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Abstract

We study the inhomogeneous phase with chiral density wave modulation within the framework
of the two-flavor Nambu-Jona-Lasinio model. Using mean-field methods we determine the
dressed quark propagator for the inhomogeneous phase and calculate constituent quark masses.
The polarization loop of the Bethe-Salpeter equation playing a crucial role in acquiring mesonic
propagators and masses is investigated. Numerically evaluable expressions for the polarization
loop are derived and results of calculations for simple scenarios are shown.

Zusammenfassung

Wir untersuchen im Rahmen des mit zwei Quarkflavours ausgestattetem Nambu-Jona-Lasinio—
Modells eine inhomogene, durch eine chirale Dichtewelle modulierte, Phase. Unter Verwendung
von Molekularfeld-Methoden ermitteln wir den gedressten Quarkpropagator fiir die genannte
inhomogene Phase und berechnen die Amplitude der Modulation. Die Polarisations-Schleife
der Bethe-Salpeter-Gleichung, welche eine entscheidende Rolle fiir die Erarbeitung von Meso-
nenpropagatoren und -massen spielt, wird untersucht. Numerisch auswertbare Ausdriicke fiir
die Polarisations-Schleife werden hergeleitet und es werden Ergebnisse von Rechnungen fiir
einfache Szenarien gezeigt.
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1 Introduction

The Standard Model of particle physics is today’s most prominent theory for explaining the ex-
isting particles and interactions on their most basic level, except for gravity. Among the three
other interactions, electromagnetic, weak and strong, the strong one is responsible for the bind-
ing of quarks, the most fundamental constituents of matter.

Up to the early 1960’s nuclear physicists thought that the large ensemble of known, strongly
interacting particles was elementary, yet their origin was unexplained. In 1964 Gell-Mann [1]
introduced his idea of the existence of a few underlying elementary particles, quarks and anti-
quarks, which composed all strongly interacting particles. A decade later quantum chromody-
namics (QCD) [2] was introduced and is today the most accepted theory describing quarks and
their interaction.

Quarks are spin 1/2 point-like particles with mass which interact due to massless spin 1 gluons.
Quarks come in different flavors and have electrical charge. In analogy to the role of the elec-
trical charge for electromagnetic interactions, quarks and gluons carry a so-called color charge.
The fact that gluons can carry color charge, unlike photons which do not carry electrical charge,
leads to a more complicated nature of the strong interaction since gluons can interact with each
other.

The two most prominent features of QCD originating from the nature of strong interaction are
confinement [3] and asymptotic freedom [4, 5]. Asymptotic freedom means that the inter-
action of quarks and gluons gets weaker with decreasing distances or equivalently increasing
energies. This is related to interesting low-energy properties of QCD like confinement. Confine-
ment states that at low energies quarks and gluons only appear in bound states and cannot be
observed freely. Another important feature of QCD is the chiral symmetry [6] and its sponta-
neous breaking responsible for the high masses of hadrons despite very low quark masses.

Consequently, the investigation of QCD matter and the mapping of the QCD phase diagram [8]
depicted in Figure 1.1 is of particular interest and nuclear physicists have made an enormous
effort to achieve progress in this field of research. The QCD phase diagram shows the phase
structure of QCD matter, which is described by the thermodynamical variables temperature T
and chemical potential u. The chemical potential u is related to the net baryon density. As men-
tioned above, in the low-energy regime, i.e. at low temperature and net density, QCD matter
exists in form of confined hadrons. With the help of heavy ion colliders like LHC and RHIC it
is experimentally possible to explore the region along the temperature axis for zero net density.
Ab initio calculations in lattice QCD were able to provide useful insight on the phase transition,
more precisely crossover transition, from confined to deconfined QCD matter, or quark- gluon
plasma, at a temperature of about 170 MeV [9].

Nevertheless, heavy ion collisions and lattice QCD are not able to describe areas of the QCD
phase diagram, where the density is nonzero. The sign-problem [10] prohibits lattice calcula-
tions for nonzero net baryon density and only recent developments have allowed progress in
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Figure 1.1.: A conjecture about the QCD phase diagram [7].

this direction [11]. Experimentally the QCD phase diagram area of low temperature and inter-
mediate to high density cannot be accessed as of today.

In order to explore the QCD phase diagram at low temperatures and intermediate to high net
baryon densities, one has to turn to effective theories. Effective theories describe only certain
features of exact theories while neglecting others and therefore are more manageable. The
phase structure of QCD matter is believed to be multi-variant at low temperatures and inter-
mediate to high net baryon densities [12, 13]. While the formation of a color-superconducting
phase [14] is expected in the area of high densities, the area of intermediate densities can be
described as an inhomogeneous phase, characterized by spatially dependent properties of the
system, an idea introduced by Overhauser in 1960 [15].

One effective model of QCD is the Nambu and Jona-Lasinio (NJL) model [16, 17], which we
would like to discuss in the context of inhomogeneous phases in this thesis. The NJL model
features no gluons but shares important symmetries with QCD. NJL model analyses of the low
temperature and intermediate to high density region of the QCD phase diagram have been done
in-detail [12]. Quarks and their properties in inhomogeneous phases as well as inhomogeneous
phases by themselves have been studied [18, 19].

The aim of this work is to study properties of mesonic excitations in an inhomogeneous phase
of the QCD phase diagram within the framework of the NJL model.

1.1 Overview

In chapter 2 we will introduce the reader to the NJL model in vacuum. We will show, how the
dynamical mass generation of quarks is described and how mesons are built from quarks. Some
simple results for their masses will be given.




In chapter 3 we move our discussion from the vacuum into the medium, through the introduc-
tion of finite temperature and chemical potential. We will discuss, which changes to the mass
gap and the description of the mesons occur due to introduction of temperature and chemical
potential then show some results at the end of this chapter.

In chapter 4 we take another step forward and allow an inhomogeneous phase to occur. We
calculate the dressed quark propagator and analyze the gap equation and self-energy of quarks.
We discuss our investigation regarding mesons in the inhomogeneous phase and present find-
ings.

In chapter 5 we conclude this thesis with a summary, a discussion of our results and problems
and an outlook.




2 The NJL Model in Vacuum

The NJL model was derived by Yoichiro Nambu and Giovanni Jona-Lasinio with the aim to
“develop a dynamical theory of elementary particles in which nucleons and mesons are derived
in a unified way from a fundamental spinor field”[16, 17]. Later on, after the quarks and the
phenomenon of confinement had been discovered, this model was reinterpreted as an effective
theory for interacting quarks. Therefore the NJL. model does not take confinement into account.
Chiral symmetry on the other hand is a feature of the NJL model.

2.1 The NJL Lagrangian

A simple form of the NJL Lagrangian, describing the two lightest quarks, up and down, can be
given by

L = (i@ — mi + Gs [ + @iy 7). 2.1)
The first term is the Dirac Lagrangian of a free relativistic particle, while the second term de-
scribes the four-point interactions of the quarks. 1) is the incoming and 1) = )"y, the out-
going quark-antiquark field. They have 4 components in Dirac space with additional Ny = 2
flavor and N, = 3 color degrees of freedom, resulting in 4N;N,-dimensional spinor fields.
m = diag(m,, m,) is the bare or current quark mass. For simplicity we assume that up quark
and down quark have the same mass m. G is the coupling constant and has the dimension of
[energy] 2. (yp)? is a scalar and (viy>T)? a pseudoscalar four-point interaction. Although
NJL Lagrangian can generically be extended to more quark flavors or interaction channels, we
will restrict ourselves to the above NJL Lagrangian.

Symmetries

Symmetries are very important features of physical systems. If a physical system undergoes a
transformation, i.e. translation or rotation in space, which leaves certain properties of the phys-
ical system unchanged, these properties are called invariants of the system. They are symmetric
under given transformation. In the following we want to discuss some symmetries the NJL La-
grangian shares with QCD and to which conservation laws these symmetries lead according to
Noether’s theorem.

The first symmetry of the NJL Lagrangian is its invariance under a global phase transition of the
kind
Y —pe™® and Y —pe'® for a<cR. (2.2)

The conserved quantity of this invariance is the baryon number.

We assumed that both, up and down quark, have the same mass, thus we can describe them as
isospin partners. The NJL Lagrangian then is invariant under rotations in the isospin space

Y — qpe‘éaa% and ¢ — lﬁeéaafﬂ for a,€R, a=1,2,3. (2.3)
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This invariance corresponds to the conservation of isospin.

In the chiral limit (m = my; = m, = 0) the NJL Lagrangian additionaly becomes invariant under
unitary transformations of the kind

W — e 27°%%ay) and 4 —pe %% for a, €R. 2.4)

The combination of the last two symmetries is referred to as chiral symmetry. It is explicitly
broken by the non-zero quark mass in the NJL Lagrangian. Since the bare quark mass is quite
small, the chiral symmetry can be considered as approximately fulfilled. However, the inter-
action terms of the NJL Lagrangian dynamically generate an effective quark mass, even in the
chiral limit. This phenomenom is referred to as spontaneous breaking of the chiral symmetry.

Feynman Rules

In quantum field theories it is customary to use Feynman diagrams to write down equations and
physical processes. We now want to discuss the basic Feynman diagrams and rules used in this
work. First of all, there is the bare quark propagator

) . ptm
........ <--eeem =18(p) =1 5 (2.5)

p?—m?+ie
the standard propagator for a Dirac fermion. Here we used the Feynman slash notation p =
v¥p,. As mentioned above, the interaction channels of the NJL Lagrangian generate mass.
Then the quark is called dressed, having an effective or constituent mass M. It is described by
the dressed quark propagator

< S() =i (2.6)
—— =1 =l .
P p?—M?+ie
The couplings are depicted as interaction vertices
with
ro_ 'y = Ipirac ® Leotor ® Lavor Scalar channel 2.8)
M =17 ® Logjor ® Ty pseudo-scalar channel (a € [1,2,3]) '

As usual for fermionic theories, for a closed fermion loop with momentum label k we have
d*k
(2m)*

where the trace contains the propagators of the loop. For more details regarding Feynman rules
and diagrams, see [20].

