
Quantum Field Theory Homework 2

Due 14 May 2021

1 Commutation relations

In class we found that [
φ(x) , π(y)

]
= iδ3(x− y) (1)

and then defined

φ̃(pm) ≡ L−3/2
∫
d3xe−ipm·xφ(x) (2)

and likewise for π̃(pm). Show that it really follows from these definitions that[
φ̃(pn) , π̃(pm)

]
= iδpn,−pm . (3)

Next, show that the definition

apn =
ωpφ̃(pn) + iπ̃(pn)√

2ωp
leads to a†pn =

ωpφ̃(−pn)− iπ̃(−pn)√
2ωp

(4)

which together lead to [
apn , a

†
pm

]
= 1δpn,pm . (5)

Finally, fill in the steps to show that

H =
1

2

∑
pn

π̃(pn)π̃(−pn) + (p2 +m2)φ̃(pn)φ̃(−pn) =
1

2

∑
pn

ωp(a
†
pnapn + apna

†
pn) . (6)

(That is, take the first expression for H to be shown, and derive the second expression from

it, together with the definition of a and a†.)

2 Energy associated with the vacuum

This question answers something which came up at the end of the lecture where we “solved”

free scalar field theory.

We saw that the Hamiltonian for a free field theory is

H =
∑

~p= 2π
L
~n

ωp
2

(
a†pnapn + apna

†
pn

)
(7)

where
[
apn , a

†
pm

]
= δ~n,~m (the Kroneker delta).
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Show that the energy of the vacuum 〈0|H |0〉 is

Evac ≡ 〈0|H |0〉 =
∑
~p

ωp
2
. (8)

Suppose that, because space is somehow discrete on some scale a, there is a maximum size

which the momentum p is allowed to take, call it pmax.

Show that the energy of the vacuum is extensive – that is, that it grows as we increase

the size of our “box” as L3. This is to be expected. Then show that it also depends on

pmax with proportionality p4max, that is, Evac ∼ L3p4max. Do not try to evaluate the actual

coefficient, which depends on exactly what we mean by “momenta cannot exceed some scale

pmax.”

Show that, if we include a constant term C in the Lagrangian density, the Hamiltonian

is shifted by −L3C.

[This energy associated with space is of no relevance in particle physics because it is

not observable. Particle physicists who also worry about gravity do worry about it, though,

because it should behave as a “cosmological constant,” and we know observationally that

the cosmological constant is very small, whereas presumably p4max is very large. In principle

it might be that C is just the right value to balance the energy associated with all the SHO

zero-points, but . . . .]

3 Euler-Lagrange in the quantum theory

Consider free scalar quantum field theory for one real field φ̂. Prove that

(∂µ∂
µ +m2)φ̂(x) = 0 . (9)

The easiest way to do this is to write the expansion of φ̂(x) in terms of creation and annihi-

lation operators,

φ̂(x) =
∫ d3p

(2π)32p0

(
e−ip·xâp + eip·xâ†p

)
(10)

where p0 ≡
√
~p2 +m2. Apply the differential operators to this expression and show that the

time derivatives and space derivatives add up to cancel the mass squared term. This shows

that the operator φ̂ obeys the Euler-Lagrange equation.

4 Retarded propagator

Consider the retarded Green function

GR(x) = −i〈0|
[
φ(x) , φ(0)

]
|0〉Θ(x0) (11)
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and show that, in the free scalar field theory, its momentum-space representation really does

take the form

GR(p) ≡
∫
d4xeip·xGR(x) =

1

p2 −m2 + iεp0
, (12)

with ε infinitesimal. There are a few ways to do this. One is to replace the Θ(x0) function

with the better-behaved

Θ(x0)→

 0 x0 < 0

e−εx
0
x0 > 0

(13)

and to use this to help do the time integral. Alternatively one can use the following frequency-

representation of the Heaviside function:

Θ(x0) =
∫ dω

2π
eiωx

0 −i
ω − iε

(14)

where the small ε limit is also implied. In either case, you use the expressions for φ(x) in

terms of creation and annihilation operators (or the expressions for the correlation functions

we already found) to evaluate the correlation function, and perform the time integration to

get to frequency-momentum space using one of the above expressions for the step function.

You may actually find the sum of two factors which are each simple poles and which add

up to 1/((p0 + iε)2− ~p2−m2). Note that you can rewrite this into the desired form because

you can always drop ε2 compared to ε and you can also always rescale ε by a finite positive

factor like 2 or 1/2. Hint: the main trick is to realize that p0 is not fixed to be
√
~p2 +m2.

But when you write an expression for φ in terms of creation and annihilation operators,

φ(x) =
∫
d3p′/(2π)3e−ip

′
µx
µ
ap′ + ... then p′0 =

√
~p′2 +m2 is fixed. These variables are not the

same thing and you need to keep them apart from each other.

5 Projection operators

Consider the free field theory of one scalar φ of mass m. Define the state

|p〉 = a†p |0〉 . (15)

(Recall that
[
ak , a

†
p

]
= 2ωp(2π)3δ3(~k − ~p) and that ak |0〉 = 0.) Explain that the object

F̂range ≡
∫
p∈range

d3p

(2π)32ωp
|p〉〈p| (16)

is an operator. (Here (p ∈ range) means that the integral is restricted to some well specified

range of momenta p. For instance, the range could be |~p| < q for some q, or pz > q1 but

q2 < px < q3 and py anything, or . . . Each choice for the range included in the integral gives

rise to a distinct operator; we want to make general statements about such operators.)

An operator F̂ is said to be a projection operator if it satisfies the property (F̂ )2 = F̂ .

Show that F̂range, defined above, is a projection operator.
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