
Appendix C

Lorentz group and the Dirac algebra

This appendix provides a review and summary of the Lorentz group, its
properties, and the properties of its infinitesimal generators. It then reviews
representations of the Lorentz group and the Dirac algebra. This material is
intended to supplement Chapter 1, for those students who are not as familiar
with the Lorentz group and Dirac equation as they find they need to be.

C.1 Lorentz group

According to special relativity, physical laws are unchanged by a linear
change of coordinates,

x′µ = Λµ
νx

ν + ξµ (C.1)

with Λ and ξ real, provided it leave unchanged the invariant separation
between points,

(x− y)µ(x− y)µ = ηµν(x− y)µ(x− y)ν = −[(x− y)0]2 + [x⃗− y⃗]2

This condition does not constrain ξ, since it cancels in the difference, but it
imposes a constraint on Λ,

xµx
µ = x′µx

′µ = ηµνΛ
µ
αx

αΛνβx
β (C.2)

for all xµ. A transformation of the form shown in Eq. (C.1) which satisfies
Eq. (C.2) is called a Poincaré transformation. These transformations close
and form a group, called the Poincaré group. The subset where Λ is the
identity matrix and ξ is arbitrary is a subgroup called the group of transla-
tions. We assume that this group and its implications, such as conservation
of energy and momentum, are familiar to the reader. Instead we concentrate
on the subgroup in which ξ = 0, which is called the Lorentz group.
It is convenient to think of an element of the Lorentz group as a matrix
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498 Lorentz group and the Dirac algebra

which is operating on the coordinate xµ. This is possible if we always write
Λ with its first index raised and second index lowered, so it carries xµ to
x′µ, both with raised index. Writing in this way, repeated Lorentz trans-
formations are implemented via matrix multiplications of the respective Λ
matrices:

x′µ = Λµ
νx

ν and x′′µ = Λ′µνx
′ν ⇒ x′′µ = Λ′µν Λ

ν
αx

α ≡
[
Λ′Λ

]µ
α
xα (C.3)

We see from Eq. (C.2) that the condition on Λµ
ν to be a Lorentz trans-

formation is

ηµνx
µxν = ηαβΛ

α
µΛ

β
νx

µxν (C.4)

for all xµ. Since this must hold for all xµ, we have

ηµν = ΛαµηαβΛ
β
ν (C.5)

or (writing ηµν as η when using matrix notation)

η = ΛTηΛ (C.6)

The group of matrices Λ satisfying Eq. (C.6) is called O(3, 1), and is a Lie
group. Therefore the same technology of Lie algebra generation may be
applied to it as to the groups of the previous appendix.
As we will discuss momentarily, not all elements of O(3, 1) can be built

infinitesimally from the identity. Those elements which can, form a subgroup
written SO(3, 1), which we will now analyze. A Lorentz transformation Λµ

ν

which is infinitesimally close to the identity must be of the form

Λµ
ν = δµν + ωµ

ν (C.7)

with ωµ
ν a matrix of infinitesimal coefficients. The condition on ωµ

ν for
Λµ

ν to be a valid Lorentz transformation is found by inserting Eq. (C.7)
into Eq. (C.6) and expanding to linear order in ω:

ηµν =
(
δαµ + ωαµ

)
ηαβ

(
δβν + ωβν

)

= ηµν + (ωνµ + ωµν) +O(ω2)

0 = ωνµ + ωµν (C.8)

That is, the condition on ωµ
ν is that ωµν be antisymmetric on its indices.

The space of real antisymmetric 4 × 4 matrices is six-dimensional, so the
Lorentz group is six-dimensional.
Now ωµ

ν is related to ωµν as ωµ
ν = ηµαωαν . Since η00 = −1 and ηii = 1

for i = 1, 2, 3, the sign of the space–time component of ωµ
ν must be the same
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as the sign of the time–space component, while the space–space components
must be antisymmetric. Thus, the most general form of ωµ

ν is

ωµ
ν =

⎛

⎜⎜⎜⎝

0 b1 b2 b3
b1 0 −r3 r2
b2 r3 0 −r1
b3 −r2 r1 0

⎞

⎟⎟⎟⎠ (C.9)

symmetric in the space–time entries and antisymmetric in the space–space
entries. The b1, b2, b3 entries respectively cause infinitesimal boosts in the
1, 2, 3 directions; the r1, r2, r3 entries cause infinitesimal rotations about the
1, 2, 3 axes. A general element of SO(3, 1) can be written as an exponential
of a finite ωµ

