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Punkts im PNJL-Modell

Pascal Joachim Büscher
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Abstract

Susceptibilities, as well as third and fourth moments (also referred to as skewness and kurtosis,
respectively), are studied in the mean-field approximation of the Polyakov-loop extended Nambu-
Jona-Lasinio (PNJL) model with vector interaction.

The present study focuses on the region around the critical point of the phase diagram. The
critical behavior of quadratic fluctuations is discussed by means of susceptibilities, the criti-
cal mode leading to the divergence of the susceptibilities and the Ginzburg-Levanyuk criterion
which allows to examine the applicability of the employed model. Then, the third and fourth
moments are evaluated in the same region and the behavior in the vicinity of the critical point
is discussed. Furthermore, in order to investigate whether the calculated fourth-order could be
“overshadowed” by quadratic fluctuations in experiments, the ratio of fourth moments over the
squared susceptibilities is evaluated and discussed.

In addition, it is examined for all quantities how the vector interaction influences the results
by varying its coupling constant.

Zusammenfassung

Suszeptibilitäten sowie dritte und vierte Momente (auch als Schiefe bzw. Kurtosis bezeich-
net) werden in der Molekularfeldnäherung des um den Polyakov-Loop erweiterten Nambu-Jona-
Lasinio-Modells (PNJL-Modell) mit Vektorwechselwirkung untersucht.

Diese Arbeit konzentriert sich dabei auf die Region um den kritischen Punkt im Phasendi-
agramm. Das kritische Verhalten von quadratischen Fluktuationen wird anhand von Suszep-
tibilitäten, anhand der kritischen Mode, die zur Divergenz der Suszeptibilitäten am kritischen
Punkt führt, und anhand des Ginzburg-Levanyuk-Kriteriums, welches eine Untersuchung der
Anwendbarkeit des verwendeten Modells erlaubt, diskutiert. Danach werden die dritten und
vierten Momente in derselben Region ausgewertet und das Verhalten in der Nähe des kritischen
Punkts diskutiert. Des weiteren wird das Verhältnis zwischen den vierten Momenten und dem
Quadrat der Suszeptibilitäten berechnet, um zu ergründen, ob die berechneten Fluktuationen
vierter Ordnung in Experimenten von Fluktuationen quadratischer Ordnung

”
überschattet“ wer-

den könnten.
Außerdem wird für alle Größen der Einfluss der Vektorwechselwirkung auf die Ergebnisse

untersucht, indem deren Kopplungskonstante variiert wird.
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1. Introduction

The comprehension of quantum chromodynamics (QCD) - the theory which describes strong
interaction - and its features is an important task of modern physics. The theory is instrumental
in understanding both, the early universe as well as the nature of objects in the universe in
its currents form (such as neutron stars). One of the main features of QCD is “asymptotic
freedom”. Contrary to most fields in physics (e.g. electrodynamics), here, interactions are only
small as long as only short distances are considered and become stronger for increased distances.
Calculated to first order by Gross, Wilczek and Politzer in 1973 [1], the experimental confirmation
of asymptotic freedom has lead to the wide acceptance of QCD as the theory describing strong
interaction. Thus, in the regime of short distances, QCD can be treated perturbatively. This
facilitates calculations of the structure function of hadrons among other things. However, In the
present study, distances cannot be assumed to be small enough for the problem to be treated in
perturbative QCD. Nevertheless, calculations in non-perturbative QCD are not feasible for most
cases due to mathematical difficulties.

In theoretical physics, problems of (non-perturbative) QCD are therefore mainly approached
either by (i) discretizing space-time into a finite-sized mesh (“lattice QCD”) which allows for ab
initio calculations or by (ii) constructing an “effective model” which shares the - for a certain
problem - relevant properties with QCD while retaining a simpler mathematical structure. Nev-
ertheless, both approaches suffer from serious limitations: Lattice QCD fails to describe QCD
at finite chemical potential due to the sign problem, while effective models are only capable
of reproducing QCD qualitatively. Since we are interested in properties at finite chemical po-
tential in our study, we will employ an effective model - the so-called Polyakov-loop extended
Nambu-Jona-Lasinio (PNJL) model.

The PNJL model is based on the Nambu-Jona-Lasinio (NJL) model [2], which embodies the
spontaneous breaking of chiral symmetry via effective interactions between quarks (see e.g. [3–5]
for reviews). Yet, it is not possible to treat confinement in such a simple model. This shortcoming
is addressed in the PNJL model [6–9], where the Polyakov loop is incorporated into the model and
the traced Polyakov-loop becomes an (approximate) order parameter of confinement. As for any
effective model, much ambiguity is left for the choices of the interactions and their corresponding
parameters. For this reason, we will vary the strength of the vector interaction in order to study
its influence on our results.

A great part of the research on QCD is dedicated to the phase diagram of QCD, e.g. the
diagram which maps the physically preferred phase as a function of temperature and den-
sity/chemical potential. It is known that, at low temperature and low chemical potential, the
phase diagram of QCD is governed by the hadronic phase, where only bound states of two or three
quarks are observed. In the realm of high temperature and/or high chemical potential, on the
other hand, the phase diagram is governed by the quark gluon plasma (QGP), where quarks are
not confined in bound states [10]. In addition, a color-superconducting (CSC) phase is predicted
for the region of low temperature and high chemical potential [10, 11]. The transition between
these phases may happen in different manner. While the order parameter defining the phases is
known to change from its hadronic-phase value to its QGP-value continuously (cross-over) at high
temperature and low chemical potential, a discontinuous transition (first-order phase transition)
is found for high chemical potential and moderate temperature. It is still subject to speculation
whether a cross-over can also be found for the transition from the hadronic phase to the CSC
phase [12]. The point where the type of phase transition changes is commonly referred to as
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critical point (CP). Since the CP represents an important landmark of the phase diagram, it is
investigated not only in theoretical physics but also in heavy-ion collision experiments conducted
at numerous research facilities worldwide as the Brookhaven National Laboratory (BNL), the
European Organization for Nuclear Research (CERN) and the GSI Helmholtz Centre for Heavy
Ion Research (GSI).

In order to interpret such experiments, it is crucial to know which observables are suitable
probes for the critical point. For instance, it is known that susceptibilities, i.e. quadratic
fluctuations with long wavelength, diverge at the CP [13] and they are thus considered possible
probes for heavy-ion collision experiments [14, 15]. Although susceptibilities have been studied
in the past (e.g. [16–19]), it has not been checked what influence the vector interaction has in the
PNJL model. Furthermore, fluctuations of third and fourth order have been suggested as probes
for the CP recently. It has been argued that they may offer better probes than susceptibilities,
since (i) a change of sign in the third moments might provide additional information on the phase
diagram [20] and (ii) higher-order fluctuations diverge more radically than susceptibilities at the
critical point [21].

In the present study, we want to contribute to the discussion of the susceptibility as a probe
for the CP and also want to address third and fourth moments. For this reason, we will employ
the PNJL model mentioned above to calculate susceptibilities near the critical point and analyze
the critical mode, which leads to the divergence at the CP. We will also check the quality of
our model by applying the Ginzburg-Levanyuk criterion. For all these quantities, we will check
how they are effected by a varied vector coupling. As for the third and fourth moments, we
will investigate if the behavior predicted in [21] can also be found in the PNJL model and how
it is influenced by the vector interaction. Finally, we will make predictions from our model
whether there is a chance that the fourth-order fluctuations could be measured or if they are
“overshadowed” by second-order fluctuations. Again, we will investigate the dependence on the
strength of the vector interaction.

The present work is organized as follows: In Sec. 2, we will introduce the PNJL model and
the thermodynamic relations used in the further discussion, before we will outline the phase
diagram which arises from our model in Sec. 3. This provides us with the necessary devices to
study quadratic fluctuations - i.e. susceptibilities, the critical mode and the Ginzburg-Levanyuk
criterion - in Sec. 4 and third-order and fourth-order fluctuations in Sec. 5. In the last section,
Sec. 6, we will summarize our results and will give a short outlook for future research.
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2. Representation of QCD

In this section, we want to roughly outline some properties of quantum chromodynamics (QCD)
before introducing the model employed in our study.

Experimental findings on the nature of nuclear matter obtained from scattering experiments
have led to the development of QCD in the 1960s (cf. textbooks like [22, 23]). In QCD, the
elementary particles are fermions termed quarks and their gauge bosons, which are termed gluons.
There are two peculiarities of QCD which we want to highlight here: the spontaneous breaking
of chiral symmetry and confinement.

Considering the spontaneous breaking of chiral symmetry from an experimental point of view,
the symmetry breaking is closely connected to the pion mass. Although not completely massless,
pions have a much smaller mass than other “mesons” (quark-antiquark states). Therefore, they
qualify as the Nambu-Goldstone bosons of the spontaneous breaking of chiral symmetry. From
the fact that the pion mass is larger than zero, it can be concluded that the symmetry has to be
also explicitly broken, which accounts for by the small but finite current quark masses.

The property of confinement is closely connected to the notion of “color” charge - an additional
charge apart from the electric charge, spin and parity. Due to confinement, only compounds
with a total color charge of zero (“hadrons”) can be detected in experiments, i.e. all observable
particles are color singlets. Yet, if all quarks are close to each other, confinement is observed
to play hardly any role and the particles are “asymptoticly free” [1]. If quarks were to be
separated from their hadrons, the potential energy increases linearly with the distance - making
it impossible to isolate quarks. Such a behavior is found to be reproduced in a non-Abelian
gauge theory [25].

Especially due to the non-Abelian nature of QCD, calculations using the QCD Lagrangian
are not feasible for all applications. For this reason, numerical results are usually obtained by
resorting to one of the two following approximations. (i) Space-time is discretized and calculations
are carried out on a finite-sized lattice (“lattice QCD”) or (ii) an “effective model” is constructed
which has a Lagrangian of simpler mathematical structure but shares the relevant properties with
QCD. However, lattice QCD is limited to calculations with zero chemical potential µ. Results
for finite chemical potential can only be gained through extrapolations and expansions around
µ = 0. Due to this limitation of lattice QCD, we make use of the second approach by applying
the so-called Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model introduced below. It is
important to notice that effective models only allow qualitative analyses, since it is not possible
for an effective model to reflect all features of QCD. Hence, by choosing a certain model, one has
to make compromises concerning the included features. The consequent ambiguity of effective
models is illustrated in Fig. 2.1 taken from [26], where the critical points (which will be introduced
in Sec. 3) of various effective models and lattice calculation are plotted as functions of chemical
potential and temperature.