Tr[...], (2.9)




2.2 Gap Equation

As a first application, we want to calculate the effective quark mass, which is generated via
self-coupling of the quarks. We will derive an expression for the constituent quark mass from
the self-consistent Dyson equation

(2.10)

Using the Feynman rules for the propagators given above, we can rewrite this diagrammatic
expression into the formula

iS(p) = iSo(p) +iSo(p)(—=iX)iS(p). (2.11)
Multiplying with S 1(p) from the left and S~(p) from the right we arive at
M=m+2X (2.12)

where ¥ denotes the self-energy. Here we ignored ie and used p)z = p2. Using the Feynman
rules, the self-energy X translates into the fomula

Y=2G.[1 d4kT 1iS(k jy° d4k:r vt iS(k 2.13
= 2Gg 2n) rl1is(k)] +ir’T, 2n) rliy’7,iS(k)] (2.13)

where the trace has to be taken over color-, flavor- and Dirac-space. Detailed evaluation of this
expression’ yields

% = 8GsN; N, MI, (M), (2.14)
with the integral? I;,(M) being
I,(M) = I1"(M) = i d'k L ! Oodk K (2.15)
= =i = _— :
! ! @m* k> =M*+ie  4n* ), a2

Regularization

The integrand of 17%°(M) diverges, since the upper bound of integration is infinity. Throughout
this work we will frequently encounter such divergencies. In order to calculate the integrals,
one has to regularize them with the result that those divergencies vanish. In the following we
want to present some of the commonly used regularization schemes.

1
2

See appendix B on page 39.
For details of calculation see appendix B on page 42.
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Sharp Three-Momentum Cutoff

A simple limitation to values of |k| up to A.

d*k

Wf(k’m) —>f

T dk, d3k

o 27 |E|<A (27’[)3

f(k,m) (2.16)

The integral gets finite and can be calculated easily. The drawback of this method is that the
Lorentz invariance is lost because the non-invariant k is restricted and the resulting integration
domain is not invariant under translations.

Sharp Four-Momentum Cutoff

This regularization scheme is similiar to the Three-Momentum Cutoff. It involves a Wick rotation
and it preserves Lorentz invariance, since the limiting value is imposed on the invariant k2.

d'k k ' dk dks k, ik 2.17
(2n)4f( ,m) — 1 E2+k‘2‘</\(27)3%f( , k4, m), (2.17)

where we substituted k, = —ik,. The disadvantage of this technique is, that we put an unphys-
ical restriction on the inhomogeneous phase which we want to study in this work.

Pauli-Villars regularization

This scheme does not use a sharp momentum cutoff, but changes the asymptotic behaviour
of the integrand. Additional terms are added to the integrand which contribute hardly for
small momenta but have the same behaviour as the integrand for high momenta, evening out
divergencies for high momenta.

4’k k 'k § k 2.18
Gy ) = | Gy 2y6f G 219

We will use the Pauli-Villars regularization [21] with different regulator terms throughout this
work.

2.3 Mesons

Now that we know how to calculate the constituent quark masses, we take the next step and
build mesons out of these constituent quarks. In the NJL model mesons are described as a
state of quark-antiquark-scattering. The mathematical description of this process is given by
the Bethe-Salpeter equation [22]. This equation describes the bound states of two particles by
iterating the interaction of the these particles infinitely many times. As Feynman diagram the

equation reads
>:< = X + X>:< (2.19)

1




where the double lines depict propagating mesons. This diagram is translated into

Here M € {0, n?} denotes the type of mesons we want to study in this work. The elements of
this equation are

* the gg-scattering matrix

iTy =Tyit(qQTyy, (2.21)
* the scattering kernel
* the polarization loop

Inserting these expressions into eq. (2.20) we get

2iGq

_ 3 2.24
1—2GgJy(q) ( )

it(q) =

Based on its connection to the scattering matrix of the Bethe-Salpeter equation, this expression
is referred to as the meson propagator. Thus it should have the same properties as a propagator,
i.e. it has a pole at the meson mass m,,

1 - 2G5y (Dlgem,, = 0. (2.25)

This relation allows us to calculate the meson mass. In order to calculate a numerical value for
the mass we will have to evaluate the polarization loop J,,(q).* We get two slightly different
expressions, one for each meson

Jr. (@) = 4N;NI7%(M) — 2N;N.q*1°“(q, M) (2.26)

and

J5(q) = 4N;N IV (M) — 2N¢ N, (q* — 4M>)I13°(q, M). (2.27)

We already know I;%(M) from our calculations regarding the mass gap. The new integral
17%(q, M) is given by

d*k 1
2m)* [k2 —M? +ie][(k+q)?> — M? +ie]

12%(q, M) = i (2.28)

For detailed derivation please see B on page 39.

4 Details of the calculation are on page 40 in appendix B.
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2.4 Numerical Results

To conclude the description of the NJL model in vacuum, we will show some numerical results
based on the calculations done so far. We have calculated the current quark mass and the mass
of the pion. The results are presented in Table 2.1. The k,-integration and add-on simplification
of I7%°(M) and 1,(q, M) have been done analytically®. For the remaining integration we used
the Pauli-Villars regularization scheme with the following corrections to the integrand f (k, M ):

flk,M)— f(k,M)—2f(k,V M2+ A2) + f(k,\/ M2+ 2A2). (2.29)

The parameters have been fitted to a pion mass of 140.0 MeV. Due to this fact we retain the
same value of the pion mass for every parameter set. All five parameter sets have been fitted to
different values of the pion decay constant [23], which relate to different corrections to the the-
oretical description. Parameter set A reflects the experimentally measured pion decay constant.
The results for the constituent quark mass agree with [23]. The much higher constituent quark
mass reflects the spontaneous chiral symmetry breaking due to dynamical mass generation via
self-coupling of the quarks. There are no explicit results for m, given in [23], thus not allowing
any comparison. However, the same calculation has been done in [24] and the results agree
with each other.

| Se | A | B | ¢ | D | E |
m[MeV] | 6.13 6.40 6.77 6.70 6.54
A[MeV] 800 800 800 820 852
GgA? 2.90 3.07 3.49 3.70 4.16

M[MeV] | 260.457 | 303.067 | 395.042 | 446.249 | 549.364
m,[MeV] | 140.0 140.0 140.0 140.0 140.0

| my[MeV] | 530.2 | 6134 | 7947 | 896.3 | 1101.4 |

Table 2.1.: Parameters and results of the calculation for five different parameter sets. In the up-
per half of the table the five different parameter sets taken from [23] are presented.
In the lower half the calculated masses are shown. The results agree with [23, 24].
The o-masses are taken from [24].

> Details are on pages 42 and 43 of appendix B.
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3 The NJL Model in Medium

In the last chapter we discussed the basics of the NJL model in vacuum, i.e. zero temperature T
and chemical potential u. Since we want to study mesons in medium, we will focus on the NJL
model within the framework of a thermal field theory [25] introducing non-zero temperature T
and chemical potential u. This is commonly done by using the Matsubara technique, we replace
the energy-integration of appearing integrals by a sum over so-called Matsubara frequencies.
This substitution is written as

[ L p 10— [ L o+ B D)

| —= — — ——f(iw , k). .

(2n)* ) ! O

Since we deal with quarks, which are fermions, and mesons, which are bosons, we will need
both types of Matsubara frequencies. Fermionic Matsubara frequencies are given by w,, =
(2m+1)nT, bosonic ones by w, = 2nnT with m,n € Z.

3.1 Gap Equation

The formula for the constituent quark mass in medium can be calculated analogously to the
vacuum case. The gap equation will keep the form we derived in our vacuum calculations,
although the integral I;(M) will now depend not only on M, but also on T and u:

M = m+ 8NN,GsMI;(T, u, M), (3.2)
where the integral reads I;(T, u, M)
d3k 1
27)° (iw, + u)* — E7

1,(T, u, M) = I74(M) = —TZJ( (3.3)

with E, = V K2+ M2, All expressions in medium are functions of T and u. We will omit
these as arguments of the occuring functions and integrals and rather use the superscript med
to symbolize the dependency of T and u. Before we can calculate numerical values for the
constituent quark mass, we have to simplify I 1”6‘1 (M) analytically!. The result reads

d3k
I;ned(M):I{/aC(M)—I—J W(nEk—i_ﬁEk)’ (3.4)

where we defined the occupation number densities for quarks ng, = ny(E, — u) and antiquarks
ng, = np(Ey + u) with the Fermi-Dirac distribution

1
=
1+eT
Concerning regularization there are no changes here. The second term — which we refer to as

the medium part — drops to O for high values of k = |f€|, thus we do not need to regularize it.
The regularization of the vacuum part has been discussed in the last chapter.

ng(x) = (3.5)

1 Which is done in appendix C on page 45.
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3.2 Mesons

The description of mesons in medium is almost analogous to the case of mesons in vacuum. The
main difference is that we have to evaluate the polarization loop with the Matsubara formal-
ism and keep in mind to endow the four-momentum of the meson with a bosonic Matsubara
frequency. Solving the Bethe-Salpeter equation, we get the meson propagator