ν ,

Λµ
ν = (expω)µν = δµν + ωµ

ν +
1

2
ωµ

αω
α
ν +

1

6
ωµ

αω
α
βω

β
ν + · · · (C.10)

When only the ri are nonzero, this gives a rotation by angle |r⃗| about the
r̂ axis. When only the bi are nonzero, this gives a boost by velocity tanh |⃗b|
along the b̂ axis. When both r⃗ and b⃗ are nonzero the Lorentz transformation
cannot be described either solely as a rotation or as a boost. Note that, while
a rotation by angle |r⃗| = 2π gives the identity Λ, no nonzero magnitude of
boost |⃗b| returns the identity. Hence the group SO(3, 1) is noncompact.
Now we argue that O(3, 1) has four disconnected pieces, one of which is

SO(3, 1). To see this, take the determinant of Eq. (C.6):

det η = det ΛTηΛ = det η × (det Λ)2 (C.11)

Since η is nonsingular, we can divide by det η:

(det Λ)2 = 1 ⇒ det Λ = ±1 (C.12)

The determinant must vary continuously within a path connected region of
O(3, 1), but you cannot go continuously from 1 to −1, so any elements of
O(3, 1) with detΛ = −1 cannot be elements of the connected group SO(3, 1).
An element of O(3, 1) with detΛ = 1 is called proper, and an element with
detΛ = −1 is called improper.
Furthermore, if we write out the µ = 0, ν = 0 element of Eq. (C.6), it is

η00 = Λµ
0ηµνΛ

ν
0

−1 = −Λ0
0Λ

0
0 +

∑

i=1,2,3

Λi
0Λ

i
0

(Λ0
0)

2 = 1 +
∑

i=1,2,3

(Λi
0)

2 ≥ 1 (C.13)

so the square of the time–time component of any Λ must always be at least
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1, and Λ0
0 must be either ≥1 or ≤−1. Again, you cannot go continuously

from ≥1 to ≤−1, so no elements of SO(3, 1) have Λ0
0 < 0. An element of

O(3, 1) with Λ0
0 ≥1 is called orthochronous, and an element with Λ0

0 ≤−1
is called nonorthochronous.
The canonical example of an improper (but orthochronous) element of

O(3, 1) is the parity transformation,

P =

⎛

⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎟⎠ (C.14)

which satisfies Eq. (C.6) but has determinant −1. The canonical example of
a nonorthochronous (and also improper) transformation is the time reversal

transformation,

T =

⎛

⎜⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎟⎠ (C.15)

which also satisfies Eq. (C.6) but has T 0
0 = −1. It turns out that any

element of O(3, 1) must be an element of SO(3, 1), times either the identity
(proper orthochronous), P (improper orthochronous), T (improper nonor-
thochronous), or PT (proper nonorthochronous). The improper or nonor-
thochronous Lorentz transformations need not be symmetries of nature – in
fact, in the standard model, they are not – but it is an axiom of field theory
that the elements of SO(3, 1) must be symmetries.

C.2 Generators of the Lorentz group

As discussed in Section B.1, each element Λ ∈ SO(3, 1) must have associated
with it a unitary operator U(Λ) which implements it on the Hilbert space,
and which represents the group operation

U(Λ1)U(Λ2) = U(Λ1Λ2) (C.16)

For an element infinitesimally close to the identity, it must be possible to
expand these operators in a Lie algebra of generators,

U(ω) = 1+
i

2
ωµν Ĵ

µν +O(ω2) (C.17)
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for some operators Ĵµν , antisymmetric in µ, ν. Similarly, there are genera-
tors for translations,

U(ξ) = 1− iξµP̂
µ (C.18)

The P̂ i are also called momentum operators, and the Ĵ ij are called angular
momentum operators.
The commutation relations between the operators P̂µ, Ĵµν can be worked

out by using Eq. (C.16). For instance, consider a translation by a small dis-
tance ξµ, either preceded or followed by a Lorentz transformation involving
ωνα. We will evaluate the difference between the two orders of operation,
in two ways.
First, if we translate first and then rotate, then the coordinate is trans-

formed according to

x′µ = xµ + ξµ

x′′
µ

= (δµν + ωµ
ν)(x

ν + ξν)