To get a better understanding of the model employed in the present study, its components will
be analyzed. The Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model is - as the name
suggests - a modification of the somewhat simpler Nambu-Jona-Lasinio (NJL) model. For this
reason, this latter model will be explained first, before considering the modifications caused by
the inclusion of the Polyakov loop.

3



0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1
0

0

1

1

0

0

0

1

1

1

0

0

0

1

1

1

0

0

0

1

1

1

0

0

1

1

0 0

0 0

0 0

1 1

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

0 0

1 1

1 1

1 1

0

0

0

1

1

1

0

0

0

1

1

1

0

0

1

1

CO94

NJL01
NJL89b

CJT02

NJL89a

LR04

RM98

LSM01

HB02 LTE03
LTE04

3NJL05

INJL98

LR01

PNJL06

130

9

5

2

17

50

0

100

150

200

0 400 800 1000 1200 1400 1600600200

T ,
MeV

µB, MeV

Figure 2.1: Graph taken from [26]. Critical points calculated in a variety of models. Black
points represent predictions of effective models, while green points depict predictions
of lattice calculations.

2.1. NJL Model

In 1961, Y. Nambu and G. Jona-Lasinio introduced a simple model which embodies the dynamical
breaking of chiral symmetry [2]. They required the Lagrangian to be invariant under the following
transformations of the spinor field ψ :

• UV (1) transformation
ψ → eiαψ, ψ̄ → ψ̄e−iα, (2.1a)

which guarantees particle-number conservation.

• UA(1) transformation
ψ → eiγ5α

′

ψ, ψ̄ → ψ̄eiγ5α
′

, (2.1b)

which represents the conservation of the axial charge current.

Here, α and α′ represent arbitrary phases, while γ5 is composed of the gamma matrices through
γ5 = iγ0γ1γ2γ3. Symmetry under these two transformations is equivalent to symmetry under
UR(1)

ψR → eiαRψR, ψ†
R → ψ†

Re
−iαR , (2.2a)

and UL(1) transformations

ψL → eiαLψL, ψ†
L → ψ†

Le
−iαL , (2.2b)

where ψR and ψL denote the right- and left-handed fields ψR ≡ 1
2 (1+γ5)ψ and ψL ≡ 1

2(1−γ5)ψ,
respectively. As the simplest Lagrangian that fulfills these requirements, they suggested

LNJL = ψ̄i/∂ψ + g0
(
(ψ̄ψ)2 − (ψ̄γ5ψ)

2
)
. (2.3)
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Apparently, the first term represents the kinetics of a Dirac spinor, while the last term represents
a four-fermion interaction. After the emergence of QCD with quarks as the fermionic degrees
of freedom, the original Nambu Jona-Lasinio (NJL) model was readily modified to describe
interacting quarks. Translating the above equations into a three-flavor quark model (consisting
of up, down and strange quarks), one requires invariance under UR(3) ⊗ UL(3) transformations

qR → eiλ·αRqR, qL → eiλ·αLqL, (2.4)

where λ denotes the flavor-space Gell-Mann matrices and where the corresponding expressions
for the hermitian conjugates have been omitted. The Lagrangian then reads [3]

L = qi/∂q +
gS
2

8∑

a=0

[
(q̄λaq)

2 + (q̄iγ5λaq)
2
]
, (2.5)

where the coupling constant gS has been redefined.
However, experimental mass measurements of the pseudoscalar meson η′ yielded a value that

was much heavier than the pion. This finding could hardly be explained in a model retaining
UA(1) symmetry, since that would require the η′ to be an (approximately) massless Nambu-
Goldstone boson. For this reason, in 1970, M. Kobayashi and T. Maskawa suggested a six-fermion
interaction term

Ldet = gD

(
det
i,j
qi (1 + γ5) qj + det

i,j
qi (1− γ5) qj

)
(2.6)

with the determinant being taken over the flavor space as a simple way to implement this axial
anomaly [27]. It is an easy task to check that this term is not conserved under transformations
(2.1b). Consequently, Ldet is only invariant under SUR(3) ⊗ SUL(3) ⊗ UV (1) but not under
UR(3) ⊗ UL(3) transformations. To account for the fact that chiral symmetry is also explicitly
broken (see above), a current quark mass term is introduced

LSB = −qmq, m = diag(mud,mud,ms), (2.7)

where mu = md = mud accounts for isospin symmetry. It should be noted that this term
explicitly breaks the chiral symmetry SUR(3)⊗SUL(3), but that this is only a “soft” symmetry
breaking as long as only small quark masses are applied.

The symmetries presented above also allow for further interactions to be included - even on the
level of four-fermion interactions. In this work, we want to discuss the vector-vector interaction.
For simplicity, we assume the vector channel to be independent of flavor and include it by
supplementing the Lagrangian with

LV = −gV (qγµq)
2. (2.8)

NJL models of this kind have been studied thoroughly in the past and are reviewed, for instance
in [3–5].

2.1.1. Mean-Field Approximation

The mean-field approximation (MFA), which is also reviewed in [3–5], presents us with a approx-
imation that simplifies calculations drastically. In this approximation, it is assumed that, for
all quantities A, fluctuations - i.e. deviations from the thermal average 〈A〉 - are small. Thus,
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expanding the Lagrangian to first order in qΓq around 〈qΓq〉 (where Γ = 1, γ5, γµ, γµγ5) yields
the expressions in the MFA. Then, the four-fermion interactions are approximated by

(qΓq)2 ≈ 〈qΓq〉2 + 2 (qΓq − 〈qΓq〉) 〈qΓq〉 = 2qΓq 〈qΓq〉 − 〈qΓq〉2 , (2.9a)

while the six-fermion interaction becomes

Q1Q2Q3 ≈ 〈Q1〉 〈Q2〉 〈Q2〉+ ((Q1 − 〈Q1〉) 〈Q2〉 〈Q3〉+ cyclic permut. )

= (Q1 〈Q2〉 〈Q3〉+ cyclic permut. )− 2 〈Q1〉 〈Q2〉 〈Q2〉 .
(2.9b)

with Q1...3 being qiqj or qiγ5qj with arbitrary i, j. The only expectation values considered to
have non-vanishing values are the chiral condensates σi ≡ 〈qiqi〉 (with i = u, d, s) and the quark
number density ρ ≡ 〈qγ0q〉. The condensates 〈qiqj〉 with i 6= j vanishes since it is assumed
that flavor is conserved. To be exact, the condensates 〈qiγ5qj〉, which corresponds e.g. to pions,
should be assigned with variables. Yet, by employing the gap equations, which will be introduced
in the next subsection, to determine the equilibrium state, it turns out that the pion condensates
vanish for any µ, T as long as the ground state is required to be homogeneous. Consequently,
they can be neglected from the beginning. Summarizing the above discussion, we arrive at the
Lagrangian

L = q
(
i/∂ + 2gV γ0ρ−M

)
q − gS

(
2σ2u + σ2s

)
+ gV ρ

2 − 4gDσ
2
uσs, (2.10)

where M = diag(Mu,Mu,Ms) with the constituent quark masses

Mu =mu,d − 2gSσu − 2gDσuσs,

Ms =ms − 2gSσs − 2gDσ
2
u.

(2.11)

Here, we have introduced only two different chiral condensates, since isospin symmetry is assumed
to be conserved and thus σu = σd. The question whether the MFA is a good approximation for
our applications will be addressed in Sec. 4.1.2.

2.1.2. Thermodynamic Potential

For the calculations in the present study, it is necessary to recall some relations from statistical
physics and finite-temperature quantum field theory (cf. [23]). First, we start with the grand
canonical partition function

Z ≡ Tr e−β(H−µN̂) =
∑

a

∫
dΨa 〈Ψa| e

−β(H−µN̂) |Ψa〉 (2.12)

with β ≡ T−1, the chemical potential µ and the quark number operator N̂ . The sum
∑

a

∫
dΨa is

carried out over all states Ψa. From the obvious analogy to the (real-time) transition amplitude
〈Ψa| e

−iHt |Ψa〉, it is found that after a transformation to imaginary time τ = it

Z =

∫
Diq†Dq exp

[∫ β

0
dτ

∫
d3x (L − µq̄γ0q)

]
, (2.13)

where the functional integral
∫
Diq†Dq covers all quark species. The grand canonical potential

can now be employed to define the effective potential

Ω ≡ −T lnZ. (2.14)
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Before we can calculate numerical values of Ω for the mean-field NJL Lagrangian (2.10), we have
to solve the functional integrals in (2.13). While the terms independent of q, q can be factorized
in Z and become simple summands in Ω, the first term of (2.10) can be taken care of by applying

ln

(∫
Diq†Dqeiq

†Aq

)
= ln detA = Tr lnA. (2.15)

In our case, a Fourier transformation of (2.13) leads to A = −iβ ((−iωn + µ− 2gV ρ)− γ0 ~γ~p− γ0M).
The so-called Matsubara frequency ωn is the transform of τ and one finds that ωn = (2n+1)πT ,
since the relevant q(~x, τ) have to fulfill the condition q(~x, 0) = −q(~x, β) as a consequence of
the trace operation and the antisymmetry condition of fermions. The sum over the Matsub-
ara frequencies is solved by converting the sum T

∑
ωn
f(iωn) into an integral of the function

1
4πif(p0) tanh

(
1
2βp0

)
over p0 with a closed integration path which includes all ωn. Then, the

integral can be solved by changing the integration path. This yields

ΩNJL/V =− 2Nc

∑

i=u,d,s

∫
d3p

(2π)3

(
Ei(p) + T ln

(
1 + e−β(Ei(p)−µ̃)

)
+ T ln

(
1 + e−β(Ei(p)+µ̃)

))

+ gS
(
2σ2u + σ2s

)
− gV ρ

2 + 4gDσ
2
uσs,

(2.16)

where the factor of 2Nc is due to the degeneracy in spin and color, the energy Ei(p) is given by

Ei(p) =
√
p2 +M2

i and µ̃ is defined by µ̃ ≡ µ− 2gV ρ. Note that the integral over the zero-point

energy - the first term in the momentum integral - diverges. This problem is circumvented by
simply applying an ultraviolet cutoff Λ to the integral. This is legitimate, since the parameters
of an effective model are fixed such that it reproduces certain physical results which are known
from experiment (cf. Sec. 2.1.3). Owing to this fixing of the parameters, an effective model
is limited to the energy scale on which the parameters were determined. Hence, there is no
problem in cutting of the momentum integral, as long as the integral is guaranteed to include
the relevant energy scale. To simplify numerical calculations, we apply the cutoff to the whole
integral instead of applying it solely to the zero-point energy. It also should be noted that only
the second and third terms in the momentum integral depend on T and µ and become 0 for
T = µ = 0. They apparently obey the Fermi-Dirac statistics of fermions and represent the
thermal energy of quarks (second term) and antiquarks (third term). The various interactions
are contained not only in the second line of (2.16), but also in the first line of the same equation
through Ei and µ̃.