2iGg
1- 2GSJM(iCOn,CT)’

it(iw,,§) = (3.6)

where iw,, is a bosonic Matsubara frequency. The polarization loop reads
. - dgk . . ) - . g
Jy(iw,,q) = _NchTZ WTrDirac[FMS(lwm +iw, +u,k+PTySiw, +u,k)]. (3.7)
m

The meson-specific polarization loops are given by

Jo(iw,, @) = 4NN I7(M) — 2N N; ((iw,)* — G (iw,, §, M) (3.8)
and
Jo(iw,, @) = 4NN I (M) — 2N N; ((iw,)? — G — 4M>)I1* (iw,, G, M). (3.9)
We have shown the expression for I {”ed (M) in eq. (3.3). The other integral is
d’k 1
1™ (iw,,§,M)=—T -
2 " (27'5)3;:(icom—l—,u)—kz—M2

1 (3.10)

X pury .
(iwp +iw, +u)?—(k+q)?— M2

This expression can be simplified?. Moreover we need to make the continuous extension iw, —
qo + i€ where € is infinitesimal positive, in order to be able to calculate numerical values for the
meson masses. For € — 0 the integral Ig“*d (q0,q, M) is given by

d3k [(1 ng, + g, ) 1 ng, + Mg, 1

— || == s — d . (3.11)
2n)? |\ Ex  2EE, g —s>  2EE, qu—dg}

Iéned(QO; C_LM) =

with E as defined in the previous section, E; , = V(K + @)% + M2 and their sum s = Eyq + Ex
and difference dy = Ej ; — E;. In contrast to the vacuum case, where I;°°(q, M) depended on
q?%, in the medium case it depends on q, and § seperately. However, we want to study the case

of resting mesons, i.e. § = 0. If we do so, dz = 0 and I;"ed(qo,c'j =0, M) becomes

d*k  1—(ng, +7g)
(2m)? Er(q3 —4E3) + i€’

1*4(qy,d = 0, M) = I"*¢(qy, M) = (3.12)

which will be regulated like I {”ed (M). Equivalent to the vacuum case we have the following
relation for calculating the meson masses in medium

1—2GgJy, (qo =4/m3 + qz,cj) =1—2GeJy(my,) = 0. (3.13)

2 Shown in appendix C on page 46
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3.3 Numerical Results

In the course of the calculation we used Parameter set [A]° and the same Pauli-Villars regular-
ization as in the vacuum case. First let us discuss the results for the constituent quark mass
M shown in Subfigure 3.1(a). For T = 0 the mass corresponds to its vacuum value of about
260 MeV. As the temperature rises, the value of the current quark mass M falls off, eventually
approaching 0 MeV for high enough temperatures. This corresponds to the transition from the
phase with broken chiral symmetry into the phase with restored chiral symmetry shown in the
QCD phase diagram in Figure 1.1 along the temperature axis. Since M is a continuous and dif-
ferentiable function of T, this is called a crossover. The results for the masses of 7- and o-meson
are shown in Subfigure 3.1(b). At low temperatures we can see that the m-mass corresponds
very well to its vacuum value of 140 MeV, while the o-mass is approximately twice as much
as the constituent quark mass M and agrees with its vacuum value of about 530 MeV. As the
crossover happens, the pion gains mass and becomes degenerate in mass with the o-meson.
These results agree with [24].

300 T T T T 600

250 [ 500 |

200 400

150 | 300 |

M [MeV]
mass [MeV]

100 200

50 | 100 |

0 L L L L 0 L L L L
0 50 100 150 200 250 0 50 100 150 200 250

T [MeV] T [MeV]
(a) Constituent quark mass M as a function of (b) Masses of the pion- and sigma-meson as a

temperature T at chemical potential u = 0. As function of T at u = 0. For comparison, twice
T increases, the constituent quark mass drops the constituent quark mass has been plotted
which corresponds to the crossover transition as well.

from the phase with broken chiral symmetry

to the phase with restored chiral symmetry.

Figure 3.1.: Numerical results for the quark mass (a) and meson masses (b).

3 ¢f Table 2.1
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4 Inhomogeneous Phase

In the introduction we mentioned that the occurence of so-called inhomogeneous phases in
the QCD phase diagram is expected for low temperatures T and intermediate quark chemical
potentials u. In the following we want to study mesons in such an inhomogeneous phase, which
is characterized by a spatially dependent order parameter.

4.1 Dressed quark propagator

Coordinate space

Since we want to study mesons which are built from quarks via the Bethe-Salpeter equation, we
will need the dressed quark propagator in inhomogeneous phases, which we want to derive in
the following. Once again we start our calculation from the NJL Lagrangian in coordinate space

Ly =P(id — m)y + Gg [(1/3%[’)2 + (ll_’iYsTall))Z] . (4.1)

where S ! = (i@ —m) is the inverse bare quark propagator. We apply a mean-field approximation
to the chiral condensates allowing them now to be functions of the three-dimensional space

PP = ¢s(X) + 8¢5, Pir’th = ¢pp(X) + 55 (4.2)

Plugging these expressions into the NJL Lagrangian and neglecting terms with 6 ¢l.2, the NJL
Lagrangian in mean-field approximation can be written as

Ly = [171"8, — m+2G5(ps(R) + iy T, 03N ] ¥ — Gs | $2(D) + 23]
— ,L/;S—LL/) _ y’ (43)
with the inverse dressed propagator S™!
ST =iy"9, — m+2Gs(ps(X) + ir° 1,9 5(X)). (4.4)

The dressed propagator includes the interaction, which arises from the condensates. In a next
step we introduce a Hamiltonian via splitting y*9, = Y98, + v'0;, yielding

Lur =Py°(i0, — AW — ¥, (4.5)
with the hermitian effective mean-field Hamiltonian
2 =7 [—ir'8; + m — 2Gs($s(¥) + ir T, pp ()] - (4.6)

At this point we want to make a restriction. We set a constant direction for the vector ¢;(X),
ie. d)},()’(’) = ¢§(>?) =0 and d);(f) = ¢p(X). This restriction means that neither up quarks nor

17



down quarks are favored. The mean-field Hamiltonian can be reduced to a direct product of
two Hamiltonians &, in flavor space

0 =1° [ =170+ m = 2G5(¢s(X) + iy T3¢p (X)) | = #, ® ., (4.7)

with
=7 [ =iy’ 0+ m—2G5(§s(X) £ iy p(¥) ] - (4.8)

Making use of the chiral representation of the Dirac matrices we can write

7= (m - 2@(&% i@ ZGS(qisigz; i%m)) ’ 49
. = (m i iy i%m)) - (410
Now we define an inhomogeneous mass function M(X) and its complex conjugate M*(X)
M(%) = M, (%) = m — 2Gy(5(%) + 1)), @11
M*(R) = M_(%) = m — 2Gy(s() — ipp(X). “412)

Then we can write ¢, as follows

(ol M(®)

A, = (M*(f) —ioié‘i) (4.13)
 (ioia, M(®)

36"_(ML@ —uﬂa)' (4.14)

Momentum space

The next step will be to transform the inverse propagator in coordinate space

s~i+) ¢ i(6,—c'd) —M(X) 0 0
-1 _ _ 0 i .
S _( 0 54H)‘ 0 0 M) i@ +oiay| &Y
0 0 i(0,—0'd) —M*%)

to momentum space via a Fourier transformation. To make the calculation feasible, the problem
is discretized by imprisoning the described system into a volume V, which will be sent to infinity
in the end, thus allowing for a continuous spectrum of momenta again. Imposing periodical
boundary conditions on the spinors, they can be written in Fourier series as follows

1 . 1 . I

@n  Pn
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_ 1 - . 1 - . I
P(x)=—= > 1, et = — W, etil@nT=pnX) (4.17)
with p® = E, = iw, and x° = t = —it. At this point one has to make an ansatz for the

inhomogeneous mass function. Since it represents both condensates, it has to represent their
mathematical structure, too. We assume here, that the condensates are modulated periodically

M(X) =) Mge*ias, (4.18)
dr

M*(X) = Z M e, (4.19)
G

with discrete momenta @, which represent the periodicity of the condensates in form of a re-
ciprocal lattice. Carrying out the transformation and including the chemical potential u in the
course of the calculation, which has been done in [19], one arrives at the following expression
for the inverse dressed quark propagator in momentum space

=1(&) _ 0 ap(E)
Brobn | (iwmb5,,5, jfﬁm,ﬁn + b5, 5,00 w005 (4.20)
with
—d ﬁm5ﬁm bn qu qu 5ﬁm’ﬁn+ﬁk 0 0

* - -
) _ qu M‘_jk 5Pm,Pn—qk O-.pmépm,Pn 0 0 (4 21)
D 5. - = * .
Pms>Pn 0 _Gpm(sﬁm,ﬁn (_ik quéﬁm,ﬂn—ﬂk

P
24, Mg O mpn+d, O PmOpbn

As we can see from the off-diagonal elements, only those momenta p,,, p,, are coupled with each
other which differ by a momentum §;. None of the momenta p; in the first Brillouin zone of the
reciprocal lattice are coupled with each other. As a consequence the full inverse propagator can
be divided into block diagonal sub-propagators, one for each momentum of the first Brillouin
zone.

