
Appendix B

Symmetries and group theory review

We give here a very short review of symmetries, and of the theory of Lie
groups needed in their study. The treatment is not intended to be complete
or rigorous, just to give a brief introduction for readers unfamiliar with the
material.

B.1 Symmetry transformations as a group

A symmetry transformation is a transformation on the states of a theory
|ψ⟩ and the operators O,

|ψ⟩ → U |ψ⟩ , O → U OU∗ (B.1)

which preserves “all physics.” In particular, amplitudes must be preserved
(up to a phase, a complication we ignore here and in the following)

⟨ψ1|ψ2⟩ → ⟨ψ1|U∗U |ψ2⟩ = ⟨ψ1|ψ2⟩ (B.2)

which shows that U must either be unitary or anti-unitary. We will only
consider unitary symmetries here. (Here U∗ is the Hermitian conjugate of
U . We write U † only if U is a matrix.)
A symmetry in which a local operator O(x) (an operator built out of fields

at point x only) is transformed into a local operator at the same point, is
called an internal symmetry. Such symmetries can be considered separately
from spacetime symmetries, such as translations, rotations, and boosts. In
fact, it is a theorem that the full group of symmetries is always a product
of the internal symmetries and the spacetime symmetries. In this appendix
we concentrate on internal symmetries; spacetime symmetries are discussed
in the next appendix.
Because the states and operators under discussion may appear at dif-

ferent times, the symmetry operator must commute with time evolution,
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[H,U ] = 0. Similarly, it must commute with the momentum operators.
This is summarized by saying that it must commute with the Lagrangian
density, [L, U ] = 0. Therefore the symmetries of the theory can usually be
identified by looking at the symmetries of the Lagrangian.
In a renormalizable theory, an operator O and its symmetry transform

U OU∗ = O′ must be of the same dimension. Since the fields are the
operators of the smallest dimension, this means the fields transform linearly
among themselves,

ϕa → UϕaU
∗ = M−1ab ϕb (B.3)

where ϕ collectively symbolizes the fields of the theory and a, b are indices
on the set of fields. Classically, the symmetries of a theory are the set of
transformations on the fields of this form, under which L is unchanged. The
relation between ϕ′ and ϕ involves a matrix inverse essentially because ϕ
annihilates a particle |ϕ⟩, and must therefore have the inverse transformation
properties of the particle.
Acting with two symmetry transformations successively, |ψ⟩ → U1|ψ⟩ →

U2U1|ψ⟩, yields another symmetry transformation, namely, the one induced
by the operator (U2U1). This defines a multiplication rule under which
symmetry transformations form a group. In general the symmetry group can
be factorized as a product of nonfactorizable subgroups, and it is sufficient
to examine the behavior of the subgroups individually. In particle physics
these subgroups are usually small discrete groups (which we will not discuss)
and continuous (Lie) groups. The latter can generally be factorized into a
product of simple Lie groups and U(1) groups.

B.2 Lie groups and Lie algebras

A Lie group is a group which is also a manifold. In particular, there is a
small neighborhood around the identity 1 which looks like a piece of Rn,
with n the dimension of the group. One can always choose a coordinate basis
for this region; the coordinate unit vectors ta are called the Lie algebra and
an arbitrary element g of the group which is close to the identity can always
be expanded in the coordinates,

g = 1+ iωαtα (B.4)

with ωα (infinitesimal) parameters. (The i is customary so that for groups
of unitary matrices, the tα are Hermitian.)
Now consider two elements of the group which are each close to the iden-

tity, say, g1 = 1+ iωα1 tα and g2 = 1+ iωα2 tα. The multiplication rule to first
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order in these parameters is given by

g1g2 = 1+ i(ωα1 + ωα2 )tα +O(ω2) (B.5)

which is addition of the departures from the identity. At the next order,
g1g2 and g2g1 can differ:

g1g2(g2g1)
−1 = (1+ iωα1 tα)

(
1+ iωβ2 tβ

)
(1− iωγ1 tγ) (1− iωσ2 tσ)

= 1− ωα1 ω
β
2

[
tα , tβ

]
(B.6)

Therefore, to determine the multiplication rule to second order we need to
know the commutators of the Lie algebra elements. Since g1g2g

−1
1 g−12 is

still close to the identity, it can still be expressed in terms of coefficients
multiplying Lie algebra elements, so the commutator must also be a sum of
elements of the Lie algebra:

[
tα , tβ

]
= ifγαβtγ (B.7)

The structure constants, fγαβ are real valued and explicitly antisymmetric in
the last two indices, and are antisymmetric in all indices if the tα are chosen
orthonormal.
The Lie algebra elements and the structure constants together constitute

the Lie algebra of the group. They turn out to be sufficient to determine
the group almost uniquely.†
The groups of interest in particle physics are compact Lie groups. These

can all be thought of as groups of matrices. Of particular interest is the
group of N ×N special (unit determinant) unitary matrices, SU(N), which
we describe in more detail in the next section.