From thermodynamics it is known that the equilibrium state (for fixed T , µ) is given by the
chiral condensates that minimize ΩNJL. Apparently, they have to fulfill the (necessary) stationary
condition

∂ΩNJL

∂ 〈 〉i
= 0 for 〈 〉i = σu, σs. (2.17)

The quark-number density ρ can be gained from the well-known thermodynamic relation

ρ = −
∂(Ω/V )

∂µ
, (2.18)

which is apparent, if the way how the chemical potential was included into the model is consid-
ered. It should be noted that the last equation is equivalent to condition

∂ΩNJL

∂ρ
= 0 (2.19)
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γµγ5

Figure 2.2: Feynman diagram used for the calculation of the pion decay constant fπ. The dashed
line denotes a pion, while the continuous ones denote quarks.

for gV 6= 0. The equations (2.17) and (2.19) are commonly referred to as the gap equations. When
employing the gap equations to determine the equilibrium, one has to keep in mind that there
may be more than one combination of condensates that solve these equations. In a numerical
calculation, the rootfinding procedure, therefore, has to be repeated for several starting values to
make sure all minima are obtained. From all obtained minima, the one with lowest Ω is chosen.

2.1.3. Model Parameters

In the above discussion, we have reviewed the tools necessary to calculate the equilibrium state
of our NJL model for given temperature T and chemical potential µ. However, in order to carry
out numerical calculations, numerical values need to be assigned to parameters in the model.
These parameters are the coupling constants gS , gD, gV , the quark masses mud, ms and the
three-momentum cutoff Λ.

We adopt the parameters from [3], where the parameters are fixed for a NJL model containing
the scalar and the determinant but not the vector interaction. We summarize the procedure that
provided the authors of [3] with their parameter set. First, it is assumed that mu,d = 5.5MeV,
which is argued to be well consistent with the range of 5 . . . 9MeV, that has been manifested
for mud at an energy scale of 1GeV by investigating meson and baryon spectra, QCD sum
rules and other means. The other parameters are then determined such that they reproduce the
experimental values

mπ = 138MeV, fπ = 93MeV, mK = 495.7MeV, mη′ = 957.5MeV (2.20)

at T, µ = 0, where mπ, mK and mη′ are the masses of the pion, the kaon and the η′ meson, while
fπ denotes the decay constant of the pion. For given test values, the meson masses are obtained
from the poles of the meson propagator in the random-phase approximation (RPA). For the η′,
one has to take care of the coupling to the η. The decay constant fπ on the other hand is gained
by evaluating the loop diagram displayed in Fig. 2.2. This leads to the parameter set

Λ = 631.4MeV, ms = 135.7MeV, gs = 3.67Λ−2, gD = −9.29Λ−5. (2.21)

It should be noted that the values which were used to fit the model parameters are those consid-
ered valid at the time [3] was written. Nowadays, slightly different values are anticipated [28].
For instance, the light quark mass is assumed to be within in a range of 2.5 . . . 5MeV, while
ms = 105+25

−35 MeV is assumed for the strange quark mass. Considering the uncertainties of these
values, we adopt the model parameters from [3], since they do not differ much from the “old”
values.
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The fact that the vector interaction is not included here is not important, since ρ turns out
to be 0 at zero chemical potential and the vector interaction does thus have no influence here.
There are studies, e.g. in the instanton-antiinstanton molecule model [29], which predict gV to
be of the order gS/4. Since we are interested in the influence of the vector interaction, we do not
assign a fixed value to gV here and will vary it as a free parameter.

2.2. PNJL Model

Although the NJL model introduced above has proved to be a very handy device to better
understand QCD, it fails to describe effects involving confinement. The Polyakov-loop extended
Nambu-Jona-Lasinio (PNJL) model aims to overcome this caveat by supplementing the NJL
model with additional order parameters describing confinement - the (traced) Polyakov loop [6].

2.2.1. Polyakov Loop

The Polyakov loop [30] has its origin in lattice gauge theory. There, in contrast to the NJL model,
the focus is put on the dynamics of gluons (the gauge bosons of QCD), while, in pure lattice gauge
theory, the dynamics of quarks is even neglected. The symmetry connected to confinement (being
obeyed in the confined phase and being broken in the deconfined phase) is the center symmetry
Z(3). The center symmetry can be expressed in the language of lattice gauge theory as the
symmetry under the transformation of the temporal link variable U4(τ = Nτ ) → zU4(τ = Nτ )
with zz† = z3 = 1 [31]. Apparently, the condition zz† = 1 allows for meson states to exist, while
the condition z3 = 1 gives rise to the existence of baryon states. This symmetry also applies to
the Polyakov loop L which is defined as [6]

L(~x) = P exp

[
i

∫ β

0
dτA4(~x, τ)

]
. (2.22)

Note that L is a matrix in color space. We have denoted the path ordering with P and the
temporal component of the gauge field with A4. The spatial components are assumed to have
no contribution. If this equation was to be expressed in lattice gauge theory, one would obtain
a sum of link variables.

In the PNJL model, the Polyakov loop contributes to the thermodynamic potential in two ways:
(i) through an effective potential depending on the Polyakov loop and the temperature and (ii)
through a coupling between the quarks and the Polyakov loop. The Polyakov-loop potential has
to be chosen such that the center symmetry is broken only dynamically. Consequently, it should
consist only of LL†, L3, L†3, T and constant factors. These conditions allow to construct an
ansatz that is fitted to data from lattice gauge theory. In this work, we adopt the logarithmic
potential

Ωpol(ℓ, ℓ̄, T ) = −0.03Λ3V T
(
54e−664MeV/T ℓℓ̄+ ln

[
1− 6ℓℓ̄− 3(ℓℓ̄)2 + 4(ℓ3 + ℓ̄3)

])
(2.23)

from [7]. ℓ and ℓ̄ denote the traced Polyakov loop given by

ℓ ≡
1

Nc
〈TrcL〉 , ℓ̄ ≡

1

Nc

〈
TrcL

†
〉
, (2.24)

where the trace Trc only runs over color space. The choice of the potential, however, is not
unambiguous. [6] and [8], for instance, construct PNJL models employing other potentials. The
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coupling to quarks can be elucidated by recalling that the gauge field couples to the quarks in the
QCD Lagrangian through −qi /Aq (Note, that the coupling constant and the Gell-Mann matrices
usually apparent in QCD have been absorbed into Aµ here). The coupling to quarks is thus
equivalent to an imaginary quark chemical potential. Employing the Polyakov loop, one finds
that the thermal energy of quarks and antiquarks in (2.16) turns into

−2T
∑

i=u,d,s

∫
d3p

(2π)3

(
ln det

c

[
1 + Le−β(Ei(p)−µ̃)

]
+ ln det

c

[
1 + L†e−β(Ei(p)+µ̃)

])
(2.25)

with the determinant over color space detc. It should be noted that, due to this term, center
symmetry is explicitly broken in the PNJL Lagrangian. Consequently, the Polyakov loop is no
longer a well-defined order parameter. This fact leads to a smoothening of the phase transition
of confinement for calculations employing the PNJL model (as it does for comparable lattice
calculations) [9].

Taking the thermal average over the determinants in (2.25) yields [7]
〈
det
c

[
1 + Le−β(Ei(p)−µ̃)

]〉
=1 + e−3β(Ei(p)−µ̃) + 3ℓe−β(Ei(p)−µ̃) + 3ℓ̄e−2β(Ei(p)−µ̃),

〈
det
c

[
1 + L†e−β(Ei(p)+µ̃)

]〉
=1 + e−3β(Ei(p)+µ̃) + 3ℓ̄e−β(Ei(p)+µ̃) + 3ℓe−2β(Ei(p)+µ̃).

(2.26)

This average is employed as the mean-field expression for the thermal energy and we arrive at
the thermodynamic potential of our PNJL model

ΩPNJL

V
=− 2

∑

i=u,d,s

∫ Λ

0

d3p

(2π)3

(
3Ei(p) + T ln

(
1 + e−3β(Ei(p)−µ̃) + 3ℓe−β(Ei(p)−µ̃) + 3ℓ̄e−2β(Ei(p)−µ̃)

)

+T ln
(
1 + e−3β(Ei(p)+µ̃) + 3ℓ̄e−β(Ei(p)+µ̃) + 3ℓe−2β(Ei(p)+µ̃)

))

+ gS
(
σ2u + σ2d + σ2s

)
− gV ρ

2 + 4gDσuσdσs +Ωpol(ℓ, ℓ̄, T )/V.

(2.27)

From this expression, it is obvious that at µ = 0 - which is, as mentioned above, equivalent
to µ̃ = 0 - (2.27) is symmetric to ℓ ↔ ℓ̄ and consequently ℓ = ℓ̄ due to the gap equations.
Furthermore, it is an easy task to check that ℓ, ℓ̄ → 0 for T → 0 and that ℓ, ℓ̄ → 1 for T → ∞.
If ℓ, ℓ̄ = 0 is inserted into (2.27), the thermal energy yields the Fermi-Dirac distribution of a
particle with three times the energy and chemical potential of quarks. Hence, it can be identified
with baryons in the confined phase. On the other hand, if (2.27) is evaluated for ℓ, ℓ̄ = 1, the
thermal energy yields three times the Fermi-Dirac distribution of (single) quarks and the NJL
expression is recovered. In this case, the potential describes the deconfined phase. Since, at
T = 0, our model is equivalent to the model for which the parameters (2.21) were determined
in [3], we can adopt those parameters. Analogously to (2.17) and (2.19), the values ℓ and ℓ̄ are
determined by solving the stationary condition

∂ΩPNJL

∂ℓ
= 0,

∂ΩPNJL

∂ℓ̄
= 0. (2.28)

The model employed in the present work is identical to the one used in [7] except for the cutoff
scheme. While, in [7], the three-momentum cutoff is only applied to the non-thermal part (the
first term in the brackets) of the momentum integral in (2.27), the cutoff is applied to the whole
integral in the present context.
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2.3. Restrictions of the Model

Before proceed to the next section, we shall briefly recall some limitations of our model.

• The model parameters are fixed at T = µ = 0 (cf. Sec. 2.1.3). In QCD, the interaction
between quarks occurs by exchanging gluons, while the quark-quark interactions of the
NJL model are only effective interactions. There is no reason to expect that the coupling
constants of these effective interactions stay constant for all T and µ. As it is pointed out
in [6], it should be expected, for instance, that the quark-quark coupling depends on the
Polyakov loop.

