5.11)

where kn, kp, and ke are the Fermi momenta of neutrons, protons, and electrons
respectively3. These Fermi momenta can be expressed analogously to (2.35).
For each kind of particle, we deduce the energy density as described in section 2.2.
These particle energy densities are then added up to

ε =
∑

i=e,n,p

εi

=
1

8π2

(
µBkn

(
2µ2

B −m2
n

)
−m4

n ln
(

kn + µB

mn

)
+ (µB + µQ)kp

(
2(µB + µQ)2 −m2

p

)
−m4

p ln
(

kp + µB + µQ

mp

)
−µQke

(
2µ2

Q −m2
e

)
−m4

e ln
(

ke − µQ

me

))
(5.12)

where mn, mp, and me are the rest masses of neutrons, protons, and electrons re-
spectively. By applying (5.8)4, we obtain the pressure

p =− ε +
∑

i=n,p,e

µiρi

=
1

24π2

(
µBkn

(
2µ2

B − 5m2
n

)
+ 3m4

n ln
(

kn + µB

mn

)
+ (µB + µQ)kp

(
2(µB + µQ)2 − 5m2

p

)
+ 3m4

p ln
(

kp + µB + µQ

mp

)
−µQke

(
2µ2

Q − 5m2
e

)
+ 3m4

e ln
(

ke − µQ

me

))
(5.13)

3Note: For brevity, the F denoting the Fermi momentum is omitted from here on. All notations of
ki stand for the corresponding Fermi momentum kF,i.

4Note that (5.8) is not limited to any choice of chemical potentials. It is thus possible to apply the
equation to chemical potentials representing the different particles.
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5.2 Charge Neutrality

One finds that any charge of the same sign as the net charge of the star would be
expelled by Coulomb force, unless the star’s charge is below a certain limit. In [3],
it is stated that less than one in 1036 baryons is allowed to have an uncompensated
charge. For electrons, the number of allowed uncompensated charges is even smaller.
We proceed, assuming that the net charge is 0, since 10−36 is far beyond the precision
of our calculations.
With this argumentation, it would still be possible that charge is differently dis-
tributed in the star. Suppose, we had such areas of different charge. In equilibrium
the pressure would have to be identical at both sides of the interface between the
two phases. Furthermore, the chemical potentials have to be equal at either side.
Otherwise, there were more particles moving to the area of lower chemical potential.
These two conditions can only be fulfilled, if (i) the areas are alike, or if (ii) we have
different phases and thus different EoS in these two areas. Since we excluded phase
transitions in our model, the areas have to be alike.

The condition of charge neutrality is given by ρp = ρe. Employing (5.11), we find

ke = kp (5.14)

Applying that kp and ke can be expressed analogously to (2.35), we find the relation

µQ =
m2

p −m2
e − µ2

B

2µB
(5.15)

5.3 Results

Now, being aware of (5.14) and (5.15), one finds that p and ε are functions of only one
independent variable µB. We are thus allowed to employ (5.10) for our calculations.
Before discussing the star’s mass, we will analyze the density distribution in a star.
The star chosen for figure 3 is the star of maximum mass.
As one sees in figure 3, the star still consists primarily of neutrons. The proton number
density and the electron number density5, which are demarked by the difference
between ρB and ρn, are small compared to neutron number density. This is also true
for other stars of this model. In [3], it is stated that the number density of protons
will in no case exceed 1

8 of the total baryon number density. Hence, we will expect
the stars in this section to behave quite like pure neutron stars.

We will now proceed with the M(R)-plot to see what actually happens. In order to
compare the results achieved so far, last section’s graph was added in figure 4. As we
had expected, the maximum mass differs only slightly from the results we obtained
for the pure neutron star. Additionally to their small densities, the similar masses
of protons and neutrons are also hints to this similar result. The contribution of
electrons is negligible, since their masses are very small compared to those of protons
and neutrons. With these points in mind, one understands that the results turn out
to be similar.