= xµ + (ωµ
ν x

ν) + (ξµ + ωµ
ν ξ

ν) (C.19)

where the first and second parenthesis represent a rotation and a translation.
The result is the same rotation, and a translation by ξµ plus an extra piece
involving ω and ξ. If the rotation is performed first, we get

x′µ = xµ + ωµ
νx

ν

x′′
µ

= xµ + (ωµ
νx

ν) + (ξµ) (C.20)

which is the rotation and the translation just by ξ. The unitary operators
for these transformations are

U(ωξ) = 1+
i

2
ωµν Ĵ

µν − iηµν(ξ
µ + ωµ

αξ
α)P̂ ν

U(ξω) = 1+
i

2
ωµν Ĵ

µν − iηµν(ξ
µ)P̂ ν (C.21)

The difference of the operators, to second order in the infinitesimals, is

U(ωξ)− U(ξω) = −iηµνωµ
αξ

αP̂ ν (C.22)

(There is actually also a second order in ω piece, but it is the same for the
two Us and therefore cancels in this difference.)
Alternately, we can say using Eq. (C.16) that

U(ωξ) = U(ω)U(ξ) =
(
1+

i

2
ωµν Ĵ

µν
)(

1− iηαβξ
αP̂ β

)

U(ξω) = U(ξ)U(ω) =
(
1− iηαβξ

αP̂ β
)(

1+
i

2
ωµν Ĵ

µν
)
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U(ωξ)− U(ξω) = − i2

2
ωµνηαβξ

α
[
Ĵµν , P̂ β

]
(C.23)

Now equating Eq. (C.22) and Eq. (C.23), we learn what the commutator of
P̂ with Ĵ must be:

− i2

2
ωµνξα

[
Ĵµν , P̂α

]
= −iωµνξαη

ναP̂µ (C.24)

This must hold for any antisymmetric ωµν and any ξα, so (antisymmetrizing
over the indices on ω) the operators must satisfy

[
Ĵµν , P̂α

]
= i

(
ηµαP̂ ν − ηναP̂µ

)
(C.25)

By a completely analogous but more involved procedure one can also show
[
Ĵµν , Ĵαβ

]
= i

(
ηνβ Ĵµα + ηµαĴνβ − ηµβ Ĵνα − ηναĴµβ

)
(C.26)

and (this is simpler)
[
P̂µ , P̂ ν

]
= 0 (C.27)

These commutation relations are called the Poincaré algebra.
To make contact with the more familiar generators of rotations and boosts,

it is convenient to define

Ĵi ≡
ϵijk
2

Ĵjk (C.28)

K̂i ≡ Ĵ0
i (C.29)

which are respectively the generator of rotations about the i axis and of
boosts along the i axis, so a rotation by θ⃗ is exp(−iJiθi) and a boost by
v⃗ is exp(−iKivi). They satisfy the commutation relations, following from
Eq. (C.26),

[
Ĵi , Ĵj

]
= iϵijkĴk (C.30)

[
Ĵi , K̂j

]
= iϵijkK̂k (C.31)

[
K̂i , K̂j

]
= −iϵijkĴk (C.32)

The first expression is the familiar commutator between rotations. The
second means that, if a rotation is performed before a boost, the boost will
be in a different direction than before the rotation is performed, which is
intuitively clear. The third result is more surprising; the commutator of two
boosts is a rotation. More importantly, the sign is opposite on the last result
than on the previous two.
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C.3 Representations of the Lorentz group

Just as for an internal symmetry, an SO(3, 1) transformation will carry a
field to a linear combination of fields, so the fields must transform under
representations of the group. The difference is that the transformed field
will be at the Lorentz transformed point:

U(ω)ϕa(x)U
∗(ω) = D−1ab (ω)ϕb(Λx) (C.33)

with D−1(ω) = D(−ω) an ω dependent matrix in the space of fields. The
fields can be chosen to block-diagonalize the matrix D into irreducible rep-
resentations of the Lorentz group. For instance, in QED, the components of
the gauge potential Aµ mix with each other under Lorentz transformations,
but they never mix with the different spin components of the electron ei;
so there is one “block” of D which mixes the Aµ and an independent block
mixing the ei. Our goal now is to find the possible structures D can take.
Just as for internal symmetries, there are two very simple irreducible rep-

resentations, which are also physically important. One is the trivial (singlet)
representation,

U(ω)φ(x)U∗(ω) = φ(Λx) (C.34)

which for SO(3, 1) is called the scalar representation. Lorentz symmetry
demands that the Lagrangian be a Lorentz scalar. The other is the vec-

tor representation, for which the field index is a four-vector index and the
representation matrix is Λ itself:

U(ω)Aµ(x)U∗(ω) = (Λ−1)µνA
ν(Λx) (C.35)

A representation is determined by a set of matrices J µν with the same
commutation relations as the Ĵµν . That is, the matrix Dab must be of the
form

Dab(ω) = exp
(
i

2
ωµνJ µν

ab

)
(C.36)

with the exponentiation interpreted as matrix exponentiation with a, b the
matrix indices, and J µν satisfying

[
J µν , J αβ

]
= i

(
ηνβJ µα + ηµαJ νβ − ηµβJ να − ηναJ µβ

)
(C.37)

The problem of finding representations is the problem of finding all sets of
matrices with this algebra.
It is believed that only field theories containing finite numbers of fields are

well defined. Therefore we need only look for finite-dimensional representa-
tions of SO(3, 1). The classification of the representations is made easier by
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the following convenient property of the group. Using Eq. (C.30)–Eq. (C.32),
one can show that the operators

L̂i ≡
Ĵi + iK̂i

2
, R̂i ≡

Ĵi − iK̂i

2
(C.38)

satisfy the commutation relations

[
L̂i , L̂j

]
= iϵijkL̂k (C.39)

[
R̂i , R̂j

]
= iϵijkR̂k (C.40)

[
L̂i , R̂j

]
= 0 (C.41)

Therefore the generators of SO(3, 1) can be split into two mutually com-
muting subsets, which each satisfy the same commutation relations as the
group SU(2). This group is familiar as the group of rotations and its repre-
sentations are well known; they are the spin-zero representation, the spin-
half representation, the spin-one representation, and so forth. A general
irreducible representation can be described by its transformation properties
under L̂ and under R̂, e.g., spin-m/2 under L̂ and spin-n/2 under R̂.

Only four representations will be of any interest to us in studying the
standard model, because it turns out that only four representations can
participate in renormalizable interactions in a theory satisfying the basic
principles laid out in Section 1.2.

The first of these is the scalar representation already introduced. The
scalar representation transforms as (0, 0), that is, as spin-zero under L̂ and
spin-zero under R̂. The Lie algebra representations are Ĵ µν = 0 and the
transformation matrix D = 1 is the identity.

The second common representation is the vector representation, which
transforms as (12 ,

1
2). The Lie algebra is represented as J µν

α
β
= −i(ηµαηνβ −

ηµβη
να), and D = Λ, as already discussed. Note that for both of these

representations, the matrix D is always real; therefore it is consistent to
consider real-valued scalar or vector fields.

The other two interesting representations are called spinor representa-

tions, and consist of two fields which mix with each other under Lorentz
transformations. Since these are probably less familiar to the reader and
are in some ways more complicated than the scalar and vector representa-
tions, we will discuss them at length in the next section.
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C.4 Spinors and the Dirac algebra

We now introduce the other two physically important representations of the
Lorentz group, the left- and right-handed spinor representations. A field
transforming in one of these can be rewritten in terms of the other, and it
is convenient to combine them together using Majorana notation, which we
will also introduce and which we use throughout this book.

C.4.1 Spinor representations

The simplest nontrivial matrices which satisfy Eq. (C.39) are the Pauli ma-
trices,

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

(C.42)

which satisfy the commutation relation
[σi
2
,
σj
2

]
= iϵijk

σk
2

(C.43)

Therefore, if the matrices representing L̂i and R̂i are σi/2 and 0 respec-
tively, we get a representation of the Lorentz algebra. Inverting Eq. (C.38),
rotations and boosts are implemented by the matrices

Ji =
σi
2
, Ki = −i

σi
2
, (left-handed spinor) (C.44)

which it is easy to show satisfy Eq. (C.30) through Eq. (C.32).
Therefore, a pair of fields ψa, a = 1, 2 can transform under Lorentz trans-

formations according to

U(−ω)ψaU
∗(−ω) = Dab(ω)ψb , D(ω) = [exp(−i(ri−ibi)σi/2)] (C.45)

where ri, bi are the amount of rotation and boost performed, as introduced
in Eq. (C.9). The two fields ψa are generally referred to as the components
of a single spinor field with a the spinor index, which is almost always
suppressed by writing ψ and D in matrix notation (ψ as a column vector,
D as a matrix). Such a spinor field is called a left-handed Weyl spinor ψL.
Alternately, Ri could be represented by the Pauli matrices and Li by 0s,

Ji =
σi
2
, Ki = i

σi
2
, (right-handed spinor) (C.46)

in which case a Lorentz transform acts on ψ via

U(−ω)ψaU
∗(−ω) = Dab(ω)ψb , D(ω) = [exp(−i(ri + ibi)σi/2)] (C.47)