Chiral density wave

For now we stay restricted to a one-dimensional modulation of the condensates, namely the
chiral density wave, resulting in M (%) = Me'?* (M € R). Then S™'*) and S~ are not quite
identical and a sub-propagator will take the following form

T 0100 iwm+6-P4u 0 0 0
1) = 1000 0 iwm—0 P+ -M 0 (4.22)
fij - 0001 0 -M iwy+3-(P+q)+u 0 :
0010 0 0 0 iwm—&-(F+3)+u
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"0100 i +G P 0 0 -M
710 = 1000 0 lemCPvm 0 g (4.23)
F: = 0001 0 0 iwm+3-(F+3)+u 0 .
0010 -M 0 0 iwm—6-(P+§)+u
with

Py 0

p=|p, |, G=|0]. 4.24)
Ds q

P denotes an arbitrary momentum of the Brillouin zone and we dropped the 6,, , for legibility.
Our aim is to calculate the propagator, therefore we will have to invert these matrices. It suffices
to look at one block! of a sub-propagator, i.e. the 8 x 8 block from eq. (4.22), naming it
ST (B+4, P), since the results can be easily generalized. At this point we changed the notation
SI{;S:%) from [19] to S™!)(B+§, B), which is more convenient for this work. The latter notation

denotes that S™!)(5+3, p) is the propagator of a quark changing its momentum from p to p+q
by scattering off the inhomogeneous condensate. The (-)-case can be handled analogously and
therefore we will only present its results. In order to invert S~')(5 4+ §, B), we first diagonalize
ADB+4,5) = UiaqU ™" 514, has eigenvalues [26]

Ai:ﬂ:\/ﬁ2+M2+q;i\/q’2M2+(f)’-q’)2. (4.25)
For the inverse propagator we then have
STIE+,5) =y liwy, — # (B +3,5) +u]
=7 [iwn = UstyiegU™ +u] (4.26)
=1 Uliw, = i + 01U,

(4.27)
where the expression in brackets is a diagonal matrix. Inverting this matrix yields the propagator
1
SH(F+q,p)=U - diag ({—}) Uy (4.28)
iw,—A+u

Each eigenvalue appears twice in this 8 x 8 block. Since the propagator is quite a lengthy
expression?, we refrain from showing the full expression here, but rather present the structure
of the propagator in Dirac-space

o @a")y o 0
N S I 0o (3%
0 0o () o

For the sake of simplicity we call it one block, although it consists of 2 blocks in Dirac-Space and 1 full and 2
half blocks in momentum space. Since the Dirac-space is shifted in respect to the momentum space, we actually
diagonalize and invert three blocks in momentum space and cutoff the 2 x 2 edge in order to multicplicate the
Y, matrices correctly.

See appendix D from page 49 onwards for more details. The general form of the infinite propagator S(p’, p)
can be deduced from the expressions given there.
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0 (2(—)) (3(—)) 0
a1 o 0 0

0 0 0 (6|’

0 @) &) o

with (1®)) — (6®)) being 2 x 2 matrices®.

SO@+4.p) = (4.30)

4.2 Gap Equation

Now that we have an expression for the dressed quark propagator, we want to have a look
at the gap equation. The main difference to the homogenous case is, that the momentum of
propagating quarks can be changed as they scatter with the inhomogeneous condensates. This
is shown in the Feynman diagram of the gap equation

pimer pin (4 . 3 ]_ )

where we can see, that the dressed quark propagators now are labeled with two different mo-
menta. Equivalently we have

. .a(E .a(E . .
ls(i)(pout:pin) = lS(() )(pin;pin) + lS(() )(pout:pout)(_lz(i))ls(i)(pinter:pin)- (432)

We will be omitting the vector signs of the momenta in the propagator from here on. The propa-
gators S(ﬂf and their inverses have the same structure as S* and their inverses. The difference is,
that S(ﬂf contains the bare quark mass m instead of M. We will work in the chiral limit, therefore
we set m = 0 MeV.

pDU[

Self energy

Before studying the gap equation further and deriving an equation for the mass gap, we want
to analyze the self-energy. It is given by

4
&) =26, (1 J Tk Tr[1i(SP(K, k) + SO (K’ k)]
(2m)*

:I:i}/SJ

The traces have to be taken over Dirac- and color space only. We seperate the different interac-
tion channels and account for the i? in the second term, changing the sign of it

(4.33)

d'k iv5icc(H)(1.’ I
oy TLHS K ) = SO k)] |

4
£ = 26 (m‘ J (ML, ] + TS K, k)]))

2m
5.
F 2Gg (}f lJ

For details see appendix D from page 49 onwards.

(4.34)

d*k _
(271)4(“”55(”("” k)] = Tr[y°s (K, k)])) :

3
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The four traces of the propagator* are almost identical
Tr[1S(K, k)] = Tr[1S (K, k)] = — Tr[y° Sk, k)] = Te[y°STU(K, k). (4.35)
For k/ — k = nq = 2nQ the trace explicitly reads
2M(M? + k% + k2 — Q% — (iwy, + 1)?)
= (o + WP)E2_ — (i + 0P’
With a partial fraction decomposition this can be transformed into

/ A k,n A k,n
Tr[1S(K/, k)] =N, ZEkn {(lw ‘H:)z +k (lw - } (4.37)

Tr[ 1S (K, k)] = —N., Z & (4.36)

For legibility we defined

= /(k, +2nQ)* + M2, k* = K2+ k2,
Aiin=En+Q A in=En—Q (4.38)
Efpn=1/A,thkiand E_j, = /A2 +K].
The self-energy can thus be written as

Y@ = AN G M (1 £ v5)i 4k Z ! Atkon
FSEUETN | @rt 4B, | (g + -

+kn

(4.39)

A k,n
oo + 0 - en |
The momentum integration is limited to the Brillouin zone of the reciprocal lattice. The region

outside of the Brillouin zone is included by summation over n. We can drop the sum over n by
expanding the momentum integration to the whole momentum space, i.e.

d*k 1 At ko N A ko
(2m)* Exp | (iwy, +u)? — (iwy +u)?—

&) = 4N G M (1 £ )i 2 } . (4.40)
—,k,0

+ k,0
Following the previous chapters, we call the occuring integral I i“hom(Q, M)

d*k 1 At ko N A ko
m)* Erg | (i, +u)? - + 1o (lwn+ W) —E_io

[imhom(Q, M) = 2i (4.41)

The ky-integration of the integral I {"h"m(Q, M) can be evaluated with the Matsubara formalism
analogously to the homogeneous case®. The result reads

Iinhom M — d3k 1 A,_’_’k’o 1 oyl
1 (Q’ ) - (271)3 Eio | Eik 0( o nE+,k,0 o nE+,k,0)
’ A ” (4.42)
—k,0 _
+E_ o (1 - TlE_’k’O - nE_’k’O)} .
The self energy takes the form
%@ = 2G,NM(1 £ y2)Iiom(Q, M). (4.43)

Which can be looked up in appendix D from page 49 onwards.

> Calculated in appendix C on page 45.
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Mass gap

To derive an equation for the mass gap in the chiral limit, we take a look at the general gap
equation

iS =1iSy+1Sy(—iX)iS, (4.44)
or equivalently

STl=51-x. (4.45)

We have omitted the (%)-notation here, since the mass gap is identical for both cases. Writing
these expressions as matrices one can extract the formula for the mass gap

M =20 (4.46)

with 0 = 2N,.GsM 1 i”hom(Q, M). Thus the formula for the mass gap® is

M = 4N.G.M k1 A*’k’°(1 T )
= —n —n
° (27)° Exo | Ev ko Brko  TErko
’ T (4.47)
A ko _
+E_ o (1 - nE_J(,O - nE—,k,O) 5
which is divergent. To account for the divergencies, we will use the Pauli-Villars regularization
scheme to treat 220 and 2=k0
Ey k0 E_ko

4.3 Mesons

From the previous chapters we learned that the polarization loop plays an important role when
it comes to calculating meson masses since it represented an essential part of the meson propa-
gator. In the following we want to analyze the nature of the polarization loop in the inhomoge-
neous phase.

General polarization loop

We want to start from a more general polarization loop and build in the constraints step by step.
The Feynman diagram for a general polarization loop is

p+r’ p+r

(4.48)

®  We have shown an alternative derivation of the formula for the mass gap in appendix D on page 48.
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We have an incoming meson of type M with momentum r and an outgoing meson of a possibly
different type M’ with momentum r’. The polarization loop consists of two inhomogeneous
dressed quark propagators, which have to be S(p’,p) and S(p + r/,p’ + ), since we have mo-
mentum conservation at the vertices I'); and I';;». Here we used the tilde to express that these
propagators are general. Translating the Feynman diagram yields

d4p
(2m)*

7 / — d4p/ & o &t
Jw (' r)=i G I (TS +r,p" + 180, p)] - (4.49)

Chiral density wave

Since we are working with the chiral density wave, we know that the inhomogeneous quark
propagator is only non-zero if the involved momenta differ by any integer multiples of g = 2Q.
We build in this constraint by using four dimensional delta-distributions and our inhomogeneous
quark propagators for the chiral density wave

3('.p) = S, p)2m)* s (p’ - (p +2mQ)), (4.50)

S(p+r,p+1r)= ZS(p +r',p + )P+ — (p' +r+2nQ))
n

with m, n € Z. We plug these expressions into eq. (4.49) and get

d*p d*p’
(2m)* | (2m)*
x (2m)*6™W(p' — (p +2mQ))(2m)*6W(p + ' — (p' + r + 2nQ)).

