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1 Introduction

The talk on Similarity Renormalization Groups
(SRG) from the seminar on nuclear structure and
nuclear astrophysics is brought to written form
here. It begins with a short introduction to the ba-
sics of low energy nuclear forces before outlining
the shortcomings of phenomenological potentials
such as Argonne ν18. The large computational
efforts that have to be taken in nuclear physics
calculations serve as a motivation for Renormal-
ization Groups. The principles of SRG are then
explained and a basic flow equation is derived.
The induced amplification of 3-body forces and
higher are discussed. The results of several calcu-
lations that use SRG evolved potentials are pre-
sented. Unresolved problems lie within the higher
order forces.

2 Potentials in low-energy nuclear
physics

The theory of low-energy nuclear physics is used
to describe the structure and behavior of nuclei.
Figure 1 gives an overview of the energy scales for
different degrees of freedom in nuclear physics.

Figure 1: Depending on the energy scale of inter-
est, the relevant degrees of freedom change. For
low energy nuclear physiscs, a typical energy scale
is 200 MeV [1].
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Since the typical momentum within large nuclei
is around 200 MeV, the relevant degrees of free-
dom are neutrons and protons with the pion as
an exchange particle. The forces between nucle-
ons are described by potentials. As an example,
Fig. 2 (left) shows several phenomenological po-
tentials for the 1S0 scattering channel in position
representation. These potentials were directly fit
to experiment data and are purely local, which
means they only depend on the relative distance
between the nucleons. Several properties are no-
table:

• A strong repulsive core at short distances.

• The long ranged part of the potential is at-
tractive.

• The potentials look quite different, espe-
cially Bonn and AV18, yet they still repro-
duce the experimental data.

Since nuclear physics calculations are usually per-
formed in momentum space, Fig. 2 (right) shows
the Fourier transformed Argonne ν18 potential. To
better understand the axes it is helpful to know
that k and k′ are the relative momenta before and
after the scattering and that 1 fm−1 corresponds
to an energy of about 200 MeV. This is, as it was
stated before, roughly the energy that is impor-
tant within nuclei. A close look at the potential
shows very high contributions at the off-diagonal
high energy parts. These correspond to the repul-
sive core and are inconvenient for many calcula-
tions. This is demonstrated by means of the T
matrix that is used to calculate scattering phase
shifts:

Tl(k, k
′, E) = Vl(k, k

′) + (1)

2

π

∫
q2dq

Vl(k, q)Tl(q, k
′, E)

E − q2/2µ+ iε
(2)

It is clear that even if T is only evaluated for small
k, the off-diagonal elements contribute. It would
be much better if V (k, k′) had a close to diago-
nal shape as this would decouple low from high
momenta and allow for a truncation. Similarity
Renormalization Groups as they are introduced
next are used to transform potentials in this way.

3 Similarity Renormalization Groups

3.1 Flow equation

Basis transformations by insertion of a 1 are com-
monly used in quantum mechanics:

E = 〈Ψ|H|Ψ〉 = 〈Ψ|U †U︸︷︷︸
1

HU †U |Ψ〉 (3)

= 〈Ψ̃|H̃|Ψ̃〉 (4)

With a good choice of U , an effect as schemed in
the title image of this report can be achieved - the
reduction of off-diagonal matrix elements in favor
of on-diagonal elements. H̃ should be found by a
steady evolution, indicated by a scale parameter s
(Hs). This means that H0 = H. A flow equation
is now derived to obtain a differential equation for
Hs.

Hs = UsHU
†
s (5)

The next couple of steps lead to a more convenient
form and introduce the operator ηs instead of Us.

(6)

dHs

ds
=

dUs
ds

HU †s + UsH
dU †s
ds

(7)

=
dUs
ds

U †sUs︸ ︷︷ ︸
1

HU †s + UsHU
†
s︸ ︷︷ ︸

Hs

Us
dU †s
ds

(8)

= ηsHs +Hsη
†
s = [ηs, Hs] (9)

ηs =
dUs
ds

U †s = −η†s (10)

Now, ηs is expressed with a generator Gs to en-
sure the behavior as demanded in the previous
equation.