5The electron and the proton number density are identical due to the condition of charge neutrality
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Figure 3: The number density distribution of baryons and neutrons in the star of
maximum mass.
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Figure 4: The star’s mass M over the star’s radius R. The maximum mass is now
0.6991 M� at 9220 m.
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6 Strange Stars

After discussing the two previous equations of state, we are now warmed up to tackle
the bag model. In this section we assume that our star consists of up, down, and
strange quarks and electrons. Under high pressure (as it can be found inside a compact
star) the individuality of nuclei, which are understood as baryons in quantum chromo
dynamics (QCD), is lost, leaving 3 quarks [3]. It is thus logical that, instead of an EoS
describing hadronic matter, the TOV equation is also integrated for an EoS of quark
matter. The bag model which we will use in this section was developed in the 1970ies
at the MIT. It was the first model to include color confinement. Color confinement
is the effect responsible for keeping three quarks (one of each color) together. In the
bag model, this is realized by the bag. Although the three quarks are bound in the
bag, they are able to move as they would in case of an ideal Fermi gas within the
bag. The size of the bag (which is interpreted as the nucleon size) is represented by
the bag constant B. This bag constant is added to the energy density, and represents
the energy that is needed to lock the quarks in the bag.

In this section, we will employ the three types of quarks with the lowest masses:
up, down, and strange quarks. The magnitude of the chemical potentials in a neutron
star is too low for heavier quarks to exist. The chemical potentials of up, down, and
strange quarks are given by

µu =
1
3
µB +

2
3
µQ

µs = µd =
1
3
µB −

1
3
µQ

(6.1)

where we have again chosen to express the chemical potentials in terms of µB and µQ.
The factor in front of µB originates from the fact that, by definition, baryons consist
of 3 quarks. Analogously, the factor in front of µQ originates from the charge the
corresponding quarks carry. As in section 5, we also have µe = −µQ. Furthermore,
we adapt (2.35) to obtain

µf =
√

k2
f + m2

f , for f = u, d, s (6.2)

Since the quark masses are not listed in [7], the values were taken from [3]

mu = 0.005 GeV , md = 0.007 GeV , ms = 0.150 GeV (6.3)

In literature, one finds a wide range of values for the three masses of (6.3). Due to the
confinement mentioned above, it is not possible to separate quarks. Consequently,
one cannot experimentally measure their mass. Because of this uncertainty, we will
vary the strange-quark mass later in this section. One could also do this variation for
the other quark masses. We will, however, restrict ourselves to varying ms, since its
magnitude is highest and we may thus expect the greatest changes.

6.1 The Equation of State

The bag model provides us with an EoS that is quite similar to the EoS of degenerate
ideal Fermi gases as they were treated in the previous sections. Analogously to

17



section 5, we derive ρf , εf , and pf for each kind of quark. Doing so, we have to
consider the spin degeneracy, as well as color degeneracy. Color degeneracy leads to
an additional factor of 3 [3].
The baryon number density is then given by

ρf =

{
k3

f

3π2 if µf > mf

0 else
, for f = u, d, s (6.4)

The baryon number density is equal to one third of the corresponding quark number
density6. In (6.4), we considered the fact that we may encounter a situation, in which
the mass of a quark mf is greater than its chemical potential µf computed employing
(6.1). In that case, we may say that the chemical potential is not sufficient for this
sort of quarks to exist. ρf must hence vanish for µf < mf .
As for the energy density and the pressure, we have to bring in the bag-constant B.
By definition, B is added to ε and subtracted from p.

One discovers that there are some parallels between B and Einstein’s famous cos-
mological constant Λ, when examining the corresponding Einstein field equations
Gµν = kTµν + Λgµν . However, the cosmological constant found experimentally is
much lower in magnitude than the range in which we expect to find B.
Continuing with the EoS, we obtain

ε =B +
∑

f=u,d,s

3
8π2

(
µfkf

(
2µ2

f −m2
f

)
−m4

f ln
(

µf + kf

mf

))

+
1

8π2

(
−µQke

(
2µ2

Q −m2
e

)
−m4

e ln
(
−µQ + ke

me

)) (6.5)

for the energy density and

p =−B +
∑

f=u,d,s

1
8π2

(
µfkf

(
2µ2

f − 5m2
f

)
+ 3m4

f ln
(

µf + kf

mf

))

+
1

24π2

(
−µQke

(
2µ2

Q − 5m2
e

)
+ 3m4

e ln
(
−µQ + ke

me

)) (6.6)

for the pressure [3].
Looking at these EoS, we see that if the pressure becomes 0, then the energy density
and the baryon number density will not necessarily become 0 continuously. Strange
stars have thus ”probably [...] the hardest smoothest surface of any object in the
universe” [3]. As a consequence we have to take care, when approaching the star’s
surface in our computation, because the assumption of a locally constant ε does not
hold for the last step. However, this problem may be solved in a rather simple way.
The energy density decreases to 0 at the moment when the pressure becomes 0. In
contrast to ε, one can still assume that p is linear throughout a step even in this
area. Thus, when we encounter p < 0 at7 r + ∆r, we find that the star’s edge is at
r + p(r)

−p(r+∆r)+p(r)∆r. Knowing this expression, the correction can easily be included
in our program.