T () =1 ZZTr [TwS(p+r,p" +r)TyS(p’,p)] (4.51)
m n

We evaluate the p’-integral using the first delta-distribution §(p’ — (p + 2mQ))

- , ) d4p ,
Jw (', r) = 1J‘ W;;Tr [Ty S(p+71',p+r+2mQ)TyS(p +2mQ,p)]

x (2m)*6W(p + 1’ — (p +r +2mQ + 2nQ)). (4.52)

We summarize the remaining delta-distribution to (27)*6“(r’ — (r + 21Q)) by introducing [ =
m+n. In the following we keep ), and convert ), into ), and interpret the summation over
1 together with the summarized delta- distribution as

Tt (1) =Y Ty (7, 1)@ D = (r +21Q)) (4.53)
1
with
, | d'p ,
Jwu(r',r)=i ) ;Tr [FM/S(p +r,p+r+2mQ)ry,S(p + ZmQ,p)] . (4.54)
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We see that only those polarization loops are non-zero, for which the constraint
r’ —r = 21Q holds. We can write down a more specified version of the polarization loop

p+r+21Q p+r+2mQ

r+21Q r

PN N (4.55)

p p+2mQ

with incoming meson of type M with momentum r, outgoing meson of type M’ with momen-
tum r 4 2lQ and the two quark propagators S(p +2mQ,p) and S(p +r + 2IQ,p + r + 2mQ).
Mathematically the equation reads

[ dp
Iy m(r+21Q,1) = 1f W;Tr [TyS(p+r+21Q,p+r+2mQ)T,S(p +2mQ,p)] .
(4.56)

Employing Matsubara formalism

For further investigation we have to make use of the Matsubara formalism. The occuring vectors
will be changed according to

p— (iw;+u,p), r = (iw, ), Q— (0,Q), (4.57)

where w is a bosonic Matsubara frequency belonging to the meson, while w; is a fermionic
one. We introduce these Matsubara frequencies as additional arguments of the propagators.
The polarization loop then reads

- d3
Ty m(iogs 7+ 214, F’):—TZJ ﬁZTr[---], (4.58)
j m

with Tr[--- ] being
Tr [TypS(iwg + i+ p; B+ 7+ 21Q, B+ 7+ 2mQ)TyS(iew; + p; +2mQ, )| . (4.59)

We make use of the residue theorem to convert the sum over Matsubara frequencies iw; into an
integral over ny(z) - Tr[-- -] with residue —T

. = - dgp 1
JM’,M(lwk;r+21Q;r):J (27)3%§ dz nF(z)ZTr[---], (4.60)
C1 m

where Tr[---] is
Tr [TypS(iwg +2 + 3 B+ 7+ 21Q, 5 + 7 + 2mQ)TyS(z + w; f + 2mQ, ) | (4.61)

and ng(z) is the Fermi-Dirac distribution. The contour C; runs around the fermionic Matsubara
frequenices iw;. The next step will be to change the contour such that it runs around the poles
of the integrand. Therefore we need to evaluate the trace in detail.
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Analyzing the trace

It turns out that the trace is identical if the meson type does not change, i.e.
Ty =Ty € {1,ir’}. (4.62)

Therefore we will drop the vertices T'y;» and Ty, as well as the corresponding indices M’, M.
However, the traces for the different isospin flavors are not quite identical. Using the expressions
for the propagators’, adjusting the respective momenta and summarizing the terms, the traces
read

Tr [S* (i + 2+ w; f+ 7+ 21Q, + 7+ 2mQ)S* (z + w; f + 2mQ, F) | =

fiE+uw) g E+ptio) + £ (z+u) g5z +u+io) +hi(z+u+iog)
(E2 oy = PR)E2 oy —DAVE? . — (Do + i )2)(E? . — (Do +i})?)
f;(z+u)-g2(z+u+lwk)+f4+(z+u)-gz(z+u+iwk)+h;(z+u+iwk)
(EZ i1 —PONEZ |, s —PONES . — (Po+iw)?)E? | — (Po +iw)?)

(4.63)

for the up quark and

Tr [S™ (i + 2+ s f+ 7+ 21Q, + 7+ 2mQ)S ™ (z + u; f + 2mQ, ) | =
filz+w) g tutio)+fi(E+u) g @+utio)+hi(z+u+iow)
(B2, —POE? , = POEY oy — (Po+iw))E? |, — (Po+iw)?)
foG+u)-g,tutio)+f, (z+u) g, (z+ution)+hy(z+u+iow)
(B2, —PONE? , = PONET 11— (Po+iw)?)E? |, — (P +iw)?)

(4.64)

for the down quark. We defined several functions® to keep the numerator legible. The denom-
inator has been summarized using the definitions given in eq. (4.38). Additionally we have
defined py = z + u. The indices [ £ 1 and m £ 1 represent the fact that the inhomogeneous
propagator couples neighbouring momenta with each other.

Evaluating the polarization loop

We are now ready to evaluate the z-integration of eq. (4.60) with the residue theorem.” Cor-
responding to the results we found, we split the polarization loop into an unregularized and a
medium part

J(ro, 7 +21Q,7) = J Z( unres (ro, ¥ + 21Q, F) + J ™ (ro, 7 + 21Q, 7)),  (4.65)

(27)° 8Q

Given in appendix D from page 49 onwards.
They have been noted down in detail in appendix D on pages 53 and 54.
Details and results of the calculation are given in appendix D from page 52 onwards.

9
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where we made the continuous extension iw; — r,. In order to perform numerical calculations,
we need to make a few adjustments to the polarization loop. For simplicity we want to study the
case of resting mesons, i.e. ¥ = 0. Due to the energies occuring in the Fermi distribution func-
tions, the medium part converges for high momenta. We avoided referring to the unregularized
part as vacuum part, since it is still dependent on u. However, there are no Fermi distribution
functions taking care of high momenta thus it needs to be regularized, which will be discussed
shortly. The expression for the polarization loop we want to calculate numerically reads

Ji(ro, M) = f OI5E 8QZ(J”g(ro,M)H’“d(ro,M)) (4.66)

The M in the argument, which we have omitted so far to avoid confusion, denominates the
constituent quark mass, not the meson type. We dropped the arguments 7 + 2IQ and 7 and
noted down m and [ as indices instead.

4.4 Numerical Results

Before presenting our results, we want to discuss the regularization of the integrals. Since we
are dealing with the chiral density wave modulation, which distinguishes the z-direction of the
momentum from the other two directions, we will use cylindrical coordinates for the integration
in the mass gap formula (cf. eq. (4.47))

Jd3k—>fkldde¢ dk, (4.67)

as well as for the polarization loop (cf. eq. (4.66))

J d°p — f p.idp,dé¢ dp,. (4.68)

The polarization loop is divergent, since its integrand is proportional to pi. The denominator
and numerator both are of order M® and pz6. However, the denominator is of order pi, while
the numerator is of order pi. An additional factor of p, originates from the cylindrical volume
element. The integration over ¢ is straight forward due to the rotational symmetry of the chiral
density wave and yields a factor 27t. All calculations are done for temperature T = 1 MeV

Regularization

To aquire results comparable to [19], we use the same regularization to treat the formula for

A
A+k,0 an d A— k0

the mass gap and the polarization loop. The factors o o in eq. (4.47) as well as
+, ,0

llf "8 (ro, M) are regularized using the replacement

3
FrEM) =D e, f o8 (v M2 +nA?), (4.69)

n=0
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with ¢y =1, ¢; = =3, ¢, =3 and ¢3 = —1. The regulator is A = 757.048 MeV and the coupling
of the quarks is given by GgA% = 6.002. These parameters are tuned to a pion-decay constant of
f- = 88 MeV, the vacuum constituent quark mass of M = 300 MeV and zero bare quark mass
m. The coefficients c, are chosen such that

D e, =0 (4.70)

n

to cancel out the divergencies.

Quark masses

First we want to take a look at the constituent quark masses. They were calculated by iterating
eq. (4.47) numerically, until the relative alteration of M deceeded a certain treshold. The
results are listed in Table 4.1. We have calculated the constituent quark mass for different
chemical potentials y and compared them to [19, 27].

| u [MeV] | Q [MeV] | M [MeV] | M,,, [MeV] |
300 0.001 | 299.884 | 299.982
305 0.020 | 298.295 | 298.395
310 0.001 | 293.652 | 293.652
315 192.762 | 100.365 | 101.319
320 | 207.552 | 85.709 85.606
325 | 220.096 | 71.735 71.666
330 | 231.249 | 58.612 58.428
335 | 241.205 | 45.184 44.856
340 | 250.652 | 30.289 29.413
345 | 262.768 | 0.224 0.215
350 | 247.879 | 0.427 0.411

Table 4.1.: Constituent quark masses for different chemical potentials u. Q has been aquired by
minimizing the corresponding grandcanonical potential [28]. M is the value calcu-
lated, the expected value M,,, is from [19, 27, 28].

The values correspond very well to results found in [19, 27]. As u increases, we observe a
sudden increase in Q which corresponds to the phase transition from the homogeneous to the
inhomogeneous phase. The decrease of constituent quark mass M shows the restauration of the
chiral symmetry.

Polarization loop

Next we analyzed the polarization loop

1 p re me
Ji(ro, M) = @J Apydp. g D U5t (ro, M)+ 73 (ro, M) 4.71)
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numerically for two different values of u. At the same time we restricted the indices [ and m
to two cases and set the meson energy to ry = 0 MeV. As a reminder, index [ represents the
difference of incoming and outgoing meson momenta while index m represents the change in
the momenta of the propagating quarks. The integration covers the whole momentum space in
principle. Nevertheless we introduce bounds p, ;... and p, 4, for the integrations. By keeping
one integration bound constant and varying the other one, we will be able to determine whether
or not the polarization loop converges.

In Figure 4.1 we have shown the integrand of the polarization loop

I,m I,m

g—gw”g(o, M) +J7¢(0, M) 4.72)

for u = 305 MeV as a function of the momenta p, = p,. According to Table 4.1 we have
Q =0.02 MeV and M = 298.295 MeV.