• A great part of the strategy in constructing effective models is to pick the aspects which
are relevant for a certain problem. As mentioned above, a CSC phase with diquarks as the
relevant order parameters is predicted for low temperature and finite chemical potential
(see [11] for a review). For three quark flavors, the diquark condensate can be defined as

∆AA′ ≡
〈
qTγ5λ

f
Aλ

c
A′q
〉
, where C ≡ iγ2γ0 and λfA and λcA′ are the antisymmetric generators

of flavor and color SU(3) symmetry, respectively, with A,A′ = 2, 5, 7 [5]. Apparently,
diquarks cannot be color neutral. Including both, the Polyakov loop and diquarks, into the
same NJL-like model is a difficult - and so far an unsolved - task [32]. This point will be
addressed again at the end of this work in Sec. 6.

• We have chosen to apply the mean-field approximation. This means that fluctuations are
assumed to be small which is rather questionable especially near the phase transition. This
point will be addressed in Sec. 4.1.2.

• The explicit representation of gluons has been reduced to the static Polyakov loop. There-
fore, our model is not able (and does not aim) to reproduce the dynamics of gluons. The
Polyakov loop should rather be interpreted as a tool that merely intends to describe the
“shadow” of confinement cast on quarks.

Consequently, the success of the PNJL model in reproducing results from lattice calculations -
even for higher-order fluctuations - is rather surprising. Nevertheless, the PNJL model provides
us with a device to easily investigate the region around the critical point - a domain of the phase
diagram that is not accessible for e.g. lattice QCD.
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3. Phase Diagram

As already mentioned in the last section, the physical values of the condensates has to be de-
termined for any temperature and chemical potential by solving the system of gap equations
∂Ω
∂〈 〉i

= 0 and choosing the solution with the lowest thermodynamic potential. The results for the

PNJL model with gV = 0 are illustrated in Figs. 3.1 and 3.2.

Considering Fig. 3.1(a), two different areas in the T -µ diagram can be identified: one with
non-vanishing values of σu and one with σu ≈ 0. Following [24], we refer to the first one as
the Nambu-Goldstone (NG) phase and to the second one as the Wigner phase. One notes that
although the difference between the phases is most pronounced for σu, differences are notable
for all condensates. In the Nambu-Goldstone phase, we find that the chiral condensates take
values of σu = −1.504 · 107 MeV3 and σs = −1.904 · 107 MeV3 which leads to constituent quark
masses of Mu = 335MeV and Ms = 528MeV [3]. These masses are in good accordance with the
constituent quark masses known for the hadronic phase of QCD. It can also be observed that
the traced Polyakov loop vanishes which indicates confinement as discussed in the last section.
The picture in the Wigner phase, however, is not as clear as in the Nambu-Goldstone phase.
The only condensate taking a(n approximately) constant value is σu. In particular, it should be
noted that ℓ and ℓ̄ are small for low T even in the Wigner phase. This observation is not only
made for our model and other PNJL models [33], but is found to be even more distinct if one
considers the limit of a large number of colors Nc [34].

In addition, two different kinds of transitions between the phases can be identified in Figs. 3.1
and 3.2. On the one hand, at low temperatures, the transition is characterized by a discontinuity
in the order parameters. This type of phase transition is termed first-order phase transition.
For low chemical potential, on the other hand, a cross-over - an analytical transition from one
phase to the other occurs. Note that, since the cross-over is smooth, one should think of the
transition as an area with a finite width instead of happening on a distinct line. The point where
the first-order phase transition ends is commonly referred to as the critical (end) point (CP).
Relating both scenarios to the thermodynamic potential Ω, the situation is found to be similar
to the one sketched below (cf. [24]):

first-order phase transition: cross-over:

Ω

σ

σ1σ2

Ω

σ

σ1

where we have simplified the problem to one order parameter σ. For the area near the first-order
phase transition, a second minimum - besides the global one at σ1 - is present at σ2. As the
phase transition is approached, Ω(σ2) − Ω(σ1) becomes smaller, vanishes when the transition
line is reached and becomes negative beyond the phase transition (meaning that, then, σ2 is the
global minimum). Near the CP, σ1 − σ2 decreases as the CP is approached and vanishes when
the CP is reached (meaning that the minima are unified there). As for the cross-over (cf. right
sketch), the transition is determined by only one minimum at σ1. As one moves from one phase
to the other, σ1 continuously approaches the value of the target phase.
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Figure 3.1: The solution of the gap equations for the various condensates in the PNJL model with gV = 0 over the temperature T
and the chemical potential µ. The chiral condensates are normalized to their values at T = µ = 0. No normalization is
applied for the Polyakov-loop order parameters.
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Figure 3.2: The quark number density ρ in units of (MeV)3 in the PNJL model with gV = 0 over
the temperature T and the chemical potential µ.

We have plotted the phase diagram for the PNJL model with gV = 0 in Fig. 3.3(a). As for the
cross-over, we have chosen to indicate it with the line where the chiral u-quark susceptibility χuu,
which we will discuss in the next section, takes its maximum for a fixed ratio of T and µ. Note
that there is no established criterion to draw a cross-over line and that choosing other criteria,
for instance the line where σu takes 50% of its maximum value, yield slightly different results. It
should be mentioned that, as it is done e.g. in [7], cross-over lines could also be drawn for the
strangeness transition and the confinement-deconfinement transition. We have omitted them in
Fig. 3.3(a), since, with their definition being rather arbitrary, such lines would carry only little
information relevant for the further discussion.

As we have already seen in Fig. 2.1, the position of the critical point is highly sensitive to the
chosen effective model and its parameters. Since the coupling constant of the vector interaction
gV will be varied, it is important to determine the critical point for each value. We have depicted
the critical points for several values of gV in Fig. 3.3(b). We remark that an increase in gV makes
the position of the critical point decrease in temperature and increase in chemical potential. A
similar graph, where the coupling constant of the determinant interaction gD has been varied, is
shown in [7].

Note that a first-order phase transition and thus a critical point is only present in the model,
if gV is smaller than approx. 0.205gS . For this reason, we will vary gV only up to 0.1gS and not
up to 0.25gS as one would assume from Sec. 2.1.3.
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Figure 3.3: The phase diagram in the PNJL model without vector interaction (a) and the critical
point(s) calculated in the PNJL model for different values of gV (b). Numbers to the
right of the points indicate the corresponding value of gV .
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4. Susceptibilities

In this section, we want to put the model developed in Sec. 2 to work and consider fluctuations.
Although we have neglected fluctuation terms by applying the mean-field approximation, it is
possible to calculate fluctuations as perturbations around the ground state. The susceptibilities
χab are quantities that are often used to treat lowest-order fluctuations and we define them as

χab ≡ 〈AB〉c = −
d2(Ω/(V T ))

dmadmb
, (4.1)

where A, B are operators and a, b are the indices assigned to the respective susceptibilities (one
for each derivation). ma, mb are dimensionless mass terms connected to A and B by a term
maA in the Lagrangian. In our model, the term containing the explicit quark mass represents
the aforementioned mass term for the chiral condensates, while the term containing the chemical
potential takes this role for ρ. Note that we have to divide the explicit quark masses and the
chemical potential by T to obtain the masses ma, mb used in (4.1). So far, there are no mass terms
for the Polyakov-loop order parameters immanent in our model. Therefore, we add a source term
to the Polyakov-loop potential: Ωpoly → Ωpoly − TV (ηℓ + η̄ℓ̄) with η = η̄ = 0 analogously to
[7]. Summarizing the above, we can associate mass terms to each operator as shown in the table
below. It should be noted that our definition differs from the “usual” definition used e.g. in

A ūu, d̄d s̄s 1
3TrcL

1
3TrcL

† q†q

〈A〉 σu σs ℓ ℓ̄ ρ

a u s ℓ ℓ̄ µ

ma mu,d/(2T ) ms/T η η̄ µ/T

Table 4.1: Summary of the operators for which we calculate the susceptibilities, the notation we
use for the corresponding thermal average and the index of the susceptibility as well
as the mass term used for the differentiation in (4.1).

[3, 13, 16, 17, 19]1 by a factor T for the susceptibilities of the chiral condensate and the quark-
number density. Since our definition is closer to the corresponding second-order fluctuations [13],
it is probably the better choice for our application.

It can be shown that [16, 17]

χ = −T lim
~q→0

χ(0, ~q) = −T lim
~q→0

ReΠR
00(0, ~q) (4.2)

with the response function χ(ω, ~q) and the retarded Green’s function of the response function

ΠR
µν(ω, ~q) = T

[
FT
(
−iθ(t)

〈
[jµ(t, ~x), jν(0, 0)]−

〉)]
, (4.3)

where FT denotes the Fourier transform, θ(t) the Heavyside function and jµ(t, x) the current
corresponding to the susceptibility. Due to the limit ~q → 0, susceptibilities are quantities repre-
senting fluctuations with a long (infinite) correlation length. Bearing in mind that the physics of
fluctuations is a much wider field, we want to focus on this kind of fluctuations which are often
termed the hydrodynamic modes.

1For instance, the quark-number susceptibility is defined as χµµ = ∂ρ

∂µ
.
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The actual calculation of the susceptibilities is straightforward. The total derivative of Ω/(V T )
is calculated, the gap equations ((2.17), (2.19) and (2.28)) are applied and the resulting expression
is differentiated once more to find

χab = −
∂2(Ω/(V T ))

∂ma∂mb
−
∑

i

∂2(Ω/(V T ))

∂ma∂ 〈 〉i

d 〈 〉i
dmb

, (4.4)

where the sum runs over all condensates 〈 〉i ∈ {σu, σs, ℓ, ℓ̄, ρ}. As the condensates themselves,

their derivatives
d〈 〉i
dmb

are determined by the gap equation. One now has to solve the system of
linear equations which is obtained by differentiating the gap equations

∂2(Ω/(V T ))

∂ 〈 〉j ∂mb
+
∑

i

∂2(Ω/(V T ))

∂ 〈 〉j ∂ 〈 〉i

d 〈 〉i
dmb

= 0. (4.5)

4.0.1. Susceptibilities at µ = 0

Before discussing the behavior of susceptibilities near the critical point, let us briefly discuss
susceptibilities at µ = 0. We have depicted some susceptibilities in Fig. 4.1. Since we want to

0.0
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3.e-07
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χ
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0
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2

χss/(V σs0)
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2σu0σs0)

χℓℓ̄
χµµ/(V ρ

′
0)

2

Figure 4.1: The susceptibilities of the two chiral condensates σu and σs, the quark number suscep-
tibility χµµ and the mixed susceptibilities for χℓℓ̄ at µ = 0. All susceptibilities, except
χµµ, are normalized to the values given in (4.6). Since there is no maximum value
for ρ, we arbitrarily set ρ′0 = 107 (MeV)3. Additionally, all susceptibilities w.r.t. con-
densates which have the unit of a density are normalized with corresponding factors
of V .

compare the magnitudes of the various susceptibilities, we have scaled the values of the chiral
and Polyakov-loop susceptibilities with corresponding factors of the maximum values of the
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condensates

σu0 = 1.504 · 107 (MeV)3, σs0 = 1.904 · 107 (MeV)3, ℓ0 = ℓ̄0 = 1. (4.6)

As for the quark-number density ρ, there is no upper limit as it may be guessed from Fig. 3.2.
Therefore, we arbitrarily choose to scale it with ρ′0 = 107 MeV3. From Fig. 4.1, one immediately
makes the following observations: Firstly, as it was already found in Fig. 3.1, the phase transi-
tion is most clearly represented in the chiral susceptibility of up-quarks χuu, while it is hardly
noticeable for χss and χµµ. Secondly, the peaks of the susceptibilities, for instance those of χuu

and χℓℓ̄, appear at different temperature. This can be interpreted as a hint that the chiral and
the confinement-deconfinement phase transitions do not occur at the same temperature in our
model. Note that the differences in the susceptibilities given here compared to those presented
in [7] arise from the different cutoff scheme and from the different definition of susceptibilities.
These two differences are also responsible for the fact that there is no peak apparent for χss in
Fig. 4.1, while it is clearly visible in [7].