6The baryon number density is defined this way, because baryons consist of 3 quarks.
7∆r denotes the stepwidth
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Figure 5: The chemical potential of charge µQ as a function of the baryon chemical
potential µB for different strange quark masses ms. This function was
obtained from the condition of charge neutrality. The vertical grey lines
mark the minimum value of µB, for which strange quarks can be found for
the corresponding strange quark mass.

6.2 Charge Neutrality

As in the previous section, we demand that the star is electrically neutral. However,
the resulting condition is more complex in this model, since we have more kinds of
particles carrying electrical charge. The condition is now8

− ρe + 2ρu − ρd − ρs = 0 (6.7)

which can be rewritten in terms of the Fermi momenta

− k3
e + 2k3

u − k3
d − k3

s = 0 (6.8)

Again, this equation determines µQ in terms of µB. In contrast to the previous
sections, we only find a numerical solution. The result is displayed in figure 5. Note
that the sharp bends are observed for µs = 1

3µB − 1
3µQ which are slightly larger than

the corresponding strange quark mass ms. As discussed in section 6.1, strange quarks
are not to be found in regions with µs < ms. For the respective strange quark masses
0.10 GeV; 0.15 GeV; 0.20 GeV, strange quarks can be found if µB is greater than
0.28 GeV; 0.42 GeV; 0.56 GeV respectively. Strange quarks have a great influence on
the charge potential. Due to their much smaller masses, the respective bends for up
and down quarks can be found near µB = 0.

8Remember that the quark number density is 3ρf
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Figure 6: The pressure p versus the distance r from the center. (i) and (ii) depict
stars with identical initial values of p0 (defined in (6.9)) and different values
of the bag constant B. (i) and (iii) show stars with identical initial values
of p and different values of B.

6.3 Results

For strange stars, we want to discuss the influence of two different parameters, the
bag constant B and the strange quark mass ms.

6.3.1 The Influence of the Bag Constant BBB

As in the sections before, we begin by analyzing how the stars’ structure, i.e. p(r), is
changed if B is varied and all other parameters (ms and the initial baryon chemical
potential µB,0) are kept unchanged. In figure 6, (i) and (ii) are such plots with
the same parameters except for B. One observes two aspects of the bag constant’s
influence on p(r). Firstly, one notices that the main difference between (i) and (ii) is
an offset, which is of the size B is varied. Secondly, we find that the gradient of (ii)
is slightly smaller than the gradient of (i). At first, we will discuss the effect that p
is lowered if B is increased. By formulating pressure and energy density as

p = −B + p0 and ε = B + ε0 (6.9)

we isolate B in the EoS, and find that p0 and ε0 are independent of B. Hence,
p0(r = 0) and ε0(r = 0) are constant if only B is varied. Since the gradient of p(r) is
very similar for (i) and (ii), we find that the initial offset is hardly changed for r > 0.
This propagation of the offset causes the small radius R of (ii), which is of about half
the radius of (i).
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Figure 7: The two terms determining the influence of the bag constant B in a strange
star. The x-axis denotes the term of the denominator in (6.11), the y-axis
the term of the numerator.

Despite its much smaller significance in determining a star’s radius found above, we
continue the discussion with the influence of B on the gradient of µB(r). Since µB(r)
is closely connected to p(r) by the EoS, the discussion of dµB

dr can be conveyed to the
discussion of dp

dr without complications. We will discuss the modified TOV equation
here, since it has been used for all calculations of this work. A discussion for the
”normal” TOV equation (2.19) would be analogous. As above it is useful to isolate
B in the expressions for pressure and energy density. Using (6.9), M then yields

M(r) =
4
3
πr3B +

∫ r

0
4πr82ε0(r8)dr8 =

4
3
πr3B + M0 (6.10)

Deploying (6.9) and (6.10) in our modified TOV equation (5.10), we find

dµB

dr
= −

µB(M0 + 4πr3p0 − 8
3πr3B)

r( r
G − 2M0 − 8

3πr3B)
(6.11)