A field transforming this way is called a right-handed Weyl spinor ψR.
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Since the matrices D we just constructed are in general complex, a spinor
ψL or ψR must be a pair of complex fields. We can ask how the complex
conjugate of ψL transforms. Because complex conjugation flips the i in front
of K in Eq. (C.44), the answer is that it transforms as a right-handed Weyl
spinor. More properly, defining the matrix

ε ≡ iσ2 =

(
0 1
−1 0

)

satisfying εσ∗i = −σiε (C.48)

we see that ε times the conjugate of ψL transforms according to

U(−ω)εψ∗LU∗(−ω) = ε
(
exp

[
−i(ri− ibi)

σi
2

]
ψL

)∗

= ε exp
[
+i(ri + ibi)

σ∗i
2

]
ψ∗L

= exp
[
−i(ri+ ibi)

σi
2

]
εψ∗L (C.49)

which is precisely the transformation rule for a right-handed Weyl spinor.
Similarly, −ϵψ∗R transforms as a left-handed Weyl spinor, and −ϵ(ϵψ∗L)∗ =
ψL transforms as a left-handed Weyl spinor again. Both the field and its
complex conjugate will typically appear in the Lagrangian so it is important
to have a notation which can deal with each. Whether we consider the left-
or right-handed version as the field rather than the conjugated object is a
matter of convention.

C.4.2 Weyl, Majorana, Dirac

There are two common notational ways of dealing with the fact that a field
can be written either as a left- or a right-handed spinor.
One, called Weyl notation, expresses the fields as two component objects,

and then specifies whether one is referring to ψL or to its right-handed
conjugate εψ∗L by using either an undotted or a dotted index: ψα = ψL and
ψα̇ = εψ∗L. (Indices are raised and lowered using ε and dotted and undotted
according to whether they are conjugated.) This notation is common in the
supersymmetry and string theory literature.
An alternative which we will use, Majorana notation, writes a single four

component field ψM, defined as

ψM =

(
ψL

εψ∗L

)

(C.50)

that is, ψM redundantly records both the left-handed and the right-handed
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ways of writing the field. The individual pieces can be accessed separately
by using the projection operators

PL ≡
(

1 0
0 0

)

and PR ≡
(

0 0
0 1

)

(C.51)

The action of rotations and boosts on ψM are respectively,

Ji =

(
σi
2 0
0 σi

2

)

, Ki =

(
−iσi
2 0
0 iσi

2

)

(C.52)

If a left-handed spinor transforms nontrivially under an internal symmetry
group, then since the right-handed version involves complex conjugation, the
right-handed version εψ∗L transforms under the conjugate representation.
In particular, if ψL has charge q under a U(1) symmetry and is in the
fundamental representation of an SU(N) symmetry, then εψ∗L has charge −q
and transforms under the antifundamental representation of SU(N). One
must keep this in mind when constructing Lagrangians out of Majorana
spinors.
In QED and QCD, if we write the spinor fields as left-handed objects, the

fields form pairs with conjugate symmetry transformation properties. For
instance, in QED, there is a field EL which is charge −1 under Uem(1), called
the left-handed electron, and a field −εE∗R which is charge 1 under Uem(1),
called the left-handed positron. In this case it is most convenient to think
of the latter as the conjugate of a right-handed field with charge −1, ER,
called the right-handed electron, and to combine them together in a single
4-component object called a Dirac spinor, e = [ELER]T .
The Lorentz transformation properties of Majorana and Dirac spinors are

the same. The two distinctions are that the upper and lower components
of a Dirac spinor generally have the same transformation properties under
internal symmetries, while for Majorana spinors they have conjugate trans-
formation properties; and the upper and lower components of a Dirac spinor
are independent, while for a Majorana spinor they are redundant notations
for the same field.