4.1. Susceptibilities near the Critical Point

Let us now turn to the phase transition at finite µ. In Fig. 4.2, we have displayed the quark
number susceptibility χµµ on a mesh following the phase transition. It is observed that the
susceptibility has a singularity at the CP. This feature is often used as a tool to determine
the position of the critical point of a model and has also been used to determine the data for
Fig. 3.3(b). Moreover, this singularity in susceptibilities has been suggested as a possible device
to probe for the QCD critical point in heavy-ion collision experiments [15]. It is found that
the peak is elongated along the phase transitions and that a discontinuity is apparent for the
first-order phase transition. It is instructive to plot the susceptibility over the distance to the
CP in a log-log plot as it is done in Fig. 4.3(b) for χµµ. It turns out that, close to the CP, the
susceptibility is linear in the log-log plot and is thus proportional to ra with the distance to the
critical point r and the so-called critical exponent a. Depending on the direction from which the
CP is approached, a takes different values. This dependence is well known [18, 35]. In mean-field
theories, the critical exponent is known to be approximately 1 if the CP is approached parallel
to the phase transition, while it is approximately 1−1/d with d = 3 being the dimension for any
other direction. The fact that mean-field theories with the same symmetries share this feature
is known as universality. Our results are displayed in Tab. 4.2. Note that the error given in

first-order PT Wigner phase cross-over NG phase

gV = 0 -1.028(3) -0.672(3) -0.990(1) -0.714(6)
gV = 0.05gS -1.028(3) -0.668(4) -0.989(1) -0.718(6)
gV = 0.1gS -1.034(3) -0.679(3) -0.989(1) -0.712(5)

Table 4.2: The critical exponents determined for the log-log plot of χµµ (Fig. 4.3(b)) through
a least-square fit. The values in brackets show the fitting error. If necessary, the
functions were truncated at the right end such that the fitting errors are small.

brackets does only display the error returned from the fitting routine. For instance, the error
in the determined value of the CP or non-critical contributions to the susceptibility may not
be completely covered by the fitting error. The fact that we have defined the susceptibilities
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Figure 4.3: The quark number susceptibility χµµ over the distance to the critical point as a log-
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model with gV = 0.05gS and gV = 0.1gS .
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differently from the usual definition mentioned at the beginning of this section is found to lead
to a deviation of about 2%.

We do not find any evidence that the vector interaction has an influence on the critical expo-
nent2, while it clearly does have an influence on the total magnitude of the susceptibilities. We
find the magnitude to be diminished for increasing gV . Note that, with the usual definition of
susceptibilities mentioned above, susceptibilities become enhanced and that the discrepancy is
due to the fact that the critical point decreases in temperature for increasing gV . This enhance-
ment becomes even stronger, if one considers dimensionless susceptibilities used in [7], where
factors of T are multiplied such that the susceptibilities become dimensionless.

Note that the divergence described above is not unique to the quark number susceptibility,
but is observed - more or less pronounced - for all susceptibilities. We have illustrated this for
some selected susceptibilities calculated for an approach along the first-order phase transition in
Fig. 4.4, where we have used (4.6) and

ρ0 =
NfNc

3

(
µ3

π2
+ T 2µ

)
(4.7)

to normalize the susceptibilities.

2This does not come as a surprise, since the value of the vector-interaction coupling constant does not influence
the character of the model.
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Figure 4.5: The mesh on which we determine the critical mode.

4.1.1. Critical Mode

Let us now consider the mechanism which leads to the behavior described above. It is possible
to rewrite (4.4) and (4.5) into one expression

χab = −
∂2(Ω/(V T ))

∂ma∂mb
−
∑

i,j

∂2(Ω/(V T ))

∂ma∂ 〈 〉i

(
∂2(Ω/(V T ))

∂ 〈 〉 ∂ 〈 〉

)−1

i,j

∂2(Ω/(V T ))

∂ 〈 〉j ∂mb
, (4.8)

where ∂2(Ω/(V T ))
∂〈 〉∂〈 〉 is the Hessian matrix of Ω/(V T ). Apparently, if the susceptibilities have a

singularity it must arise from the Hessian matrix as long as Ω is analytic. The fact that the
singularity arises at the critical point can be easily elucidated if one considers the Landau theory
[13], where we only have one order parameter. In this situation which basically corresponds to
that sketched in Sec. 3, the two minima responsible for the first-order phase transition evidently
merge at the critical point, since the solution of the gap equations is continuous beyond the CP.
Then, the distance between the two equivalent minima is infinitesimal and the curvature has to
be 0. Since the curvature corresponds to the Hessian matrix in (4.8), this does inevitably lead
to a singularity in the susceptibilities.

However, our model accommodates several order parameters. Hence, it is interesting to in-
vestigate what kind of excitation from equilibrium is responsible for the singularity. In order to
accomplish this, we have to identify the eigenvalue that becomes 0 at the critical point and the
corresponding eigenvector. This eigenvector is commonly referred to as the critical or soft(ening)
mode.

For this investigation, we supplement the mesh from Fig. 4.3(a) with additional data points
and evaluate the eigensystem for a mesh as it is given in Fig. 4.5. Again, we normalize the
Hessian matrix by factors of (4.6) and (4.7) and carry out the calculation for gV = 0.01gS and
gV = 0.1gS to identify the eigenvalues which become 0 at the CP and are depicted in Fig. 4.6 with
those of the critical modes. We find that the eigenvalues differ only slightly in magnitude which
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Figure 4.6: The eigenvalue of the matrix ∂2Ω
∂〈 〉i∂〈 〉j

which is responsible for the softening behaviour,

i.e. the eigenvalue goes to zero near the critical point. Colored lines mark the heights
labeled on the z-axes.

is not surprising at all, since the scaling behavior found in Fig. 4.4 has no strong dependence
on gV . Considering the corresponding eigenvector, we find that its components strongly depend
on the vector interaction. We have illustrated the components of the normalized eigenvector for
gV = 0.01gS and gV = 0.1gS in Figs. 4.7 and 4.8. For both values of gV , we find that σu has
the largest contribution to the eigenvector while the contribution from σs is rather small. The
contributions from ℓ and ℓ̄ seem to be of some importance in the NG phase, while they vanish as
the phase transition is approached and their influence seems to be negligible in the Wigner phase.
Hence, the critical mode seems to be determined primarily by fluctuations in ūu, d̄d and q†q.
The fluctuations in the quark number susceptibility gain importance near the CP. One observes
that this gain is rather steep for gV = 0.01gS and widespread for gV = 0.1gS . We conclude that
the signature of the CP in the critical mode takes a larger area of the phase diagram if gV is
large.

4.1.2. Ginzburg-Levanyuk Criterion

In this section, we want to inspect whether the mean-field approximation introduced in Sec. 2.1.1
is a legitimate approximation or not. For this purpose, we succinctly review the Ginzburg-
Levanyuk criterion following [13] and will discuss it afterwards. For simplicity, we again consider
a Landau theory with only one order parameter σ. Then, we can expand the thermodynamic
potential in σ for given (µ, T ) around the equilibrium state as

Ω(∆σ)/V = Ω0 + (∆σ)2a+ (∆σ)4b. (4.9)

Since fluctuations occur locally, we also have to expand Ω with respect to spatial derivatives of σ.
Nevertheless, because we are only interested fluctuations with a long wavelength, it is sufficient
to add a term

g (∇(∆σ))2 , (4.10)
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Figure 4.7: The σu-, σs- and ℓ-components of the eigenvector corresponding to the critical mode
for gV = 0.01gS and gV = 0.1gS presented in Fig. 4.6. Colored lines mark the heights
labeled on the z-axes. The eigenvector is normalized to a length of 1.
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Figure 4.8: The ℓ̄- and ρ-components of the eigenvector corresponding to the critical mode for
gV = 0.01gS and gV = 0.1gS presented in Fig. 4.6. Colored lines mark the heights
labeled on the z-axes. The eigenvector is normalized to a length of 1.

where cubic symmetry is assumed3. Requiring that a homogenous body is stable, g > 0 has to
hold. Conversely speaking, if g < 0, the physically preferred phase is inhomogeneous. The part
of the potential which is responsible for fluctuations can thus be written as

∆Ω =

∫
dV
[
a(∆σ)2 + g (∇(∆σ))2

]
= V

∫
d3k

(2π)3
(gk2 + a)∆̃σ(~k)∆̃σ(−~k). (4.11)

For the second step, a Fourier transformation has been applied. Calculating the expectation
value of ∆σ~k∆σ−~k

from the partition function yields the intermediary result

〈
∆̃σ(~k)∆̃σ(−~k)

〉
=

T

2V (gk2 + a)
. (4.12)

With the help of this relation, the correlation function

G(~r) =
〈
∆σ(~0)∆σ(~r)

〉
= V

∫
d3k

(2π)3

〈
∆̃σ(~k)∆̃σ(−~k)

〉
ei
~k~r =

T

8πgr
e−r/rc , (4.13)

3All first-order and all other second-order terms can be included into g or contribute only as surface terms after
volume integration.
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where rc =
√

g

a is the correlation radius, can be evaluated.