We see that the influence of B on dµ
dr and thus the star’s structure is closely connected

to how M0 + 4πr3p0 is related to r
G − 2M0. In order to gain an insight into their

relationship, both quantities are plotted for two selected strange stars in figure 7.
The stars’ parameters mark extreme choices of B and ms. One observes that the
denominator is at any point larger than the numerator. Looking at (6.11), we see
that dµ

dr is decreased as B is increased, as we have already noticed in figure 6.
Since the discussion of the two effects is only qualitative, we have to refer to figure 6

to see that the first effect significantly dominates the second one at least in the case
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depicted in figure 6. Neglecting the much smaller effect on the gradient, we find that
a small change of the bag constant dB (while leaving the initial value of µB constant)
causes the radius R to decrease by

dR = − dr

dp

∣∣∣∣
r=R

dp =
1

dp0

dr

∣∣∣
p0=B

dB (6.12)

where we have used that due to (6.9) dp
dr = dp0

dr and dp|r = −dB. The minus sign
was introduced, because shifting the whole function p(r) in one direction is equal
to shifting the r-axis in the other direction. We may conclude that M also has to
decrease for an increased value of B. Using (6.10), (6.12), and dM

dB = dM
dR

dR
dB , we find

dM

dB
= 4πR2 (ε0 + B)

1
dp0

dr

∣∣∣
p0=B

(6.13)

Since the gradient of p is negative, and all other terms on the right hand side of the
equation are positive, dM

dB has to be negative. The mass of (ii) must hence be smaller
than the mass of (i).

Instead of comparing plots of the same initial baryon potential, one could argue
that plots of the same initial pressure had to be compared. In this case, p0 and thus
µB,0 have to be changed to compensate the variation of B. This situation can be
found for (i) and (iii) in figure 6. Again, the surface is reached at a smaller radius for
(iii), which can be understood by looking at the modified TOV equation. In (5.10),
we find µB as a factor at the right side of the equation. M(r) =

∫ r
0 4πr82ε(r8)dr8 is

also increased if µB is. The whole right side of (5.10) is thus likely to be increased
in magnitude. As we have seen in figure 6, this increase leads to a larger decrease of
(iii) and consequently to a similarly small radius as it was found for (ii).

We expect a similar behavior for a wide range of B and µB,0, because another value
of µB,0 could only change the discussion at one point. When we compared the two
effects of offset and gradient, we referred to the actual choice of µB,0 employed in
the plot. However, since the differences in magnitude between these two effects were
found to be very large, a domination of the offset is likely to be found for a wide range
of B and µB,0. When we discussed compensating the offset by increasing µB,0, we
also referred to actual choice of µB,0. However, since p(µB) is strictly monotonous,
this part of the discussion holds true for any choice of µB,0.

We continue the discussion with the bag constant’s influence on the stars’ mass
limit. As in the section before, we plot the star’s masses over the radius. Since we
will vary two parameters (B and ms), we only depict the mass limit9 possible for a
pair of variates ms and B in order to avoid confusion. In almost all of the following
graphs, we will omit all other points with the same values of ms and B.

In figure 8, the continuous line is such a curve of maximum masses. There, the
maximum masses were obtained for ms = 0.15 GeV and 22 values of B in the range
from 50 GeV/fm3 to 220 GeV/fm3. At least for the observed range of ms and B, the
radius of the stars of maximum mass was found to be proportional to the stars’ mass,
when only the bag constant is varied. A linear least-square-fit returned a slope of

9These mass limits were found applying the algorithm described in section 3.4.
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Figure 8: The mass M of strange stars in terms of their radius R displayed for
different values of the bag constant B; the straight line, on which the
stars of maximum mass for the strange quark mass ms = 0.15 GeV and
B ∈ [0.05 GeV/fm3, 0.22 GeV/fm3] can be found.

(181 ± 0.1)10−6 M�/m. Similar relations were found for ms = 0.10 GeV; 0.20 GeV;
0.25 GeV.