1e+13 T T T T 1e+13

5e+12 | 5e+12 -
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L
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> -5e+12 | 5e+12 |
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o
P(J"°9(0,298.295)+J™%(0,298.295))/(8Q)
o
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Figure 4.1.: Integrand of polarization loop as function of momenta p, = p, for u = 305 MeV,
Q = 0.02 MeV and M = 298.295 MeV. The integrand has three singularities in the
region of low momenta while it approaches zero for high momenta.
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Subfigures 4.1(a) and 4.1(c) show the integrand for [ = 5 and m = 1, while Subfigures 4.1(b)
and 4.1(d) show the case [ = 10 and m = 5. In the region of low momenta we observe three
singularities in both cases. As the momenta increase, the integrand falls off and converges to
Zero.

The integration for various combinations of p, ;... and p, .., failed since the implemented pro-
cedure for the numerical integration did not converge. We assume this is due to the occuring
singularities and could be solved by refining the numerical procedure.

In Figures 4.2 and 4.3 we have plotted the polarization loop for u = 325 MeV. Accordingly we
have Q = 220.099 MeV and M = 71.735 MeV. Figure 4.2 shows our results for three different
but constant p; 4y-

0 Pr, max = 1000 MeV 0 Po. max = 1000 MeV
PO, max = 2000 MeV N P, max = 2000 MeV
Pr max = 3000 MeV  x PL} max = 3000 MeV
. .
I -0.005 |,
L. LW
> >
[ © | e,
E E. -
g 10 8 o01f,
N N
< < *
S S *
5 5 N
* *
A5 L s 1 -0.015 [ %
20 . . . . -0.02 . . . .
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Figure 4.2.: Polarization loop for u = 325 MeV, Q = 220.099 MeV and M = 71.735 MeV. p | ;4
is kept constant while p, .., is varied. The polarization loop converges in Subfigure
(a) at about 1000 MeV and in Subfigure (b) at about 3000 MeV.

We observe that the polarization loop converges relatively quick to a certain value in both cases.
The absolute value increases with p, ..., while it decreases with [ and m. Recalling that we
actually would have to sum overm, this behaviour indicates that summands with higher m con-
tribute less than summands with low m, thus allowing to expect that the sum may converge.

In Subfigures 4.3(a) and (b) we have shown the polarization loop for three different values of
Pz max- While in the case of [ = 5, and m = 1 all three lines overlap, one line splits in the
case of [ = 10 and m = 5. In Subfigures 4.3(c) and (d) we additionally plotted the integrand
of the polarization loop. Contrary to the case of constant p ,,,,, the polarization loop and its
integrand both diverge, which was not expected.

A careful look at the analytical expressions!® revealed the reason for this behaviour. The inte-
grand of the polarization loop has terms of the form

2 2 2 2
(E:I:,p,mzl:l - E:I:,p,l)(E:F,p,mzl:l - E:I:,p,l) (473)

10 Given in appendix D from page 53 onwards.
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in every denominator. Since these energies contain p; (cf. eq. (4.38)), a factor of pj is cancelled
out of every denominator, leaving the integrand proportional to pi rather than pi. This is a
much stronger divergency than anticipated and needs to be taken care of.
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Figure 4.3.: Polarization loop and integrand for yu = 325MeV, Q = 220.099 MeV and
M = 71.735 MeV. p, and p, ., are kept constant while p, and p, ,,,, are var-
ied. In Subfigure (a) all three lines overlap while one line splits in Subfigure (b).
The integrand of the polarization loop diverges, accordingly the polarization loop

diverges.

10000

Change in regularization

Following our findings so far, we adjust the regularization scheme by enhancing it with four

additional regulatory terms. Our new scheme is

7

FreEM) =D cuf (Y M2 4 nA2),

n=0

(4.74)
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Wlth CO = ]., Cl == _7, Cz == 21, C3 == _35, C4 = 35, C5 = _21, C6 == 7, C7 = _].,
A = 956.373 MeV and GSA2 = 11.6538 [28]. These parameters have been fitted to the same
conditions as the previous parameters.

Polarization loop

We calculated the polarization loops for the same scenarios as before. In Figure 4.4 we have
shown the integrand for u = 305 MeV, accordingly Q = 0.652 MeV and M = 297.867 MeV
[28].
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Figure 4.4.: Integrand of polarization loop as function of momenta p, = p, for u = 305 MeV,
Q = 0.652 MeV and M = 297.867 MeV. The integrand now has seven singularities
at low momenta while still approaching zero for high momenta.

Qualitatively the behaviour of the integrand remained the same. For low momenta we now have
seven singularities. Recalling the case of the previous regulation, where we had three singulari-
ties and three regulatory terms, this result is quite peculiar. It seems that every regulatory term
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adds a singularity. We suppose that certain combinations of p,, M, m and [ generate a sign flip
in the denominators of the integrand of the polarization loops which contain terms of the form

2 2 2 2
(E:I:,p,mzl:l - E:i:,p,l)(E:F,p,m:I:l - E:I:,p,l)' (475)

These singularities should be determinable analytically and then should be considered when
improving the numerical procedure.

In Figures 4.5 and 4.6 we have plotted the polarization loop for u = 325 MeV,

Q = 220.235 MeV and M = 69.871 MeV [28]. Figure 4.5 shows the results for three different
but constant p ;... The polarization loop remains convergent, although the absolute values
have increased and the convergence is reached at higher values of p, ,,,,. This is most likely
due to the higher coefficients of the regulatory terms.
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Figure 4.5.: Polarization loop for u = 325 MeV, Q = 220.235 MeV and M = 69.871 MeV. p | .4,
is kept constant while p, ..., is varied. The polarisation loop converges in both cases
although the values for p, ..., at which convergence is reached have increased.

In Figure 4.6 we have shown the polarization loop for constant p, .., and its integrand for
constant p,. The absolute values have also increased, while the divergent character remained.
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Figure 4.6.: Polarization loop and integrand for y = 325 MeV, Q = 220.235 MeV and
M = 69.871 MeV. p, and p, ..., are kept constant while p, and p, ., are varied.

The polarization loop and its integrand remain divergent.
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5 Summary, Conclusion and Outlook

Summary

In chapter 2 we introduced the NJL. model in vacuum. We briefly discussed the NJL Lagrangian,
its symmetries and the Feynman rules for this fermionic effective quantum field theory. We then
had our first look at one of the main features of this theory, namely the dynamically generated
constituent quark mass, which occurs due to the spontaneous chiral symmetry breaking. Since
we encountered an integral with divergencies, we discussed how to regularize such integrals.
Next we described mesons as states of quark-antiquark scattering via the Bethe-Salpeter equa-
tion. We concluded with the numerical calculation of quark and meson masses.

In chapter 3 we moved our discussion from the vacuum to the medium. We saw that in order
to include a finite temperature T and chemical potential u we had to employ the Matsubara
formalism. We repeated most calculations of the previous chapter in the new mathematical
framework and presented again some results regarding quark and meson masses.

In chapter 4 we started to discuss inhomogeneous phases. This was done by promoting the
condensates, which were constant up to that point, to be functions of the three-dimensional
space. In the course of the calculation we made some assumptions and choices to simplify
the problem. For the simplest case of inhomogeneous modulation, the chiral density wave, we
explicitly derived the dressed quark propagator. We analyzed the gap equation and derived a
formula for the mass gap. Numerical values for the constituent quark mass were calculated.
We derived a numerically evaluable expression for the polarization loop of the Bethe-Salpeter
equation and showed some numerical calculations.

Conclusion

To verify the applicability of the inhomogenous quark propagator derived in this work, we com-
pared the results we gained using it with existing results [19, 27]. We have shown! that the
formula for the mass gap derived from the grandcanonical potential [19] is the same formula as
derived from the quark propagators (cf. eq. (4.47)). Furthermore, using the same regulariza-
tion scheme as in [19, 24], we were able to calculate agreeing results for the constituent quark
mass using the quark propagator instead of the grandcanonical potential. Values for the size of
the Brillouin zone Q still had to be determined by minimizing the corresponding thermodynam-
ical potential [28].

Regarding the investigation of mesons in inhomogeneous phases, we were able to derive quite
lengthy, but numerically evaluable expressions for the polarization loop, which plays a crucial
role in calculating meson masses. We analyzed the polarization loop numerically for two dif-
ferent, but simple scenarios. At low Q the numerical integration necessary to calculate the

1 See appendix D on page 48
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polarization loop failed. We suppose that this is due to the singularities which are caused by the
regulatory terms and the low value of Q. These should be calculable analytically and considered
in the procedure of numerical integration.

At a much higher Q the singularities were not present and we were able to perfom the numerical
integration. We then examined the polarization loop concerning its convergence. It converged
respecting p,, while it diverged respecting p,. These characteristics did not change after an
update to our regularization scheme. It is yet to be determined why these divergencies are
occuring.

Outlook

We think that the singularities and divergencies of the polarization loop are the most press-
ing problems requiring further numerical and analytical investigations of the polarization loop.
During the discourse of mesons in an inhomogeneous phase we made several simplifications.
For instance we only calculated the polarization loop for certain values of [ and m while actually
one has to calculate the sum over m. It has yet to be determined if the summation leads to more
reliable results. A reconsideration of the regularization scheme is another possibility.

If these problems are solved, it would be interesting to look at the polarization loop in the
inhomogenous phase with [ = 0, m = 0 and Q — 0 to learn whether or not one recovers the
polarization loop for the homogeneous case. Further on, one could consider mixed interaction
channels I'y; # T'};» and non-zero momenta and energies of the incoming and outgoing mesons,
since ultimately the motivation of this thesis was the study of meson masses in the chiral density
wave modulated inhomogeneous phase, which remains to be done. Another step could be to
investigate the inhomogeneous phase with non-zero bare quark masses.
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A Miscellaneous

Conventions

We used natural units in this thesis
h=c=kz=1.

