
Quantum Field Theory (Quanten Feldtheorie)
Homework 1

Due 30 April 2021

1 4-vector notation and Maxwell equations

This problem should be “easy” if you are used to 4-vector notation; if not, its goal is to get

you used to that notation.

Recall that the electric and magnetic fields can be derived in terms of two quantities, the

scalar potential Φ and the vector-potential ~A. It is also convenient to replace the magnetic

field with the antisymmetric 2-tensor Fij defined as

Fij ≡ ∂iAj − ∂jAi (non-covariant index notation). (1)

In terms of this, F12 = B3, F23 = B1, and F31 = B2, e.g.,

Fij = εijk Bk and Bi =
εijk
2
Fjk . (2)

Here as usual εijk is the totally antisymmetric symbol (Levi-Civita tensor) with ε123 = 1.

In terms of ∂t, ∂i, and these two potentials, write the standard (non-covariant) expressions

for the electric and magnetic fields Ei and Fij in terms of Φ and ~A.

Now we move to 4-vector notation. Define Aµ = (Φ, ~A) (where µ = 0, 1, 2, 3 and the

notation means that for µ = 0 you choose the first object in the parenthesis and for µ = 1, 2, 3

you choose the component of the second, e.g., A0 = Φ and A1,2,3 = ~A1,2,3. Careful; the 4-

vector objects A1,2,3 are minus the non-covariant components of ~A.) Also define ∂µ = (∂t, ∂i).

Introduce

F µν ≡ ∂µAν − ∂νAµ , (3)

and show how F 0i is related to the electric field and how F ij is related to the magnetic

tensor. Here F 0i means F µν for the case where µ = 0 but ν 6= 0–we will use Roman letters

to mean that a Lorentz index µ is not zero.

Also introduce jµ = (ρ,~j) the 4-current. Show that the covariant equation

∂µF
νµ = [±]jν (4)

is equivalent to both Gauß’ law and Ampere’s law. Figure out which is the correct sign on

the current; is my ± a + or a −?

Now define εµναβ the 4D antisymmetric symbol which generalizes the 3-D Levi-Civita

tensor: ενµαβ = −εµναβ and similarly for any other permutation of the indices, and ε0123 = −1.
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[The minus sign is so that ε0123 = +1; the sign flips because an odd number of the gµν ’s you

need to raise the indices are negative.]

Show that

εµναβ∂
νFαβ = 0 (5)

is an identity (is true regardless of what values Aµ take provided they are twice differentiable)

and that this identity is equivalent both to Gauß’ Law for magnetism and to Faraday’s law.

You are now an expert with index notation.

2 Condition to be a Lorentz transformation

Here we clear up two simple pieces of the derivation of what is and is not a Lorentz trans-

formation.

In class we saw that Λµ
ν is a Lorentz transformation if and only if

xαΛµ
αgµνΛ

ν
βx

β = xαgαβx
β (6)

for any choice of 4-coordinate xα. Show that this really does require that

Λµ
αgµνΛ

ν
β = gαβ (7)

should hold. Hint: show that if (7) is NOT true, then there is some xµ such that (6) is also

NOT true. Then argue by contrapositive.

Next, consider

Λµ
ν = expωµν (8)

where multiplication is defined by thinking of the first upper index as a column index and

the second lower index as a row index, and using matrix multiplication, eg,

expωµν = δµν + ωµν +
1

2
ωµαω

α
ν +

1

6
ωµαω

α
βω

β
ν +

1

24
. . . (9)

Show that, provided ωµν = −ωνµ, that Λµ
ν really is a Lorentz transform, that is, that it

satisfies Eq. (7).

3 Why vector fields are Maxwell fields

Consider the classical field theory for a 4-vector field Aµ. Assume that the terms in the

Lagrange density have at most two powers of the field and at most two powers of derivatives

(in the spirit of a gradient expansion). Further, L must be a Lorentz scalar.
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Recall that the Lagrangian density L can always be shifted by a total derivative,

L → L+ ∂µ[stuffµ] (10)

without changing any physics. Show that there are 5 independent 2-field, 2-derivative terms

which can be written down, but that using the freedom to shift by total derivatives, all but

two of them can be eliminated, so the most general Lagrangian is

L[Aµ, ∂νAµ] = C1(∂νAµ)(∂νAµ) + C2(∂νAµ)(∂µAν) + C3AµA
µ , (11)

with C1, C2, C3 some constants.

Now determine the Hamiltonian associated with the Lagrangian L =
∫
L d3x. First

determine Πν , the canonical momentum for the Aν field:

Πν ≡
∂L

∂∂0Aν
(12)

and then use that

H =
∫
d3x

(
Πν∂0A

ν − L
)

(13)

to determine the Hamiltonian density H. Write this out–it may be convenient to do so in

non-covariant notation. [You may find it easier to write out H in terms of derivatives of Aµ,

rather than in terms of Πµ. This is correct but is not the form H must be expressed in if

you wanted to get Hamilton’s equations from it.]

Now the punchline: show that C3 6= 0 leads to a Hamiltonian
∫
d3xH which is unbounded

above and below, meaning that in this case there is some value for the components of Aµ

which will make H arbitrarily large and some different value which will make it arbitrarily

negative. Therefore C3 = 0 is required for the theory to make sense. Hint: it is easiest to

see this if you write out H non-covariantly in terms of A0 and ~A separately.

In addition, show that C2 6= −C1 also leads to an unbounded H, so C2 = −C1 is also

required. [This is harder.] For extra credit, verify that C2 = −C1 > 0 gives a Hamiltonian

which is the integral of the sum of two squares and is therefore bounded from below by 0.

(You will have to do some legwork to get H into this form!)

Now define

Fµν ≡ ∂µAν − ∂νAµ . (14)

Show that, for the special case C2 = −C1 and C3 = 0 we have just found, the Lagrangian

density can be written

L =
C1

2
FµνF

µν . (15)

Derive the Euler-Lagrange equations from this action. Show that it is the same as one of

the equations from the last problem, with jµ = 0.
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3.1 except that. . .

Show however that for this case,

1. The field A0 does not have a canonical momentum. Therefore it acts as a Lagrange

multiplier; varying with respect to A0 gives a condition, rather than an equation of

motion. What is this condition?

2. The Euler-Lagrange equations do not uniquely determine the evolution of the field.

In particular, assume that Aµ(x, t) is a solution to the Euler-Lagrange equations you

found. Show that Aµ(x, t) + ∂µΛ(x, t) is also a solution, for any choice of Λ(x, t).

The latter problem will rear its ugly head again some day when we want to do perturbation

theory for electrodynamics.
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