In figure 9, the mass limit is plotted over the bag constant for different values of ms.
Each of the four curves consists of 22 mass limits found for different combinations of B
and ms. We see that the mass limit is decreased if B is increased. We have observed
this behavior in (6.13), when comparing stars of the same initial baryon chemical
potential µB,0. For the stars of maximum mass depicted in figure 9, µB,0 was found
to vary between 1.33 GeV (B = 0.06 GeV/fm3) and 1.90 GeV (B = 0.22 GeV/fm3) for
ms = 0.15 GeV (The ranges for ms = 0.10 GeV; 0.20 GeV; 0.25 GeV were found to
be similar). It is hence not possible to adopt the results from the above discussion
on the strange star structure. We may yet make some conclusions for strange stars
of maximum mass. For the curves in figure 6, the initial values are µB,0 = 1.38 GeV
for (i) and (ii) and µB,0 = 1.49978 GeV for (iii). For the stars of maximum mass µB,0

was determined to 1.3818 GeV (' 1.38 GeV) for B = 0.06 GeV/fm3 and 1.8853 GeV
for B = 0.22 GeV/fm3. We see that µB,0 is even more increased than it would be
necessary to conserve the initial pressure for an increased bag constant. The pressure
at the center of stars of maximum mass must thus be much higher for a large value
of B. Comparing the radii of (iii) and of the star of maximum mass that has also
B = 0.22 GeV/fm3, we find similar values (5453 m for (iii) and 5265 m for the star of
maximum mass). Considering the EoS, we see that the higher value of µB,0 leads
to a much higher mass for the star of maximum mass. By considering how (5.10)
changes if µB,0 is increased, and by looking at figure 9, we find that the steep decrease

23



0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0.8

1.0

1.2

1.4

1.6

1.8

2.0

B [GeV/fm3]

M
m

a
x

[M
�

]

ms = 0.10 GeV
ms = 0.15 GeV
ms = 0.20 GeV
ms = 0.25 GeV

Figure 9: The mass limit Mmax for strange stars as a function of the bag constant B
for different values of the strange quark mass ms.

of µB(r) and the resulting smaller radius for large µB,0 lead to a smaller maximum
mass, although stars of large µB,0 have more energy (and thus more mass) stored at
the center10.

Another interesting observation can be made when examining the correlation of
the mass limit with the central baryon number density (the sum of all quark baryon
number densities). Figure 10 reveals that the settings with high mass limits coincide
small central baryon number densities. This behavior is often explained with the
stiffness of an EoS. Under the regime of a stiff EoS, strong repulsive forces make
it hard to compress matter below a certain density. On the one hand, the strong
repulsion in a stiff EoS has to lead to low densities. On the other hand, the stiffer
the EoS, the more mass can be included in a star, since the matter withstands more
pressure. In the bag model, low values of B lead to stiff EoS, since the pressure is
reduced if B is increased.

Comparing the strange star masses computed in this section with the recently
reported neutron star mass of (2.1 ± 0.2) M� which was found for the star PSR
J0751+1807 [10], one discovers that extreme choices of B and ms are necessary to
allow a strange star of this mass in the bag model. The existence of such heavy
neutron stars suggests that the EoS which describes neutron stars has to be stiffer
than the EoS of the bag model. Since the bag model neglects any particle-particle
interaction except color confinement, it is not surprising that its stiffness is too low.

10As a consequence of the EoS, the central energy density is increased if µB,0 is.
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Figure 10: The maximum mass Mmax of strange stars found for various values of the
bag constant B and different values of the strange quark mass ms versus
the central baryon number density ρB,0.

6.3.2 The Influence of the Strange Quark Mass msmsms

After studying the influence of the bag constant, we will now focus on the strange
quark mass ms. As mentioned at the beginning of this strange star section, the
strange quark mass is not a quantity, that could be determined directly like the mass
of e.g. nucleons, due to confinement. The question of how compact stars are affected
by the choice of the strange quark mass is thus of great interest and will be discussed
in this subsection.

Looking at the EoS, we see that ms cannot be as easily isolated as it was done for
the bag constant in (6.9). In figure 5, we have found that the value of µQ (which is
required to fulfill the condition of charge neutrality) strongly depends on the value
of ms. As a consequence, the chemical potentials of all particles change if ms is
changed. We find that varying ms has a significant effect on the density distribution,
when looking at figure 11. There, the baryon number densities of up, down, and
strange quarks and the number density of electrons are plotted over the strange star
radius for B = 0.14 GeV/fm3, µB,0 = 1.69 GeV, and different values of ms. One notices
that the strange quark density is decreased for heavier strange quarks. The up quark
density is also decreased, although not to the extent the strange quark density is.
Since the number of strange quarks is much more reduced than the number of up
quarks, this difference has to be compensated by down quarks and electrons due to
charge neutrality. One observes that the number density of electrons is at any point
at least three orders smaller in magnitude than the quark baryon number densities,
and is thus negligible. Due to charge neutrality, one finds that the baryon number
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Figure 11: The quark baryon number densities as a function of the distance r from
the center with the bag constant B = 0.14 GeV/fm3, the central baryon
chemical potential µB,0 = 1.69 GeV, and different choices of the strange
quark mass ms.

density of down quarks is increased for heavier strange quarks. An interesting fact
which was found when examining the results of the electron number density is that,
in contrast to the quark number densities, the electron number density is larger at
the surface than at the center of the star.