For the Dirac matrices we used the chiral or Weyl representation

01 0 ok -1 0
0 __ k 5 __
”_(]1 0)’ Y‘(—ok 0)’ Y‘(o ]1)’

with the Pauli matrices

(A1)

(A.2)

(A.3)

(A.4)
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B Vacuum Calculations

Self-Energy

Detailed evaluation of self-energy. The self-energy reads
4

Y =2G:|1 d4kTIL'Sk jy° dkT iv>1 . iS(k B.1
= 2Gg Wr[l()]+lY7a Wr[l}’fal()] (B.1)

In the first term we apply the definition of the propagator, while the second term is zero, since
the trace over an odd number of Pauli matrices vanishes.

d*k o k+M
¥ = 2Gs1 i Tr Jukz— (B.2)

(2n — M?+ie

Now we make use of ¥ = y*k, and the fact that traces over an odd number of y-matrices vanish
as well.

d*k
% =2Ggli | ——Tr[1] — B.3
s lf(zn)‘* ) e (B-3)

The trace is to be taken in color-, flavor- and Dirac-space yielding the factor 4N;N.. In general
3. is a matrix. In this case, it is diagonal and all entries are the same. Therefore we drop the 1
in front of the integral. The final expression reads

% = 8NN, GsMI}*“(M), (B.4)
with the integral

d*k 1

2n)* k2 - M2 +ie (B-5)

1¢(M) = i

This integral can be further evaluated analytically, which is done on page 42.

Bethe-Salpeter equation

Here we present the derivation of eq. 2.24 from the Bethe-Salpeter equation, which reads

First we replace the elements of the equation, which are matrices, by the expressions given in
eq. 2.21, 2.22 and 2.23
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After accounting for two of the imaginary units in the second term we have
Tyit(qQ)Ty = Ty 2iGsTy + Ty2Gs Ty Iy Tasit(QTy (B.8)
where we can use Jy;(q) = T'y,I1,,T"), to get
Cyit(@Ty = Tp2iGsTyy + Ty 2God ()it ()T (B.9)

This matrix equation has to hold, regardless of which interaction vertex we choose. Therefore
we can neglect all Iy, here

it(q) =2iGg + 2GgJy(q)it(q). (B.10)

With a few steps we can resolve this equation for it(q)

it(q) — 2GsJy(qlit(q) = 2iGs, (B.11)
(1 —2GsJy,(q))it(q) = 2iGs, (B.12)
tq) = — 05 (B.13)
i = . .
YT 260u@)

Polarization Loop

The Feynman diagram of the rm-polarization loop and its translation into a mathematical form
is given by

k+q

_iJﬂ:a(qz) =

k. L
= — WTI'[F}’ TalS(k‘l‘q)lY TalS(k)] (B.14)

.2 d4k . 5 . 5
=1 Nch ﬁTrDirac[l}/ S(k+Q)l}/ S(k)]

where Ny and N, come from the trace in flavor and color space. We apply the definition of the
propagators and get

Jr. (q%) = N¢N.i (B.15)

d*k . iy’ (K+q+M)iy>(k+ M)
@) | (k+ Q2 —M2+ie) k2 —M2+ie) |
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Since the denominator is a scalar expression, we can factor it out

d*k  Teliy>(K+¢ + M)iy>(K+ M)]

A
T V=NNL | o ot qP — M2+ i)k — M2+ i)

(B.16)

In the next step we commute the second y> with the first factor, generating minus signs for ¥

and ¢. We absorb the —1 from i2 into the first factor and use (y°)? = 1, which results in
4 _
Jr(47) = NyNii (;17:‘) ((k +;§E(f +M§i + Zﬁj_]\zﬂwﬂ +ie) (B.17)
Now we use the following rules for computing traces with gamma-matrices
Tr¢]=0 and  Tr[dh]=4(a-b), (B.18)
which leave us with
J. (¢®) = 4NfNsz 4k K+ qk, —M . (B.19)
a 2m)* ((k+q)> — M? +ie)(k? — M? +i€)
Now we expand the numerator of the integrand by adding +qk — qk + q* — ¢>
4 2 a2 _ 2_ 2
Tra(47) = 4NN (;an; (I(<k : Z; —sziclii)(k%k——i_l\jz n ?e)‘ (B.20)
Rearranging and summarizing the nominator leaves us with
4 2 _ m2Y — ke — 2
Jﬂ“(qz) = NNt f ((2171];4 ((k —I—(S;'_—ql)\/[2 —l—%e%(kff M(i +i€) (B-21)
which can be further simplified to
4 2
Jr(49) = 4Nchif (;lrc];“ (kz — 1\/1[2 tie ((k+q?- M;Jll—cl-—'i_eq)(k2 — M?+ ie)) - (B22)
It can be shown that this expression is the same as
J. (q%) = 4N;N,i 'k ( ! — - qz_ : ) . (B.23)
a @r)* \ k2 —M?+ie 2((k+q)*>—M?+ie)k?> — M? +ie)
We recognize the integral I;*(M) and define the second term as the integral 1;%°(q, M)
Jr (@%,M) = 4N;N_I)*(M) — 2N¢N.q*13%(q, M). (B.24)
In the same fashion one can derive the expression for the o-polarization loop
J5(q*, M) = 4N;N_I}*(M) — 2N;N.(¢*> — 4M*)1}**(q, M). (B.25)
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Im(k)

Re(k)

Figure B.1.: Integration path for applying the residue theorem for the integral I;*°(M). Poles of
the integrand are marked by small crosses.

The Integral 17°(M)

Here we present the analytical simplification of the integral 17 (M)

1'(M) =i d'k ! (B.26)
=1 . .
! (2m)*k? — M2 +ie
First we seperate the O-component of the four-vector k and its integration
IvaC(M) : dSk J+oo dko 1 (B 27)
=1 | —= = . .
! @n) )_o 27 kK2 —k2— M2 +ie
Now we use E, = 1/ k% + M?2.
poey =i [ 2K [T (B.28)
=1 .
1 (2n)? |_, 27 ki —E}+ie

Before performing the integration, we factorize the denominator. This step can best be recon-

structed, by calculating it backwards and neglecting the term with (ie)?. However, we have the

following expression with ¢/ = ==

2E;
Ivac(M) __ dSk o dko 1 (B.29)
! —! 2n)® | 27w (ko +E; —ie") (ko — Ex +i€’) '

The k,-integral has two poles k, = +(—E; +i€’) and can be solved with the residue theorem. As
depicted in Figure B.1 we choose to close the integration contour in the upper half plane. Then
only the pole k, = —E; + i€’ contributes to the integral. After applying the residue theorem and
sending € — 0 we are left with

d’k 1

1"(M) = | ———.
(M) (27)3 2E;

(B.30)
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Im(k)

Re(k)

Figure B.2.: Integration path for applying the residue theorem for the integral 1,%°(q). Poles of
the integrand are marked by small crosses.

We employ spherical coordinates onto the three-dimensional integral, since it only depends on
k% = k?, and calculate the angular part, resulting in
0 k
dk——— (B.31)
0

2
Jie+m?

The remaining part, which is divergent, can now be treated by implementing one of the regu-
larization schemes discussed in section 2.2.

Il/(lCM —_
1 ( ) 47'[2

The Integral 1,°“(q, M)

Here we present the analytical simplification of the integral I,“(q,M). Most steps will be
analogous to the calculation of 17%°(M). The integral reads

d*k 1

2r)* [k2— M2 +ie][(k+q)* — M2 +ie] (B.32)

L,*(¢, M) =1

We rewrite the demoninator by introducing energies E;, = V/ k2 + M?2 and Epq= \/ (k + q)? + M?

d*k 1

: B.33
(2m)* [k§ — E¢ +ie]l(ko +qo)* — Ef, +i€] (B33)

L,“(g, M) =1

In the next step we perform a partial fraction decomposition and use i = (—i)~! which leaves
us with

[ (g, 1) = d*k (dky 1 1 1 .
2 WLYITT | @n) | 2mi 4EEe, \ko— Ex+i€’ Ko+ By — i€ '

1 1
X — .
(ko‘l‘qO—Ek’q‘}'iG/ k0+q0+Ek’q—i€/)
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The ky-integration can again be done with the residue theorem. Therefore we close the integra-
tion path in the upper half plane as shown in Figure B.2. Then the poles k, = —E; + i€’ and
ko = —qo — Ey 4 + i€’ contribute and we get

ey = [ LK1 L1 (B.35)
2 (2n) 4E E g \ Qo — Ex —Exg Qo+ Ex+Exg ) '

We further simplify the expression by reducing the integrand to a common denominator.

I,*(q, M) =

d3k 1 +E. +E ,—(qo—E.—E
(CIo k k,q (90 k k,q)) (B.36)

(27)* 4ExEy g \ (9o — Ex — Exg)(qo + Ex + Ex )

Summarizing the nominator and denominator and introducing the sum of energies s; = E; +Ey
we get

Sg

M) = .
J(ZTC) ZEkEquo E

Employing spherical coordinates and calculating the angular part of the integral leads us to

17°¢(q, (B.37)

(0.¢]
k2 s

1
17%(q, M) = —J : (B.38)
2 477.'2 0 EkEk,q q(Z) — S%

This expression has to be regularized in order to deliver reliable results.
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C Medium Calculations

The Integral I7¢(M)

Here we present the calculation of the integral I {"Ed (M)

med(p) = —TZ s ! (C.1)
! B — | (271)° (iw, +u)? — EZ '

The first step is a partial fraction decomposition into

[red(ppy 3k 1 TZ 1 1 (C.2)
1 ] (2n)32E, — \iw, +u—E,  iw,+pu+E )|’ '

We apply the residue theorem backwards, to convert the sum over Matsubara frequencies into
an integral. Therefore we introduce an additional function in the integrand, which has poles at
the Matsubara frequencies with residue —T.

g d’k 1 1 1 1 1
(M) = - - | dz— — (C.3)
(2m)° 2E; 2mi eT+1\2+u—E. z+u+E;

We deform the integration contour as depicted in Figure C.1 and perform the integration via
residue theorem with the two poles a, /; = +E; — u, which results in

d3k 1 d3k 1

Imed M — _
1 (M) (27)3 2E;, (27)3 2E;

(le +ﬁk) (C4)

We recognize the vacuum version of the integral I;*‘(M) in the first term, and split up vacuum
and medium part of I ined (M)

med dsk vac med
el = | s () — D) (€5)
with
vac _ i med _ Ny +ﬁk
fr(E) = 2F, and f™(E) = 2, (C.6)
;
I‘ * > >

Figure C.1.: Deformation of the contour of integral I{"ed(M). The small crosses indicate poles.