B.3 Group representations

We saw in Eq. (B.3) that a symmetry transformation acts on a field operator
like a matrix multiplication. Successive symmetry transformations act like
a series of matrix multiplications, which gives us a condition on the matrices
which can appear in Eq. (B.3). Namely, under successive transformations
by two group elements,

U(g2g1)ϕaU
∗(g2g1) = U(g2)U(g1)ϕaU

∗(g1)U
∗(g2)

† A Lie group can have several disconnected pieces; the Lie algebra specifies only the connected
piece containing the identity. For simple compact Lie groups, the Lie algebra gives a unique
simply connected group, and any other connected group with the same Lie algebra must be
a quotient of this group over a discrete identification map. For instance, the Lie algebra of
rotations gives the group SU(2). The group SO(3) has the same Lie algebra, but differs in
that a rotation by 360◦, represented in SU(2) by diag[−1,−1], is identified with the identity
in SO(3).
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M−1ab (g2g1)ϕb = U(g2)M
−1
ab (g1)ϕbU

∗(g2)

M−1ac (g2g1)ϕc = M−1ab (g1)M
−1
bc (g2)ϕc (B.8)

Since this must hold for any field ϕ, the matrices themselves must be equal,

M−1(g2g1) = M−1(g1)M
−1(g2) or M(g2g1) = M(g2)M(g1) (B.9)

Matrix multiplication must respect group element multiplication. A set of
matrices associated with elements of a group which satisfy this condition
are called a representation of the group. Since the matrices can be thought
of as operating on column vectors, physicists often refer to column vectors
(or fields) which are multiplied by such matrices as representations. More
properly, one should say that such column vectors or fields are “acted on” or
“transform under” the representation. To understand the ways symmetries
can act on fields and field products we must understand representations and
their tensor products.
In any representation, the identity element of the group must be mapped

into the identity matrix 1. An element close to the identity must map into
an element close to the identity matrix, so

M(1+ iωαtα) = 1+ iωαTα (B.10)

with Tα some matrices particular to the representation. (We use Greek
letters to index the Lie algebra and Roman letters for matrix indices.) It
then follows by considering products of such matrices and using Eq. (B.9)
that the matrices Tα must satisfy a Lie algebra with the same structure
constants as the tα: [

Tα , Tβ
]
= ifγαβTγ (B.11)

Furthermore, any set of matrices Tα which satisfy this identity can be ex-
ponentiated to give a representation. Frequently a basis of fields can be
found under which the Tα are all block diagonal, in which case the represen-
tation is said to reduce into the blocks. A representation which cannot be
block diagonalized by any basis change is called irreducible. The problem of
classifying representations of a group G is the problem of finding all sets of
matrices Tα which obey the same commutation relations as the Lie algebra
of the group.
Every group has a representation, called the singlet or trivial represen-

tation, in which M(g) is the 1 × 1 identity matrix for each g, and Tα = 0
for all α. (Equation (B.9) is satisfied because 1 × 1 = 1, and Eq. (B.11) is
automatically satisfied since both sides are zero.) Invariance of the Lagran-
gian under a symmetry is equivalent to the requirement that the Lagrangian
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transform under the singlet representation. Therefore it will be important to
see how other representations can be combined together to give the singlet
representation.
Every group also contains a representation called the adjoint represen-

tation, made up of n × n real matrices, with n the number of elements in
the Lie algebra, and with Tα given by (Tα)bc = −ifαbc (with b, c the matrix
indices). For the case of an abelian group (a group where the f vanish)
the adjoint representation is the same as the singlet representation. For the
group of rotations, SU(2), it is the spin-one representation.
Physicists generally refer to the several fields which transform together

in an irreducible representation of the symmetry group as “a” field trans-
forming under that representation. If two such fields φ,χ transform under
two different representations with representation matrices M,N which are
respectively m×m and n× n, then the operator φa χb transforms as

U(g−1)φa χbU
∗(g−1) = Mac(g)Nbd(g)φcχd (B.12)

The object MacNbd can be considered an (mn) × (mn) matrix obtained as
the tensor product of the matrices M and N . So the product of two oper-
ators transforms under the tensor product of the representation matrices.
In general such tensor products are reducible – for instance, in the familiar
example of angular momentum SU(2), two spin-half operators can combine
into a spin-one or a spin-zero operator, because the tensor product 1

2 ⊗
1
2 is

reducible, 1
2 ⊗

1
2 = 1⊕ 0.

Representations and the rules for their tensor products are quite group
dependent. We will quickly outline what happens for U(1) and SU(N),
since these arise the most often in physics and in particular are the only
groups needed in the standard model.