It was also found that for the four stars displayed in figure 11, M(r) is decreased
if ms is increased. We may thus conclude that the decreased number densities of
up and strange quarks overweigh the gain of ms. As shown in figure 11, the radius
becomes also smaller for heavier strange quark masses. Consequently, we expect the
total mass to be reduced for heavier strange quarks.

For all stars in figure 11, we chose µB,0 = 1.69 GeV. Although this value is close
to the values calculated for strange stars of maximum mass with B = 0.14 GeV/fm3

(For stars of maximum mass, µB,0 ranges from 1.667 GeV for ms = 0.1 GeV to
µB,0 = 1.748 GeV for ms = 0.25 GeV), we will not make any conclusions from the re-
sults of figure 11. Instead, analogous calculations were carried out for respective µB,0

of stars of maximum mass with different values of ms. Analyzing the results of these
calculations, it was found that only ρs is slightly reduced, ρu and ρd are increased for
heavier strange quarks. All other aspects discussed for stars with identical µB,0 were
found to be alike when comparing stars of maximum mass. The energy density was
found to be higher for larger ms.

In figure 12, we observe that the mass limit is decreased if ms is increased. We may
conclude that, although the energy density in the star is higher for heavier strange
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Figure 12: The mass limit Mmax as a function of the strange quark mass ms for
different values of the bag constant B.

quarks, the reduced radius leads to a smaller mass limit.
Comparing the influences of B and ms on the strange star mass limit, we find

that, within the ranges in which we have varied B and ms, the influence of the bag
constant is much stronger than the influence of ms. Considering that apart from
strange quarks, there are also up and down quarks contributing to the EoS, and that
there is the possibility that strange quarks are substituted by down quarks (which
have except for the mass the same properties), one finds it not at all surprising that
the influence of ms on the mass limit is much weaker than the one of B.
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7 Hybrid Stars

Last section’s bag model was introduced in order to describe the quark matter which
may be found in regions with high pressure. However, the pressure of a compact star
is only near the center high enough to allow deconfinement, if it is at all. Near the
surface, the pressure will be comparatively low. Assuming that the ground state of
matter is of hadronic nature, we expect quark matter only near the center, while the
outer part of a compact star is likely to consist of hadronic matter. In this section,
we briefly discuss a few examples of such hybrid stars that combine the bag model
with a hadronic EoS taken from [3].

7.1 The Hadronic Phase

The values for the hadronic phase model were taken from the tables 5.10 and 5.7 in
[3]. The values of table 5.7 in [3] are in fact due to [11]. The hadronic EoS given
there includes nucleons (i.e. neutrons and protons) as well as higher mass baryons (Λ,
Σ+, Σ−, Σ0, Ξ−, Ξ0, ∆−, ∆0, ∆+, and ∆++), which are coupled to σ, ω, ρ mesons.
Electrons and muons are also included in the EoS. The EoS obeys the two conditions
of baryon number conservation and charge neutrality.

The high density values from table 5.10 cover µB ∈ [0.941 GeV, 1.54 GeV] (which
corresponds to ρB ∈ [0.01 fm−3, 1.38 fm−3]), while µB ∈ [0.930 GeV, 0.943 GeV] (which
corresponds to ρB ∈ [4.73 10−15 fm−3, 8.907 10−3 fm−3]) is covered by the low density
values from table 5.7. During the first calculations of hybrid stars, it turned out
that, despite the small range it covers, the low density EoS plays an important role in
determining a star’s mass and radius, especially if the chosen central baryon chemical
potential is low.