Now, the Ginzburg-Levanyuk criterion can be formulated. To ensure that fluctuations are
sufficiently small so that the MFA is a good approximation, the mean square fluctuation (the
susceptibilities defined in (4.1)) averaged over the correlation volume r3c is required to be small
compared to the magnitude of σ2 which is estimated as a/b. Applying that the mean square
fluctuation is of order T

aV in the expansion (4.9), we readily arrive at the Ginzburg-Levanyuk
criterion

T 2b2

g3a
≪ 1. (4.14)

Before employing the criterion, we have to translate (4.14) to our model. From the discussion
in Sec. 4.1.1, it is apparent that the eigenvector of the critical mode takes over the role of the
order parameter σ in the Landau theory. Consequently, a and b are obtained by calculating the
second and the fourth derivative of the thermodynamic potential in direction of the eigenvector,
respectively. However, obtaining g is much more involved and it already has been done for the
NJL model in [17]. Because the calculation is rather lengthy and tedious, we only outline the
general procedure here and present the differences compared to [17] and the resulting formulas in
Appendix A. As for contributions of the chiral-condensates and the quark-number density, the
thermodynamic potential is expanded in qq and q†q and the second-order terms - the polarization
functions - are considered. It should be noted that this has to be done before the trace operation.
Differentiating the momentum-space polarization function with respect to the momentum twice
and putting q = 0 afterwards yields the contributions of the chiral condensates and the quark
number density. Nevertheless, determining the contributions of the gauge field is not an easy
task. In Sec. 2.2, we have introduced the Polyakov loop as a rather abstract non-local order
parameter. As a consequence, an approach similar to that of the quark contributions is not
applicable here. For this reason, we confine ourselves to the quark contributions to g. Recalling
that the contributions of the Polyakov loop to the eigenvector of the critical mode are comparably
small, we may assume that the error made by neglecting the Polyakov loop contributions is not
too big.

As we have already done in the last subsection, we evaluate the expansion coefficients necessary
to calculate the Ginzburg-Levanyuk criterion on the mesh given in Fig. 4.5. Then, the second-
order coefficient a is given by the eigenvalue of the critical mode (Fig. 4.6). The results for the
fourth-order coefficient b and the coefficient of the derivative g are illustrated in Fig. 4.9.

For g, we find that it approaches 0 near the critical point and is small along the phase transition.
As we have observed for the critical mode, here, too, a stronger coupling of the vector interaction
leads to a smoother decrease. For gV = 0.1gS , g is observed to even change its sign in a small
area of the phase diagram (indicated by the orange line in Fig. 4.9(b)), a behavior which is
at first unexpected. This could be explained by the fact that the sign change only happens in
the NG phase, and this behavior might thus be caused by the missing contributions from ℓ, ℓ̄.
Although these contributions could make g (taken in the direction of the critical mode) positive,
the implication that the favored phase is inhomogeneous for some components suggests that it
is inhomogeneous for all components - even if our model predict g > 0 for other components.
This is because our model is incapable of dealing with inhomogeneous phase. Nevertheless,
there are calculations in the NJL model considering inhomogeneous phases which also exhibit
a change of sign near the critical point. This means that the preferred phase might in fact be
inhomogeneous. According to [36], in some areas of the phase diagram, the phase transition
(as displayed in Fig. 3.3(a)) should be substituted with two second-order phase transition lines

25



-10

-5

0

5

10 -10
-5

0
5

10

-2.5e+13

-2e+13

-1.5e+13

-1e+13

-5e+12

0

µ − µc [MeV]

T − Tc [MeV]

(a) −g, gV = 0.01gS

-10

-5

0

5

10 -10
-5

0
5

10

-2.5e+13

-2e+13

-1.5e+13

-1e+13

-5e+12

0

5e+12

µ − µc [MeV]

T − Tc [MeV]

(b) −g, gV = 0.1gS

-10

-5

0

5

10 -10
-5

0
5

10

-5e+09
0

5e+09
1e+10

1.5e+10
2e+10

2.5e+10
3e+10

3.5e+10
4e+10

µ − µc [MeV]

T − Tc [MeV]

(c) b, gV = 0.01gS

-10

-5

0

5

10 -10
-5

0
5

10

-1e+10

0

1e+10

2e+10

3e+10

4e+10

5e+10

µ − µc [MeV]

T − Tc [MeV]

(d) b, gV = 0.1gS

Figure 4.9: The quark contributions to expansion coefficient g ((a) and (b)) and the expansion
coefficient b ((c) and (d)). Colored lines mark sign changes of the functions.

delimiting the inhomogeneous phase. The point where these two lines then intersect is referred
to as Lifshitz point. Calculations in the NJL model have shown that for gV = 0, the critical point
coincides with the Lifshitz point. The CP is found inside the inhomogeneous phase4 for gV > 0
since the Lifshitz point does not decrease in temperature for increasing gV [37]. Our finding of
a sign change only for gV = 0.1gS and not for the rather small gV = 0.01gS might reflect the
results of [37]. However, it should be noted that, in the present study, g is only evaluated in
direction of the critical mode and that, thereofore, Figs. 4.9(a) and (b) do not allow an in depth
discussion of inhomogeneous phases.

As a side note, it is interesting to note that the fourth-order coefficient b changes its sign close
to the critical point - as it is displayed by the blue line in Figs. 4.9(c) and (d). This may be
understood as a indication that our model is close to a massless theory (i.e. mu,d = ms = 0),

4It should be clarified that, in this case, the critical point does not exist, if the inhomogeneous phase is considered.
The critical point to which we refer here is the critical point which is found, if the inhomogeneous phase is not
considered.
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where the critical point turns into a tricritical point (TCP). In that case, b would have to be 0
at the (tri)critical point.

Calculating the Ginzburg-Levanyuk criterion for the expansion coefficients given above, we
obtain Fig. 4.10. Defining the critical region as the region in the phase diagram where the
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Figure 4.10: The left hand side of the Ginzburg-Levanyuk criterion (4.14) for gV = 0.01gS and
gV = 0.1gS plotted with a logarithmic z-axis. The divergence for gV = 0.1gS is due
to the change of sign in g.

Ginzburg-Levanyuk criterion is not small, we observe that the critical region occupies a rather
small area of the phase diagram. Near the cross-over, we again find enhanced values for gV =
0.1gS compared to gV = 0.01gS . As a consequence of change of sign in g, their exists a small
region around the CP which is stretched along the phase transition in the NG phase, where the
Ginzburg-Levanyuk criterion diverges. As mentioned above, g < 0 implies that inhomogenous
phases are preferred which contradicts our model, since we have assumed global order parameters.
Hence, it is only consistent that the Ginzburg-Levanyuk criterion deems our model to be a bad
approximation in this region of the phase diagram. Departing from the CP into the Wigner
phase, the behavior of the Ginzburg-Levanyuk criterion is mainly determined by the fourth-
order coefficient b changing its sign and the behaviors for gV = 0.01gS and gV = 0.1gS resemble
each other.

Since the ratio b/a was introduced as a characteristic magnitude of the order parameter, the
case that b/a vanishes should be ruled out in a model where the CP is almost a TCP. For
instance, if the sixth-order expansion coefficient c is available, one could substitute b/a with√

(b/a)2 + c/a to circumvent the problem. However, the unknown contribution of the Polyakov
loop to g poses a much bigger problem in evaluating the Ginzburg-Levanyuk criterion, since only
small contributions to g are necessary to significantly change the result presented int Fig. 4.10 -
particularly the size of the region where the criterion diverges. Nevertheless, it seems to be save
to conclude that a stronger vector interaction leads to a broader critical region. We also observe
that the critical region - and thus the region where the MFA is a bad approximation - is a (rather
small) region around the CP which is stretched along the phase transition. This fact does not
come as a surprise since, in the MFA, susceptibilities can only be treated as perturbations from
the ground state.
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5. Higher Moments

In this section, we want to investigate higher-order fluctuations - i.e. the third and fourth mo-
ments5. Recently, both have been suggested as possible probes for the QCD critical point in
heavy-ion collision experiments. For instance, it has been suggested that, contrary to suscep-
tibilities, third moments change their sign as rhe phase transition is crossed which may allow
for additional information being gained from experimental data [20]. In addition, higher-order
fluctuations diverge with a higher critical exponent than susceptibilities and might thus give
stronger hints on the position of the CP in the phase diagram than susceptibilities [21]. As
another important application, higher-order moments are often used to check whether effective
theories are able to reproduce lattice calculations [9, 38]. Since lattice calculations are limited
to µ = 0, higher-order moments w.r.t. µ are crucial because they allow for expansions to finite
chemical potential. In this case, the focus is put on the behavior of moments (also of even
higher order) on the T -axis. In the present study, we are interested in the first application and
investigate how third and fourth moments behave near the critical point.

We define the third and the fourth moments in analogy to the susceptibilities as

χabc ≡ 〈ABC〉c = −
d3(Ω/(V T ))

dmadmbdmc
and (5.1)

χabcd ≡ 〈ABCD〉c = −
d4(Ω/(V T ))

dmadmbdmcdmd
(5.2)

with the masses ma . . .md outlined in Tab. 4.1. They are calculated by further differentiating

(4.4). Similarly to
d〈 〉i
dmb

in Sec. 4, the derivatives
d2〈 〉i

dmbdmc
and

d3〈 〉i
dmbdmcdmd

are obtained by inverting
derivatives of the gap equations. Since this is straightforward but rather lengthy, we omit the
corresponding formulas here, but give them in Appendix B. It should be noted that, in general,
the method described in the Appendix can easily be extended to arbitrarily high orders. However,
with increasing order more and more derivatives of Ω are needed for the evaluation. In order to
allow for an easier coding of the numerical calculations of the higher-order moments, we have
employed the method of “automatic differentiation” (AD) [39].

5.1. Third and Fourth Moments near the Critical Point

To investigate the behavior in the vicinity of the critical point, it is instructive to not only
evaluate the higher-order moments in radial direction but also on a circle around the critical
point. In Fig. 5.1, we present the susceptibilities, the third and fourth moments of the quark
number susceptibilities for gV = 0, 0.05gS , 0.1gS on a circle around the respective critical points
with a radius of 0.1MeV.

As it could be expected from the discussion in the last section, the susceptibilities have a peak
at both phase transitions. As pointed out in [20], we observe that the third moments are negative
on the side of the phase transition that lies in the Wigner phase and are positive on the side
of the NG phase. As for the fourth moments, we find two small positive peaks separated by a
narrow but much larger negative peak at the cross-over, while we observe a single peak at the
first-order phase transition. As for the different coupling strengths of the vector interaction, we

5In literature, the third moments are sometimes referred to as the “skewness” and the fourth moment as the
“kurtosis”. In this work, we, however, will only use the terms third and fourth moments.

