
Quantum Field Theory Homework 3

Due 28 May 2021

1 Flux factor

In lecture, in discussing the longitudinal part of the wave packets for scattering, we reached

the expression∫ dp′1zdp
′′
1zdp

′
2zdp

′′
2z

(2π)4(2E12E2)2
ψ∗1(p′′1z)ψ1(p

′
1z)ψ

∗
2(p′′2z)ψ2(p

′
2z)

×(2π)2δ(p′1z+p
′
2z−p′′1z−p′′2z)δ(p01

′
+p02

′−p01
′′−p02

′′
) (1)

with p0 ≡ E ≡
√
p2 +m2, the p,m arguments of each E are implicit, and∫ dpz

(2π)2E
ψ∗a(pz)ψa(pz) = 1 for a = 1, 2. (2)

I then claimed that (for wave packets tightly peaked in momentum) the integrals could be

performed and give
1

2E12E2|v1 − v2|
(3)

with v1 the group velocity along the z axis of particle 1. (Group velocity is defined in the

usual way as dE/dpz.)

Fill in the missing steps to complete this derivation. Hint: use the pz delta function to

perform the p′′2z integration. Remember that p0 is a dependent variable, defined as p0 =√
p2z +m2. When you do the p′′2z integral, forcing1 p′′2z = p′1z + p′2z − p′′1z, this substitution

must be made in p02z
′′
. That means that using the remaining delta function to do the p′′1z

integration will lead to a nontrivial Jacobian, which you have to take proper account of.

Next, show that the resulting factor, Eq. (3), is Lorentz invariant. First, show that it is

unchanged by boosts along the beam axis. Then show that it equals

1

2E12E2|v1 − v2|
=

1

4
√

(p1 · p2)2 −m2
1m

2
2

, (4)

which is manifestly Lorentz invariant.

1There is a second solution to this delta function, for which p′1 6= p′′1 and p′2 6= p′′2 . For instance, if

m1 = m2, then p′′1 = p′2 and p′′2 = p′1 is also a solution. But the wave packets are tightly peaked and they

approximately vanish on this solution, so you should ignore it.
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2 Complex Gaußian Integrals

Consider the integral ∫ ∞
−∞

exp
[
ix2/2

]
dx (5)

First show that it is not absolutely convergent. Then we should define it as

lim
R→∞

∫ R

−R
exp

[
ix2/2

]
dx . (6)

Next, show that the answer is (1 + i)
√
π.

Now let’s try to understand that result by making a few plots. Plot the real part of the

integrand as a function of x for x ∈ [−10, 10]. Then plot the “incomplete” integral
∫ R
−R . . .

as a function of R for R ∈ [0, 10]. Repeat for the imaginary part of the integrand.

Use these plots to explain in words, how the integral manages to take the value that it

takes.

3 Asymptotic series

Consider the “baby” or “toy” version of scalar φ4 theory, where it is just a single integral;

Z =
∫ ∞
−∞

dφ exp

(
−φ2

2
+
−λφ4

24

)
. (7)

This is what the path integral for scalar φ4 theory would look like if there were only one

point in spacetime (and after rotating the contour for φ so the i’s go away).

Consider Z as a function of λ.

3.1 Values

Evaluate

• Z(0)

• Z(0.01)

• Z(0.1)

• Z(0.4)

• Z(1)

• Z(5)

numerically to 20 digits, for instance, with Mathematica.
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3.2 Series expansion

Replace exp(−λφ4/24) with its series expansion in λ (or equivalently, in φ). Find explicitly

the λ0 and λ1 terms in the series. Evaluate the λ0 and the sum of λ0 and λ1 terms (first and

second partial sums) numerically, for each of the examples you did above. For which cases

does the λ1 term help improve the accuracy?

3.3 Asymptotic series

Find the complete series expansion in λ in closed form, that is, write

Z(λ) =
∞∑
n=0

cnλ
n , (8)

and find an explicit expression for cn. (Do this by expanding the exponent, exchanging

orders of summation and integration, and doing the integral for each term in the series.)

Show that the radius of convergence (in λ) of this series is zero.

3.4 So what good is it?

The expansion

e−x =
∞∑

m=0

(−1)m

m!
xm = 1− x+

x2

2
− x3

6
+ . . . (9)

has the following property for x > 0: the partial sums

fn(x) ≡
n∑

m=0

(−1)m

m!
xm (10)

are alternately strict over-estimates and strict under-estimates of the actual function; that

is, for x > 0, f0(x) = 1 > e−x, f1(x) = (1−x) < e−x, f2(x) = (1−x+x2/2) > e−x, and so

forth with the <,> alternating. (Extra credit: prove this.)

Use this property to prove that the partial sums found above, Eq. (8) with n cut off at

0, 1, 2, 3, . . ., are alternately over-estimates and under-estimates. Therefore, the true answer

always lies between neighboring terms in the series of partial sums.

Use this property to find a bound for Z(λ) at λ = 1, by evaluating alternating terms until

they start to diverge. How tight is the bound?

Repeat for Z(0.4) and Z(0.1). Argue that the bound becomes tighter and tighter as λ gets

smaller, so at small λ, while the series does not converge, it gives us very good information

about the value of Z(λ).

A series with this property–zero radius of convergence but the ability to give good infor-

mation near the origin–is called an Asymptotic Series.
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3.5 Negative λ

What happens when λ < 0?
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