Since the tables denote only the baryon number density ρB, the energy density ε,
and the pressure p, the baryon chemical potential µB had to be obtained employing
p = ρBµB − ε. For the low density EoS, the calculated values of µB were found
to scatter. Considering that table 5.7 of [3] denotes only four significant digits for
each quantity, one finds by applying error propagation that the deviations can be
assumed to be rounding errors. In order to determine an implementable EoS, the set
of values had to be approximated by a monotonous function. By substituting a few
mavericks by the arithmetic mean of the corresponding two neighboring values, by
approximating the first 12 values with µB = 0.93 GeV, and by finally changing each
value to the mean of its neighboring points, a monotonous function was found that is
at almost any point within the error bounds of the values from table 5.7. With these
modified values, the low density functions p(µB) and ε(µB) were obtained by linear
interpolation.

Since the range of µB that is covered by the high density EoS is much larger than
the range described by the low density EoS, it was possible to interpolate the high
density EoS with a spline function, ignoring the numerical deviations of µB.

7.2 The Phase Transition

For all phase transitions, we find that two basic conditions have to be fulfilled. At the
interface between two phases, the pressure as well as the baryon chemical potential
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have to be alike in either phase. If the pressure was not equal at both sides, the
resulting net force would lead to an expansion of the phase of higher pressure. If the
baryon chemical potential was not continuous at the interface, one would find more
particles moving from the phase of higher chemical potential to the phase of lower
chemical potential than in the other direction. From thermodynamics, one knows
that, in equilibrium, the phase that returns the higher pressure is always favored. By
instructing the program to switch the EoS, when the hadronic EoS returns a higher
pressure for the current baryon chemical potential, we find the above conditions
automatically fulfilled.

In contrast to p and µB, ε is not expected to be continuous at the interface of our
phase transition. Hence, a correction analogous to the one applied at the strange
stars’ surface (see section 6.1) has been employed at the interface.

There are several ways in which a phase transition could be structured. For in-
stance, there could be an abrupt phase transition or a crossover consisting of homo-
geneously mixed phases with a continuous concentration gradient. Moreover, it has
been proposed that one finds so-called pasta phases consisting of drops, rods, or slabs
of one phase immersed in the other (resembling gnocchi, spaghetti, and lasagne)
between the pure phases [3]. In a star consisting of two (or more) phases, charge
neutrality is not expected to be valid locally, only globally11. Consequently, the com-
ponents of a mixed phases may have electric net charges. An example for a mixed
phase which favors charged components is given in [12]. The presence of strange and
down quarks within droplets of quark matter embedded in hadronic matter would
decrease the electron chemical potential, permitting a higher proton density in the
hadronic phase. As a consequence, the components of the mixed phase carry net
charges of opposite sign. However, for our qualitative analysis, we will simplify the
calculations by assuming that the phase transition is abrupt.

7.3 Results

At first, we want to briefly examine the influence of a phase transition on the stars’
structure, by analyzing an example. Figure 13 presents the pressure and the energy
density of a star with a phase transition at r = 5355m. At the interface, we find
the expected discontinuity of ε(r) and a bend in p(r). The lower gradient of p in
the hadronic phase indicates that the hadronic phase is (at least in the region of the
transition) stiffer than the bag model.

Figure 14 demonstrates that the mass and hence the mass limit of hybrid stars
strongly depend on the bag constant B. For low central baryon chemical potentials,
we find p(µB)hadronic > p(µB)bag model at any point inside the star. Although the bag
constant determines whether quark matter is included in a star for a certain value
of µB,0, it has no influence on stars without quark matter. The parts of the curves
representing pure hadronic stars are thus identical for all three examples displayed
in figure 14. At the end of this part, one finds sharp bends in the M -R-graphs and
a deviation from the mass of pure hadronic stars for further increased values of µB.
The occurrence of quark matter obviously reduces the star’s mass. This reduction

11Note that, when deriving charge neutrality in section 5.2, we relied on the assumption of having
only one phase to find charge neutrality locally valid.
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Figure 13: The pressure p and the energy density ε versus the distance r from the
center for a hybrid star with the central baryon chemical potential µB,0 =
1.6 GeV, the strange quark mass ms = 0.15 GeV, and the bag constant
B = 0.14 GeV/fm3.

can be understood as another hint at the lower stiffness of the EoS of the bag model
compared to the EoS of the hadronic phase.

For B = 0.14 GeV/fm3, we find the maximum mass at the sharp bend of the curve.
The star of maximum mass is thus the pure hadronic star with the highest central
baryon chemical potential possible for this bag constant. For much higher values of B
like B = 0.22 GeV/fm3, quark matter plays no physically relevant role. For such values
of B, the mass limit of the pure hadronic star is reached without any interference
of quark matter. For both values of B mentioned above, all stable stars have to
completely consist of hadronic matter. Consequently, if neutron stars were described
by hybrid EoS with such values of B, one could not expect to encounter quark matter
in neutron stars at all.