ηs = [Gs, Hs] (11)

dHs

ds
= [[Gs, Hs], Hs] (12)

= GsHsHs − 2HsGsHs +HsHsGs (13)

At this point, the most common choice of Gs = T
is used. This is obviously convenient for calcula-
tions in momentum space as T is diagonal in this
basis, with T |k〉 = εk|k〉. Moreover it has the ef-
fect that only the potential is changed during the
evolution:

dHs

ds
=

dVs
ds

(14)
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Figure 2: The left plot shows several phenomenological potentials in position representation. On the
right, it is the Argonne ν18 potential in momentum representation. 1 fm−1 corresponds to about
200 MeV [1].

With Hs = T + Vs, Eq. (13) can be expanded to
evaluate the matrix elements of dVs/ds.

dVs
ds

= 2(TVsT − VsTVs) +

V 2
s T + TV 2

s − VsT 2 − T 2Vs (15)

A 1 = 2
π

∫
q2dq has to be inserted within the sum-

mands that include V 2
s .

dVs
ds

(k, k′) = 〈k′|Vs|k〉 (16)

= −(ε′2k − εk)2V (k, k′)

+
2

π

∫ ∞
0

q2dq(εk + εk′ − 2εq)Vs(k, q)Vs(q, k
′)

(17)

The last equation includes two terms, the first of
which results in an exponential decrease of off-
diagonal elements as V is evolved. If Vs is small,
the second term can be seen as a second order cor-
rection. Otherwise the behavior of Eq. (17) is not
clear, however the first term evidently dominates
in practise [2].

3.2 Examples of SRG

As an example, Fig. 3 (top) shows the 3S1 chan-
nel of the Argonne potential as it is evolved with
SRG. Instead of s, λ = 1/s1/4 is used as the flow
parameter. The transformation to a rather diago-
nal form is nicely visible. Below that in Fig. 3, the

same potential in position space is shown together
with an EFT potential. Note that the evolved po-
tential is no longer local, therefore the projected
potential V̄ (r) is given:

V̄ (r) ∝
∫

dr′V (r, r′) (18)

One can see that the repulsive core of the ν18 po-
tential is removed during the process and the po-
tentials are a lot smoother.

Such evolved potentials have the power to greatly
improve multi-body calculations, for example
within the scope of the No Core Shell Model
(NCSM). Only the basic idea of NCSM shall be
stated here. It is used to calculate ground state
energies of light nuclei. These are modelled by
protons and neutrons in an harmonic oscillator ba-
sis. Since the distribution of nucleons into Nmax

shells is a combinatorial problem, the number of
possibilities grows rapidly as more shells are added
(Fig. 4 left). These possibilities form the basis
of NCSM calculations and determine the size of
the matrices that have to bi diagonalized. To-
day’s computational power limits the matrix size
to about 109, therefore it is important that calcu-
lations converge for a smaller Nmax [3]. NCSM
uses nucleon potentials as an input. In Fig. 4
(right), it can be seen how SRG evolved poten-
tials show a fast convergence, whereas calculations
using the original potential are not successful.
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Figure 3: Top: The Argonne ν18 potential in the 3S1 channel is evolved with SRG. Bottom: The local
projections of the ν18 and a higher order contribution to an EFT potential are shown. The effects of
SRG can be seen in both plots [1].

Figure 4: Left: The dimension of matrices that occur in NCSM calculations for selected nuclei depend-
ing on the number of available shells. Matrices larger than 109 cannot be diagonalized with nowadays
computational possibilities. Right: Calculations for 6Li using a SRG evolved potential converge and
yield a ground state energy close to experimental results [1].
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4 Multi-body forces

Multi-body forces are being induced and ampli-
fied by SRG, which leads to difficulties and pre-
vents an exorbitant evolution. Before providing
an explanation, the origin of such forces in chi-
ral EFT is raised for a more systematic approach.
Figure 5 shows the force hierarchy as an expan-
sion of the momentum Q over the cutoff λ. The
cutoff is roughly the mass of the next not con-
sidered degree of freedom. The expansion begins
with momentum independent contact interactions
and pion exchanges in leading order (LO). Three-
body forces appear naturally in chiral EFT as a
consequence of neglected higher degrees of free-
dom. A more detailed discussion of EFT is be-
yond the scope of this report, but can be found
for example in [2].