B.3.1 Representations of U(1)

The group U(1) is the group of phase rotations. A generic element is eiθ

and the group is parametrized by θ. Any irreducible representation can be
written as a 1×1 complex matrix (a complex number) and the representation
is determined by a charge q, with the group element g = eiθ being represented
by eiqθ. The tensor product of two representations is just a representation
with the sum of the charges. Therefore, the charge of a product of operators
is the sum of their charges. For the Lagrangian to have a U(1) symmetry,
each term in the Lagrangian must have the charges of the fields add up to
zero.
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B.3.2 Representations of SU(N)

The group SU(N) consists of complex N ×N matrices U which are unitary,
U † = U−1, and satisfy detU = 1. (The U in SU(N) stands for unitary, the
S for “special,” meaning determinant 1.)
A generic element of SU(N) can be written U(ω) = exp(iωαtα), with

tα a standard set of N × N complex matrices and ωα parameters. Before
imposing unitarity and determinant 1, there are 2N2 independent tα. How-
ever, unitarity requires each tα be Hermitian, eliminating half, and the unit
determinant condition requires each tα be traceless, eliminating one more
possibility. Therefore there are N2 − 1 independent elements tα of the Lie
algebra, which should be chosen to be orthogonal and to satisfy the same
normalization condition. For SU(2) they can be chosen to be half the Pauli
matrices, Eq. (2.14). In this case the structure functions are

[
τi
2
,
τj
2

]
= ifkij

τk
2
, fkij = ϵkij (B.13)

the totally antisymmetric tensor. For SU(3) the Lie algebra elements can
be chosen to be half the Gell-Mann matrices of Eq. (1.186). There is no
simple expression for the resulting structure functions.
Besides the singlet representation, the smallest representation for SU(N)

is the SU(N) matrices themselves, M(U) = U . This is called the funda-

mental representation.

Fundamental representation: Tα = tα (B.14)

This is, for instance, the representation quarks transform under in QCD.
It is customary to refer to the representations of SU(N) according to the
rank of the representation matrices, so the singlet representation is called
the 1 representation and the fundamental representation is called the N
representation.
Equally important is the antifundamental representation, M(U) = U∗,

given by complex conjugating (but not transposing) the SU(N) matrices.

Antifundamental representation: Tα = −t∗α (B.15)

This is the representation which antiquarks transform under. To see that it
is a valid representation, note that

[
−t∗α , −t∗β

]
=
([
tα , tβ

])∗
= (ifγαβtγ)

∗ = ifγαβ(−t
∗
γ) (B.16)

Therefore the −t∗α obey the same commutation relations as the tα. These
matrices have rank N , but since the symbol N is taken, the representation
is called the N representation.
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A field which transforms under the fundamental representation is left-
multiplied by U , and can be thought of as a column vector. For the antifun-
damental representation, the column vector is left-multiplied by U∗, and is
more conveniently thought of as a row vector right-multiplied by U † = U−1.
In general, if M is a representation of a group, M∗ is also, and is called the
conjugate representation to M . The contraction of a fundamental and an
antifundamental field (or any operators in conjugate representations to each
other) forms a singlet,

for χaN, φaN, χTφ ≡ χaφa is singlet 1 (B.17)

At the same time, inserting the generators of the representation between
them,

for χaN, φaN, χTTαφ ≡ χa(Tα)abφb is adjoint (B.18)

Since there are N2 − 1 elements in the adjoint representation and one in
the singlet, this uses up the N ×N = N2 objects in the tensor product of
fundamental and antifundamental representations;

N⊗N = (N2 − 1)⊕ 1 (B.19)

It is also important to know how multiple fundamental representations
tensor together. Here it is important to know that the totally antisymmetric
object ϵab..., which contracts N fundamental indices, is an invariant. Using
it to contract N − 1 objects transforming in the fundamental representation
gives an object transforming in the antifundamental representation. For
SU(2), this means that a single fundamental representation object can be
“flipped” into an antifundamental representation object by ε, as we did with
the Higgs field in Eq. (2.12). In SU(2) the fundamental and antifundamental
representations are equivalent and generally not distinguished from each
other. In SU(3), contracting two fundamental fields with the antisymmetric
tensor, ϵabcφbψc, produces an antifundamental object, and three gives a
singlet. The other (symmetrized) linear combination of two fundamental
fields has six components and is called the 6 representation:

3⊗ 3 = 3⊕ 6 in SU(3) (B.20)

More generally one gets representations containing N(N − 1)/2 and N(N +
1)/2 elements. In general, SU(N) groups have a large number of representa-
tions, all of which can be found by taking antisymmetrized and symmetrized
combinations of fundamental representation objects. Further enumerating
them is beyond the scope of this appendix.