For B = 0.10 GeV/fm3, we also find a maximum at the bend. Although the curve
decreases at first for increasing values of µB,0, the mass is then found to increase
above the level of the first maximum. In contrast to the earlier examples, we observe
that there is a significant range of M (including the mass limit) in which one finds
hybrid stars including quark matter, as well as hadronic matter.

For low values of B as B = 0.06 GeV/fm3, one finds p(µB)hadronic < p(µB)bag model

for all values of µB. This finding contradicts our assumption that the ground state
of matter is hadronic, since, with this value of B, there is no point in the EoS where
the hadronic phase is stable. However, it has been suggested that there could be
”strange quark matter”(SQM) which has a lower energy per baryon than nuclei have
[13]. This SQM would thus represent the ground state of matter. Assuming the bag
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Figure 14: The masses M of hybrid stars against their radii R for the strange quark
mass ms = 0.15 GeV and different values of the bag constant B.

model and a strange quark mass of ms = 0.15 GeV, it has been found that such
strange quark matter could exist for 0.06 GeV/fm3 . B . 0.08 GeV/fm3 [14], which is in
good accordance with this example’s value of B. Consequently, if SQM really exists,
one would find the strange stars discussed in section 6.

Comparing the maximum masses found for hybrid stars with the largest reported
neutron star mass of (2.1 ± 0.2) M� [10], one finds that our EoS is not sufficient to
describe real neutron stars. Further improvements of the EoS are thus needed.
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8 Summary and Outlook

By integrating the Tolman-Oppenheimer-Volkoff equation, we computed the structure
and the mass of compact stars for several given equations of state (EoS) and a set
of initial values. In order to obtain a relation connecting the mass and the radius of
the stars of an EoS, this computation was repeated for various initial values. In this
manner, we were able to determine the mass limit of an EoS which was then analyzed.
We started with the rather simple EoS of a pure neutron star and improved it from
section to section.

In sections 4 and 5, we have found a maximum mass of about 0.7 M� for pure
neutron stars and for stars consisting of neutrons, protons, and electrons. In section 6,
we have found that the properties of strange stars strongly depend on the choice of
the bag constant B and the strange quark mass ms. One observes a reduction of the
mass limit, if either B or ms is increased. For the observed range of B, the maximum
mass was found in the range between 0.9 M� (for B = 0.22 GeV/fm3) and 1.85 M� (for
B = 0.06 GeV/fm3). The relative change of the mass limit was observed to be only
about 10% for the variation of the strange quark mass ms.

Despite its comparatively small influence on the mass limit, the strange quark mass
has a strong effect on the constitution of a strange star. It turned out that, due to the
condition of charge neutrality, the charge potential µQ and hence all involved particle
number densities are significantly affected by the choice of ms. The heavier strange
quarks are, the more do the number densities of the different sorts of quarks differ.

A hybrid EoS, i.e. an EoS including quark matter (described by the bag model),
as well as hadronic matter, was discussed in section 7. It was found that only for a
very limited range of B, one can find stars consisting of both, quark and hadronic
matter. For large values of B, the pure hadronic phase prevails.

Further research could analyze the models employed in this work more quantita-
tively. During this work, it turned out that, for example, the p(r)-curves in figure 6
can be described by functions of the type p(r) = a exp

(
−br2

)
+ c. The parameters

a, b, and c could be determined to an uncertainty of less than 0.1% when fitting. By
finding other, similar functions and probably even functions giving the dependencies
of the parameters, it may be possible to track the problem down to an analytic one.

Moreover, it is of great interest to employ other, more sophisticated EoS in the
TOV equation. One could, for example, enhance the hybrid EoS of section 7 by (i)
substituting the bag model with a model which is better in describing quark matter or
by (ii) including more sophisticated phase transitions. (i) could be accomplished by
finding EoS that include particle-particle interaction, while (ii) could be accomplished
by employing mixed phases like the pasta phases mentioned in section 7.2. One could
also improve the hadronic EoS, since not all possible interactions have been included
in the employed EoS and since the reported neutron star mass of 2.1±0.2 M� cannot
be described by a hybrid EoS with this hadronic phase12.

12Here we have assumed that the hadronic phase is stiffer than the quark phase.
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