28



-0.1

0.0

0.1

-0.1 0.0 0.1
T
−
T
c
[M

eV
]

µ− µc [MeV]

CP

-1.e+21

-8.e+20

-6.e+20

-4.e+20

-2.e+20

0

2.e+20

4.e+20

0.55 0.60 0.65 0.70 0.75

-1.e+15

-5.e+14

0

5.e+14

1.e+15

0

2.e+09

4.e+09

6.e+09

8.e+09

1.e+10

1.2e+10

1.4e+10

1.6e+10

-1.e+21

-8.e+20

-6.e+20

-4.e+20

-2.e+20

0

2.e+20

4.e+20

1.55 1.60 1.65 1.70 1.75

-1.e+15

-5.e+14

0

5.e+14

1.e+15

0

2.e+09

4.e+09

6.e+09

8.e+09

1.e+10

1.2e+10

1.4e+10

1.6e+10

χ
µ
µ
µ
µ
/V

4
[(
M
eV

)1
5
]

π π π π π

θ

χ
µ
µ
µ
/V

3
[(
M
eV

)1
2
]

χ
µ
µ
/V

2
[(
M
eV

)9
]

π π π π π

θ

gV = 0
gV = 0.05gS
gV = 0.1gS

Figure 5.1: The lower graphs show the susceptibility, the third and the fourth moment of the
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the cross-over, while the first-order phase transition is displayed on the right side.
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Figure 5.2: The third and the fourth moments of the baryon-number density over the distance
to the critical point as a log-log plot.

find that all moments are diminished for increasing gV . The different positions of the peaks is
due to the different angles in which the phase transitions traverse the critical point.

The result found for the cross-over can be understood easily, if one regards the susceptibilities
and the third and fourth moments as functions of µ instead of functions of the angle θ. This
is plausible since, along the red lines in the upper panel of Fig. 5.1, a change of the angle is
mostly made up of a change in µ. Thinking of the peak in the susceptibility as a Gaussian, the
behavior of the third and the fourth moments resemble those of the first and second derivative
of a Gaussian.

Considering the first-order phase transition, we again interpret the susceptibility as a function
of µ and the third and fourth moments as its derivatives. Owed to the discontinuity at the phase
transition, the third moments change their sign discontinuously. As a consequence not negative
peak in the fourth moments.

Let us now consider the behavior of the third and fourth moments if the critical point is
approached in radial direction. Evaluating the functions on the lines given in Fig. 4.3(a) and
plotting them again in a log-log plot over the distance to the critical point, we find Fig. 5.2. For
the third moment, we have omitted the line for the cross-over, because the line on which the
moments are evaluated runs between the positive and negative peak displayed in the left panel
for χµµµ in Fig. 5.1.

We again find that the divergence is proportional to rα with r being the distance to the critical
point and α the critical exponent which we have displayed in Tab. 5.1. As we have already found
for the susceptibilities, it turns out that gV influences the magnitude of the moments but not their
critical exponents. We observe that the critical exponents are approximately increased by 1 for
the directions perpendicular to the phase transition, while they are increased by approximately
1.5 if the CP is approached along the phase transition. We also want to compare our result with
the relation between critical exponents predicted in [21] (which is also implied by scaling and
universality) 〈

(δNB)
k
〉
c
∝ ξk(5−η)/2−3, (5.3)
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χµµµ first-order PT Wigner phase NG phase

gV = 0 -2.531(2) -1.698(6) -1.684(3)
gV = 0.05gS -2.530(2) -1.695(4) -1.683(2)
gV = 0.1gS -2.529(0) -1.694(4) -1.681(2)

χµµµµ first-order PT Wigner phase cross-over NG phase

gV = 0 -4.040(5) -2.665(1) -3.978(3) -2.697(3)
gV = 0.05gS -4.038(5) -2.651(1) -3.978(3) -2.695(3)
gV = 0.1gS -4.037(4) -2.654(1) -3.979(3) -2.690(3)

Table 5.1: The critical exponents α for the third (upper table) and fourth (lower table) moments
of the quark number density for the critical point being approached from the directions
displayed in Fig. 4.3(a). Note that the errors given in brackets only represent the errors
of the least-square fit.

where NB is the baryon number, k the order of the moment, ξ the correlation length and a
constant η ≪ 1. Relating our higher-order critical exponents with those determined for the
susceptibility, we can determine η. With this procedure, we find η ≈ 0.2 . . . 0.5. However, theses
values are very sensitive to errors in the critical exponents. For instance, changing the critical
exponent of the susceptibility for the approach along the first-order phase transition from 1.03
to 1.05, decreases η from 0.45 to 0.33. As mentioned above, the errors in the critical exponents
are probably larger than those given in the tables. Although our values of η are rather high, our
results still reflect the general behavior of [21].

Although we have presented only the results for the quark-number density, the same features
are also found for all other higher moments like χuuu, χuuuu and we, therefore, omit them here.
Note that this also holds for the moments evaluated on a circle around the CP, where we have
observed that the third and fourth moments act like derivatives w.r.t. µ.

5.2. The Fourth Moment as a Probe in Experiments

Although discussing all processes that lead to the results of experimental measurements is beyond
the scope of the present study (cf. e.g. [15]), we want to briefly discuss within the framework of
our model, whether fourth-order fluctuations could be measurable or not. Thinking of the higher
moments as a probe for the critical point in heavy-ion collision experiments as suggested in [21],
it is important to note that, in experiments, a measurement inevitably includes contributions
not only from connected diagrams but from all diagrams. For instance, a measured fourth-order
fluctuation 〈AAAA〉 consists not only of the calculated fourth moment χaaaa ≡ 〈AAAA〉c, but
also has contributions from the squared susceptibilities (〈AA〉c)

2 = (χaa)
2. Hence, the fourth

moment is only accessible in experiments if the ratio between the fourth-order fluctuations and
the square of their corresponding quadratic fluctuations is larger than the relative error in the
measured susceptibilities.

Recalling our definitions for susceptibilities and fourth moments, we find that the ratio of the
fluctuations is given by V χaaaa/(χaa)

2 with the volume V . As an upper limit, we estimate V to
be of the approximate size known for QGPs at freeze-out in heavy-ion collision experiments (e.g.
Au-Au collision experiments):

V ≈ (10 fm)3 = 1.30 · 10−4 MeV−3. (5.4)
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As it has been discussed in Sec. 4, the critical point is reflected most prominently in the fluc-
tuations of the u-quark chiral condensate and the quark-number density. Consequently, we
investigate the ratios connected to χuuuu, χµµµµ and χuuµµ because we expect to find a clear
signature of the critical point there. For the latter fourth moment, we have to take into account
that both, χuuχµµ and χ2

uµ, contribute to the quadratic fluctuations. Thus, the ratios are given
by

Rµµ ≡
χµµµµV

(χµµ)2
, Ruµ ≡

3χuuµµV

χuuχµµ + 2χ2
uµ

, Ruu ≡
χuuuuV

(χuu)2
. (5.5)

We present the results for gV = 0 and gV = 0.1gS as contour plots in Fig. 5.3. We observe that
Rµµ is almost symmetric to the phase transition while Ruµ and Ruu are enhanced in the NG
phase. Moreover, we find that the negative peak discussed in the last subsection becomes broader
but lower in magnitude as one departs from the critical point. Nevertheless, for all evaluated
ratios it turns out that the region where the ratios are not small is a very small area around the
critical point. From our simple model studies, we conclude that the fourth-order fluctuations
are probably no good probes for the investigation of the critical point since the second-order
fluctuations may be too strong to allow a measurement of the unique fourth-order contributions.
From their definitions, it can be seen that the ratios depend on the volume linearly. Therefore,
even a doubled volume would not change the result significantly.

As a side note, it should be noted that, as well as for the third moment, there is a certain area
in the phase diagram, where the fourth moment becomes negative. Provided that the fourth
moment could be measured, it would offer additional information on the phase diagram in the
sense it was suggested for the third moments in [20].
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Figure 5.3: The ratios between fourth moments and the squared susceptibilities as defined in
(5.5) for gV = 0 and gV = 0.1gS . 33



6. Summary and Outlook

Finally, we want to summarize our results and give a brief outlook. In Sec. 2 of the present study,
we have reviewed a PNJL model with vector interaction that is almost identical to the one in [7]
We have successfully employed this model to investigate susceptibilities in Sec. 4 and third and
fourth moments in Sec. 5.

We have determined the critical exponents not only for susceptibilities, but also for the third
and fourth moments of the quark-number density. These were found to be in agreement with
those suggested in literature [18, 21, 35]. As it has to be expected from universality arguments,
the critical exponents are not significantly changed by the vector interaction. Near the CP the
magnitude of the susceptibilities, on the other hand, is influenced by the vector interaction. It
should be noted that our definition of susceptibilities deviates from the usual definition (cf. [13,
16]) by a factor of T and thus reflects quadratic fluctuations more closely. Although, with the
usual definition, the susceptibilities are enhanced in magnitude for increased gV , we have found
that the susceptibilities as we have defined them here - and thus quadratic fluctuations - are rather
diminished. This discrepancy is due to the fact that the temperature of the CP is decreased for
increased gV . The vector interaction also affects the critical mode discussed in Sec. 4.1.1. While
the main contribution comes from σu, the quark-number contribution gains importance as the
critical point is approached. For increasing values of gV , we have observed that the region, where
the contributions from the quark-number density are significant, broadens.

As for the calculation of the Ginzburg-Levanyuk criterion for the critical mode, it was not
possible to include the Polyakov-loop contribution to the momentum expansion coefficient g,
since our simple model does not allow for such calculations. Based on the finding that the
contribution of the Polyakov-loop order parameters to the critical mode are rather small, we
have chosen to simply neglect their contributions. Considering (this incomplete) g, we have found
that in a small area the function changes its sign. Although this could be caused by the missing
Polyakov-loop contributions, the change of sign may also be present even if all contributions
could be considered - meaning that in this area, the preferred phase is inhomogeneous. Such a
situation has been found in studies of the NJL model [36]. Evaluating the Ginzburg-Levanyuk
criterion, we have again observed that the signature of the critical point is spread over a broader
region for increased gV . Considering the region, where the mean-field approximation is a bad
approximation according to the Ginzburg-Levanyuk criterion, we observe that, although this
region is larger for gV = 0.1gS , it is a rather small area for any gV . It should be noted that we
have evaluated the Ginzburg-Levanyuk criterion only in the direction of the critical mode. If,
however, the favored phase is inhomogeneous for any condensate, it is hard to imagine that our
model could possibly describe the physics properly. Consequently, the region where our mean-
field model is insufficient is probably larger than our Ginzburg-Levanyuk criterion suggests. Even
if only the Ginzburg-Levanyuk criterion of the critical mode is considered, the critical point and
the phase transitions are in the region where the mean-field approximation is judged to be not
appropriate. Therefore, instead of the MFA, more sophisticated techniques as a renormalization-
group approach [19] would be better choices to describe the physics around the critical point.