45



xY
x Y

Figure C.2.: Deformation of the contour of integral I;"ed(icon, G). The small crosses indicate poles.

The Integral [ (iw,,§, M)

Here we want to present the simplification of I;“ed(iwn, G, M) taken from [29].

(i, g, M)=—T k - :
9 (lwn’q, )_— (271:)32 R _—.\2_ 2 . 2_ - —»2_ 2
~ (jw, +u)— k2= M2 (iw, +iw, +u)?—(k+3)3>*-M
a3k 1 1
_ C.7
J(Zn)gzm:(iwm—l—u)—Ei (iwy +iw, +p)* —E7 <7

Applying the residue theorem backwards we arrive at

med(i @) d’k 1 gy L 1 1
lwy,,q, = e N2 A z2— .
2 MO d @ry2ni ) oF 41\ G+ —E +p) @+ ptin,)? - B

~—— 4

=np(z)
(C.8)

where the integral over z corresponds to the infinite Matsubara sum. As shown in figure C.2,
the integration path can be deformed so much that only the four poles 2 = +E;, — u and z =
+Ey , — U — iw, of the integrand contribute. Applying the residue theorem again results in

Igned(iwnz q’M) = -

k1 np(Ex — u)
(27)® 4E Ey 4 {(Ek +iw, — Ex  )(Ex +iw, +E )
_ np(—Ex —u)
(—Ex+iw, — B )(—Ex +iw, + Ex )
n nF(Ek,q —iw, — W)
(Eyq — iw, — E)(Eyq — iw, + Ey)
_ nF(—Ek,q —iw, — W) i|
(B — 1w, — E)(—Epq —iw, +E) |

(C.9)
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Using ny(x £iw,) = ng(x) and substituting k — —k — g in the last two terms, we get

d3k 1 np(E, —
Igned(iwn:an):_ 3 . F( X M) .
(27T) 4EkEk,q (Ek + L, — Ek,q)(Ek + L, + Ek,q)
. np(—Ex — u)
E,—iw, +E E, —iw, —E
( k n k,q)( k n k,q) (ClO)
np(Ex — )
(Ex —iw, — Ex o )J(Ex — i, + Ey 4)
B np(—E; — u)
(Ex +iw, +E (B +iw, —E ) |

By using np(—x) = 1 — np(x) and defining n; = np(E, — u) resp. n; = np(E; + w) this can be
rearranged into following form

d>k 1 ng+7mg 1 ny + 1
1M Gw,,d,M) = - — s — d C.11
2 ( " 1 ) (27’[)2 |: (Ek 2EkEk,q B (iwn)2 — 5125. 2EkEk,q E(i(x)n)z - d]% ( )

with the sum sg = E; , + E; and the difference dg = Ey ; — Ej of the energies.
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D Inhomogeneous Phase Calculations

Alternative derivation of formula for mass gap

In section 4.2 we have shown the derivation of the mass gap from the gap equation. We want
to present here an alternative method of derivation, using the grandcanonical potential of the
system taken from [19]. Equation (3.17) on page 24 reads

Q= —N¢N, d’ky f‘l dk, Z E,+ Tlog(1+ e_EnT_H) + Tlog(1+ e_En#) + M—Z
(2n)?* ), (2m) =~ ~ ~ 4Gy
(D.1)
with
Enzsgn(kn)\/w, An:ﬂ:(\/W:tQ) .2

q
kn=k.+2nQ, Q=2 Kl =ki+k;
The sum in the grandcanonical potential runs over positive eigenvalues, so only A, =
+ (\/ k2 4+ M2+ Q) are needed. We subdivide them further into A, ; = (\/ k2 4+ M2+ Q) and
Ap— = (\/ k2 +M? — Q). The potential can then be rewritten as
ThL ("0 S, )4 (B, )+ 0.3)
(2m)? ), (2m) & mE BT 4G '

The potential contains a momentum integration over the Brillouin zone times the sum over all
positive eigenvalues. This can be changed to an infinite momentum integration by dropping the
sum over the eigenvalues

Q == _NfNC

Q= -N;N f dzklj e e+ )+ 0.4)
el @er? ) oY 4G, '
To obtain equation for the mass gap, the following condition has to be fulfilled
4, (D.5)
dM
Calculating the derivative results in
M=2NNGMJAﬂl [A—Jr(l—n —n )+A—_(1—n —-n )} (D.6)
freTs (2n)*E | E, Ee BT R E-— TE-

with
E=+k2+M?,
Ar=E+Q, A_=E-Q (D.7)

E,=4/A2+k%and E,=,/A%2+k3.

If we plug in Ny = 2 and we have the same result as in section 4.2. Please keep in mind that we
used the notation of [19] here.
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Inhomogeneous quark propagator

On the following pages we have noted down the inhomogeneous quark propagator and its
inverse. For legibility we have only shown one block. All other blocks! have the same structure,
but additional factors of g, i.e. p, 4+ 2q, p, + 3q, etc.

! Denoted by .
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Inhomogeneous mesons

Here we present the z-integration of eq. (4.60). Changing the contour from C;, which runs
around the fermionic Matsubara frequencies, to C,, which runs around the poles of the traces
given in the Table D.1 and considering the difference in the two isospin flavors, the polarization
loops read

JE(iwy; 7+ 21Q, )= f 2n) 2mi j) dz ”F(Z)ZTI’[- o] (D.19)

where Tr[---] is
Tr [S*(iwy + 2+ s P+ 7+ 21, B + 7+ 2mQ)S*(z + u; p + 2mG, ) | . (D.20)

We dropped Ty, T'); and the indices M’, M, since we found that the traces are the same as long
as the meson types does not change.

| poles for up quark | poles for down quark |

I“/Z =xE, ,m1 — U al_/2 =xE  ,m— U
3/4—:EE_pm 1 u a;/4::i:E_,p’m—‘u
5/6 =EE| iy — g — U A5/ = TE, -1 — L0 — U
7/8 =+E_ pnl T g — U a7_/8 - iE—,p+r,l—1 —lw— U

ag/10 = EE  pmy1 — U Ag/10 = EEppm — 1

a;rl/IZ =tE_pm1 — M 11/12 =xE_pm— U

a;r3/14 =EE} pipy — 1l — U 13/14 =xE, pyri41 — L0 — U

a;rs/lf) =FE_pip— il — U | Qg = FE_ pppqq — 0 — U

Table D.1.: Poles occuring in the traces of the polarization loop for both isospin flavors.

The z-integration is done using the residue theorem

§ f(z)dz = ZNiZRes(f, a;) (D.21)
Co i=1

Since the traces consists of sums of fractions, we will use an alternative way of calculating the
residues.

g(2) g(a;)
fl@)= T
h(z) H'(a;)
After the integration the polarization loops are given by the formulas we have noted down on

the following pages. The first version is the direct result, the second version has been treated
with

with g(a;) #0, h(a;) =0,h'(a;) # 0 = Res(f,a;) = (D.22)

np(x)=1-ng(x) (D.23)

and arranged according to whether the term has a factor of nz(x) in front of it or not. We have
done this based on the homogeneous case, where we identified the the terms with nyz(x) as
medium parts of the expression, which did not need regularization.
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[LC01 471+ 2) = (DT +12) + % %) + (4 4 “d) + (45D + W[+ 2) = (O(€ —we) + ) + g + 74+ W[ d(“t+ ) + "d( 4 "Dz~ = o1+ +2) [y
(o1 +1142) = (D1 = 12) = %4 = *d=) + (44 “D) 4 ("4 + D] (11 + 7+ 2) — (1 + 1) + 4+ *d] + [(Clor 47+ 2) = O(1 — [2) + %4 + *d] W = (o1 411+ ) [
[(lor+1142) = (DT +12) + %4 + %) + (4 + “d) + (4 + D] [(0r +71 4 2) = O(1 = 12) + 4+ *d] + (o1 471+ 2) = D(T + [2) + *4 + *d] W = (Y1 + 11+ 2) {3
[(lor+1+2) = (D1 — 12) = 4 = *d=) + (4 “D) 4 (4 + D] (@147 +2) + O(1 + 12) + 4 + ] = [(10r+71+2) + D(1 — 12) + 4+ *d] - = (101 +71 4 2) [8
[(or+1+2) = (DL +12) + 4+ "d) + (4 + 1) + (st D] [Cl0r 411+ 2) +D(1 = 12) + 4 + *d] = [(lor+11+2) + (1 + 12) + 4 + “d] - = (o1 41+ 2) 8
[(r + %) — J(O(€ +wg) + *d) + td + 3d][(M + 2) + O(1 + wg) + *d] — [(7 + 2) + O(€ + wg) + *d] W~ = (1 +2) )}
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