Figure 5: The hierarchy of forces in chiral EFT.
Feynman diagrams scheme the various kinds of in-
teractions [2].

How SRG induces multi-body forces can easily be
understood from the flow equation (Eq. 12) in sec-
ond quantization. G is taken to be a one-body op-
erator however it is not restricted to T . The origi-
nal potential is assumed to contain no higher than

two-body forces and is therefore denoted HNN . If
the commutators are multiplied out and brought
back to normal ordering (all constructors to the
left), then the derivative of HNN also contains 3-
body forces and higher.

dHs

ds
= [[G,HNN ], HNN ] (19)

=
∑

a†a†aa︸ ︷︷ ︸
2 body

+
∑

a†a†a†aaa︸ ︷︷ ︸
3 body

+... (20)

The unitarity of the SRG evolution is therefore
only preserved if all these higher order forces are
considerd. In practise however, most calculations
have to be truncated after the inclusion of 3-body
forces. This therefore puts a limit on the extent
of the SRG evolution, at some point it has to be
stopped.

Figure 6: This plot shows the consequences of ne-
glecting the induced 3-body forces and the impor-
tance of 4-body forces for a NCSM calculation of
the 4He binding energy. The evolution of the po-
tentials takes place from right to left [1].

The importance of the induced 3-body force is il-
lustrated in Fig. 6. It shows a NCSM calculation
of the 4He binding energy. The potentials that are
used here are being evolved with SRG to find out
whether the result changes.

• If the induced 3-body force is neglected after
starting with a NN-potential, convergence is
lost immediately (red curve).

• If it is considered however, the energy re-
mains almost unchanged for quite some time
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(blue curve).

• If 3-body forces are part of the potential
from the beginning, the convergence behav-
ior is the same (blue curve). In this case, the
results are much closer to the experimental
value.

• The significance of 4-body forces is a possi-
ble explanation for the remaining disagree-
ment.

5 Heavy nuclei

After showing applications of SRG for lighter nu-
clei (Fig. 6 and 4), the status of the calculations for
heavy nuclei is now regarded. NCSM can only be
applied to nuclei with mass numbers of about 24
or lower, whereas CC is better suited beyond [3].

Figure 8 shows some Coupled Cluster (CC) calcu-
lations for nuclei with mass numbers between 16
and 132. The error bars cover the change of the
result as the evolution parameter is varied within
reasonable limits, while the arrows indicate the
direction of the change. It is clear that these cal-
culations are not accurate yet as the differences
to the experimental results are high. In order to
improve them, the higher order forces have to be
understood and handled better which is a task of
current research also at the TU Darmstadt.

6 Comparison of CC to NCSM

The next plot in Fig. 7 shows that the results from
the multi-body methods CC and NCSM are very
similar, even though they model the nucleus in a
very different way. Once again however the bot-
tom part of the plot shows that the higher order
forces represent an unsolved problem since there is
no convergence if the 3-body forces are accounted
for from the start.

On the bright side this comparison is an indica-
tion that the calculation methods themselves are
trustworthy whereas the problems lie within the
nucleon potentials that serve as an input to these
methods.

Figure 7: CC and NCSM show very similar re-
sults for the ground state energy of 16O. The col-
ors indicate the change of the flow parameter from
0.04 fm4 (blue) until 0.08 fm4 (purple) [4].
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Figure 8: Ground state energies per nucleon in MeV for heavy nuclei with Coupled Cluster (CC)
calculations. The subplots (b) and (d) show the contribution of the triple correction which is not of
interest here [5].
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