In Sec. 5.2, we have checked whether the second-order fluctuations “overshadow” the effect of
the fourth-order fluctuations suggested as probes for the CP in [21]. We have found that our
model predicts the ratio of the fourth-order fluctuations to the second-order fluctuations to be
too small to allow measurements of the fourth-order fluctuations in experiments.

However, the caveats of our PNJL model pointed out in Sec. 2.3 should be acknowledged. As
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mentioned above, the MFA is a rather bad approximation in the vicinity of the critical point.
This is closely connected to our finding that, around the critical point, an inhomogeneous phase
may be favored. Yet, our model is based on the premise of homogeneous matter and it is thus
not capable to describe an inhomogenous phase. Moreover, our model only considers chiral
condensates 〈qq〉 and the quark-number density

〈
q†q
〉
- but not diquarks. Studies employing the

NJL model with diquarks not only suggest the existence of a color-superconducting phase (where
∆ 6= 0∧σu ≈ 0)6, but also the existence of a phase of coexistence (where ∆ 6= 0∧σu 6= 0) [40] and
even a BEC phase [41]. These phases are observed in the same region of the phase diagram where
the (chiral) first-order phase transition is found. Hence, as gV is increased, diquarks become more
and more important and are likely to strongly influence our findings on the gV dependence since
the critical point is shifted to lower temperatures. Needless to say, that including diquarks into
our model would allow for a much improved investigation of the matter. However, this is beyond
the scope of this study, because the inclusion of both, the Polyakov-loop and diquarks, in an
effective is not an easy task and (to our knowledge) a still unsolved problem [32].

Therefore, improved models which overcome the above mentioned shortcomings of our model
are highly desirable in order to investigate fluctuations of second and higher order.

6∆ denotes the diquark condensate defined in Sec. 2.3.
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A. On the Momentum Contribution in the Ginzburg-Lavanyuk

Criterion

When calculating expansion coefficient g needed for the Ginzburg-Levaniuk criterion, we have
to consider the function

d2

d~q2
Πab(0, ~q)

∣∣∣∣
~q→0

(A.1)

with the polarization function

Πab(iq4, ~q) = −

∫
d3k

(2π)3
T
∑

n

Tr
1

/̃k +M
Γa

1

/̃k − /q +M
Γb, (A.2)

where

k̃ = (~k, k4 + iµ), a, b = mu,d,ms, µ and Γa =

{
1 for a = mu,d,ms

iγ4 for a = µ
. (A.3)

This polarization function has been evaluated for the NJL model in [17]. Following the analysis
there, it turns out that the results obtained in the NJL model are also applicable in the PNJL
model provided that the Fermi-Dirac distribution denoted by n± is replaced with

n+ =
e−3(E−µ̃)/T + ℓ̄e−(E−µ̃)/T + 2ℓe−2(E−µ̃)/T

1 + e−3(E−µ̃)/T + 3ℓ̄e−(E−µ̃)/T + 3ℓe−2(E−µ̃)/T

n− =
e−3(E+µ̃)/T + ℓe−(E+µ̃)/T + 2ℓ̄e−2(E+µ̃)/T

1 + e−3(E+µ̃)/T + 3ℓe−(E+µ̃)/T + 3ℓ̄e−2(E+µ̃)/T
.

(A.4)

Analogously to [17], we obtain

Πmm(q0, ~q) = ν

∫
d3k

(2π)3

(
1− n+1 − n−1

E1
+ (q2 − 4M2)I(q0 + iε)

)
, (A.5a)

Πmµ(q0, ~q) = −2Mν

∫
d3k

(2π)3
Iω(q0), (A.5b)

Πµµ(q0, ~q) = ν
∑

i=u,d,s

∫
d3k

(2π)3

(
1− n+1 − n−1

E1
+ (q20 − 4E2)I(q0)

)
(A.5c)

with

ν = 2Nc, E =

√
M2 + ~k2, E1,2 =

√
M2 + (~k ± 1

2~q)
2, n±1,2 = n±(E1,2), (A.6)

and the frequency sums

I(iω) ≡ T
∑

n

1

k̃24 +
~k2 +M2

1

(k̃4 − q4)2 + ~k2 +M2

=
−1

4E1E2

(
1− n+1 − n−2

iω − E1 − E2
−

n−1 − n−2

iω + E1 − E2
+

n+1 − n+2

iω − E1 + E2
−

1− n−1 − n+2

iω + E1 + E2

) (A.7a)
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Iω(iω) ≡T
∑

n

i(2k̃4 − q4)
1

k̃24 +
~k2 +M2

1

(k̃4 − q4)2 + ~k2 +M2

=
1

4E2

(
1− n+1 − n−2

iω − E1 − E2
+

n−1 − n−2

iω + E1 − E2
+

n+1 − n+2

iω − E1 + E2
+

1− n−1 − n+2

iω + E1 + E2

)

−
1

4E1

(
1− n+1 − n−2

iω − E1 − E2
−

n−1 − n−2

iω + E1 − E2
−

n+1 − n+2

iω − E1 + E2
+

1− n−1 − n+2

iω + E1 + E2

)
(A.7b)

Differentiating the polarization functions twice and taking the limit ~q → 0, presents us with the
result

d2

d~q2
Πmm(0, ~q)

∣∣∣∣
~q→0

=ν

∫
d3k

(2π)3

((
−
d2n+
dE2

−
d2n−
dE2

+ 3
dn+

dE + dn−

dE

E
+ 3

1− n− − n+
E2

)
k2

4E3

+

(
−
dn−
dE

−
dn+
dE

−
1− n− − n+

E

)
1

4E2

−4M2 d2I(0)

d~q2

∣∣∣∣
~q=0

− 2 I(0)|~q=0

)
,

(A.8a)

d2

d~q2
Πmµ(0, ~q)

∣∣∣∣
~q→0

= −2Mν

∫
d3k

(2π)3
d2Iω(0)

d~q2

∣∣∣∣
~q=0

, (A.8b)

d2

d~q2
Πµµ(0, ~q)

∣∣∣∣
~q→0

=ν
∑

i=u,d,s

∫
d3k

(2π)3

((
−
d2n+
dE2

−
d2n−
dE2

+ 3
dn+

dE + dn−

dE

E
+ 3

1− n− − n+
E2

)
k2

4E3

+

(
−
dn−
dE

−
dn+
dE

−
1− n− − n+

E

)
1

4E2
− 4E2 d2I(0)

d~q2

∣∣∣∣
~q=0

)
,

(A.8c)

with

I(0)|~q=0 =
1

4E2

(
1− n+ − n−

E
+

dn+
dE

+
dn−
dE

)
, (A.9a)

d2I(0)

d~q2

∣∣∣∣
~q=0

=

(
−
1− n+ − n−

E
−

dn+
dE

−
dn−
dE

)
−

1

2E4

(
~k

2E

)2

+
3

4E3

M2

4E3




+
1

3E2

(
d3n−
dE3

+
d3n+
dE3

)( ~k

2E

)2

,

(A.9b)

d2Iω(0)

d~q2

∣∣∣∣
~q=0

=
1

2E3

(
dn−
dE

−
dn+
dE

)

(
~k

2E

)2

−
M2

4E2


+

1

E2

(
d2n−
dE2

−
d2n+
dE2

)( ~k

2E

)2

+
2

3E

(
d3n−
dE3

−
d3n+
dE3

)( ~k

2E

)2

.

(A.9c)

In the above calculation, we have excessively used that, in the limit of ~q → 0,

E2 = E1, −
dE2

dq
=

dE1

dq
=

~k

2E
, and

d2E2

dq2
=

d2E1

dq2
=
M2

4E3
. (A.10)
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B. On the Calculation of Third and Fourth Moments

In this section, we describe how the third and fourth moment are calculated in detail. At first, let
us introduce a simplified notation. We will write derivatives with respect to mass-like terms by
appending an index a,b,c,d and derivatives with respect to condensates by appending an index
i,j,k,l to the quantity. For example, we have

Ωai ≡
∂2(Ω/(V T ))

∂ma∂ 〈 〉i
, 〈 〉j,a ≡

d 〈 〉j
dma

. (B.1)

Note that we separate the indices originating from differentiation from other indices with a
comma. With this notation, the third moment

d3(Ω/(V T ))

dmadmbdmc
= Ωabc +

∑

j

Ωabj 〈 〉j,c +
∑

j

Ωajc 〈 〉j,b +
∑

j,k

Ωajk 〈 〉j,b 〈 〉k,c +
∑

j

Ωaj 〈 〉j,bc (B.2)

is found by differentiating (4.4). In (B.2), 〈 〉j,c is already known from the calculation of the
susceptibilities as the solution of (4.5). Analogously, differentiating the gap equations twice
yields

∑

j

Ωij 〈 〉j,bc = −


Ωibc +

∑

j

Ωibj 〈 〉j,c +
∑

j

Ωijc 〈 〉j,b +
∑

j,k

Ωijk 〈 〉j,b 〈 〉k,c


 . (B.3)

Since all quantities on the right side are known, this provides us with a system of linear equations
which can be solved for 〈 〉j,bc. As for the fourth moments, we proceed in the same way. We
derive (B.2) once again to obtain

d4(Ω/(V T ))

dmadmbdmcdmd
=Ωabcd +

∑

j

([
Ωabcj 〈 〉j,d +

∑

k

Ωabjk 〈 〉j,c 〈 〉k,d +Ωabj 〈 〉j,cd +
∑

k

Ωajk 〈 〉j,bc 〈 〉k,d

]

+ cyclic permutations of [ ] with respect to b, c, d

)

+
∑

j,k,l

Ωajkl 〈 〉j,b 〈 〉k,c 〈 〉l,d +
∑

j

Ωaj 〈 〉j,bcd .

(B.4)

〈 〉j,bcd is achieved by solving

∑

j

Ωij 〈 〉j,bcd = −


Ωibcd +

∑

j

([
Ωijbc 〈 〉j,d +

∑

k

Ωijkb 〈 〉j,c 〈 〉k,d +Ωijb 〈 〉j,cd +
∑

k

Ωijk 〈 〉j,bc 〈 〉k,d

]

+ cyclic permutations of [ ] with respect to b, c, d

)

+
∑

j,k,l

Ωijkl 〈 〉j,b 〈 〉k,c 〈 〉l,d ,

(B.5)

where the solutions of (4.5) and (B.4) have to be employed to determine the right side.
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