C.4.3 Tensor products of spinors

Since the Lagrangian must be a Lorentz scalar, it must be a sum of terms
even in spinorial fields. Therefore we need to know how products of two
spinor fields transform. We will only consider the combination of a spinor
field ψ1 with the complex conjugate of another, ψ†

2. This is sufficient for
Majorana spinors because ψT

2ψ1 can be re-expressed in terms of ψ†
2ψ1, and
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it suffices for Dirac spinors with internal symmetries because only such com-
binations are invariant under the internal symmetries.
The Hermitian conjugate of a spinor field ψ transforms as

U(−ω)ψ†U∗(−ω) = (D(ω)ψ)† = ψ†D†(ω) (C.53)

The Ji are Hermitian, but the Ki are anti-Hermitian, so D(ω) is not in
general unitary. Therefore ψ† does not have the inverse transformation
property of ψ. However, there is a Hermitian, unit determinant matrix β,

β ≡
(

0 1
1 0

)

, βJi = Jiβ , βKi = −Kiβ (C.54)

which flips the sign of K but not J when commuted across D†, so D†β =
βD−1. Therefore, defining ψ = ψ†β, called the Dirac conjugate of ψ,

U(−ω)ψ U∗(−ω) = ψ†D†(ω)β = ψ†βD−1(ω) = ψD−1(ω) (C.55)

so ψ has the inverse transformation property of ψ.
Since ψ has four components, there are sixteen independent 4×4 matrices

Γ which can be used to combine spinors, ψ2Γψ1. These can all be gotten
from four such matrices, called the gamma matrices γµ, given in Eq. (1.87).
These satisfy anticommutation relations called the Clifford algebra,

{
γµ , γν

}
= 2ηµν1 (C.56)

The matrices J µν can be expressed in terms of the gamma matrices:

J µν =
−i
4

[
γµ , γν

]
(C.57)

which together with Eq. (C.56) is enough to prove that J µν satisfies the
Lorentz algebra, Eq. (C.37). Further, these relations ensure that

[
J µν , γα

]
= i (ηµαγν − ηναγµ) (C.58)

from which it follows that

D−1(ω)γµD(ω) = Λµ
νγ

ν (C.59)

Therefore, while the combination ψ2ψ1 is a scalar

U(−ω)ψ2ψ1U
−1(−ω) = ψ2D

−1(ω)D(ω)ψ = ψ2ψ1 is a scalar (C.60)

the combination ψ2γ
µψ1 is a vector,

U(−ω)ψ2γ
µψ1U

−1(−ω) = ψ2D
−1(ω)γµD(ω)ψ1 = Λµ

νψ2γ
νψ1 is a vector

(C.61)
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Similarly, defining σµν = 2iJ µν , the combination

U(−ω)ψ2σ
µνψ1U

−1(−ω) = Λµ
αΛ

ν
βψ2σ

αβψ1 (C.62)

is a rank-2 antisymmetric tensor.
Next, define

γ5 = γ5 ≡
i

24
ϵµναβγ

µγνγαγβ = −iγ0γ1γ2γ3 (C.63)

where the latter follows from the anticommutation of the distinct gamma
matrices. We have that

U(−ω)ψ2γ5ψ1U
−1(−ω) =

i

24
ϵµναβψ2D

−1γµγνγαγβDψ1

=
i

24
ϵµναβΛ

µ
σΛ

ν
ρΛ

α
κΛ

β
ζψ2γ

σγργκγζψ1

= (detΛ)
i

24
ϵσρκζψ2γ

σγργκγζψ1

= (detΛ)ψ2γ5ψ1 (C.64)

Therefore ψ2γ5ψ1 is a pseudoscalar, a scalar under SO(3, 1) which flips sign
under parity transformations. Finally, the quantity ψ2γ

µγ5ψ transforms as
a pseudovector,

U(−ω)ψ2γ
µγ5ψ1U

−1(−ω) = ψ2D
−1γµγ5Dψ1 = (detΛ)Λµ

νψ2γ
νγ5ψ1

(C.65)
Since this gives 1 + 4 + 6 + 4 + 1 = 16 independent contractions, the above
are exhaustive; any other matrix sandwiched between ψ2 and ψ1 must be a
linear combination of 1, γµ, σµν , γµγ5, and γ5.
The choice of matrices made above is called the chiral basis and is conve-

nient because the right- and left-handed components of ψ factorize. How-
ever, multiplying ψ by an arbitrary unitary matrix S and all matrices by
Γ→ SΓS−1 leaves the theory unchanged. While the explicit expressions for
the matrices are obviously changed, certain relations are not, and are there-
fore particularly valuable. In particular, the Clifford algebra, Eq. (C.56),
the relations Eq. (C.57), Eq. (C.58), Eq. (C.59), the definition Eq. (C.63) of
γ5 in terms of the other γ matrices, and the relations between the projection
operators and γ5,

PL =
1+ γ5

2
, PR =

1− γ5
2

(C.66)

are basis independent and should therefore be sufficient to evaluate any
invariant quantities.


