
Quantum Field Theory Homework 4

Due 11 June 2021

1 Baby generating functional

Define the “Baby” path integral, with interaction term and source, as

Z(J) ≡
∫ dφ√

2π
exp

[
Jφ− φ2

2
− λφ4

24

]
. (1)

This is called the “generating functional for n-point functions.” Show that

dn

dJn
Z(J) =

∫ dφ√
2π
φn exp

[
Jφ− φ2

2
− λφ4

24

]
≡ 〈φn〉J . (2)

Go through the formal steps to demonstrate that

Z(J) =

( ∞∑
n=0

1

n!

(
−λd4

24(dJ)4

)n
exp

[
J2

2

])∣∣∣∣∣
J=0

. (3)

Now perform a double expansion of Z(J) in J and λ through order J4 and λ2 (not

necessarily using Eq. (3)–use whatever approach you find most efficient). That is, evaluate

the J0, J2, and J4 terms in the J expansion through O(λ2). Express your answer as a result

for Z(0), 〈φ2〉J=0, and 〈φ4〉J=0 through O(λ2).

Divide your results by Z(0) to find the vacuum-bubble-removed correlation functions,

again as formal series through order λ2.

Define

W (J) ≡ lnZ(J) , (4)

and call its variations
dn

dJn
W (J)

∣∣∣∣∣
J=0

≡ 〈φn〉conn , (5)

the connected correlation functions.

Take the logarithm of the formal series in J and λ you found above, and expand it as

a formal series in J and λ, again to order J4 and λ2. Read off the connected 2-point and

4-point functions to O(λ2).

Now draw all diagrams without vacuum bubbles for the two-point and four-point func-

tions, through order λ2. Evaluate them and show that they give the same answer for the

correlation functions and the connected correlation functions you just found. (Note: the

Feynman rules are simpler since spacetime has only one point:
∫
dz = 1 and ∆(x− y) = 1.

Also −iλ is instead −λ. Therefore the value of a Feynman diagram is simply the symme-

try factor times (−λ) factors. Crib as much of the computation as possible from previous

homeworks.)
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2 High-order processes

Consider the theory of one real scalar field φ with Lagrangian density

L[φ, ∂µφ] =
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

24
φ4 . (6)

In class we considered the scattering of two scalars φ into two scalars φ, which involved

investigating the four-point function 〈0|T
(
φ(x1)φ(x2)φ(x3)φ(x4)

)
|0〉. It is also possible for

the final state to contain more than two particles. The simplest case is that it contains 4

final state particles; this requires evaluating the 6-point correlation function

〈0|T
(
φ(x1)φ(x2)φ(x3)φ(x4)φ(x5)φ(x6)

)
|0〉.

Draw the simplest connected Feynman diagrams contributing to this correlation function

which you can find. Now many occurrences of λ are involved? Therefore, how many powers

of λ will occur in the rate for this process (remembering that the rate involves the square

of the matrix element |M|2)? If λ is small, do you expect that the rate for this process will

be smaller or larger than the rate for the scattering process with two final state φ particles

(assuming both are energetically allowed)?

3 M and N

In class we saw that the commutator of two Lorentz symmetry generators is given by[
Jµν , Jαβ

]
= i

(
ηναJµβ + ηµαJβν − ηµβJαν − gνβJµα

)
. (7)

We also introduced the (3D notation) rotation and boost generators

Ji =
1

2
εijkJij , Ki = Ji0 . (8)

In each expression, the two-index object is written in terms of 4D covariant indices, while

the one-index object is written in terms of 3D indices with positive metric.

First, show that

exp
(−i

2
ωµνJ

µν
)

= exp (−iθiJi − ibiKi) (9)

for the usual meaning of the rotation angles θi and boost magnitudes bi.

Next, show that the commutation relations for the Jµν really do lead to the commutation

relations [
Ji , Jj

]
= iεijkJk , (10)[

Ki , Jj
]

= iεijkKk , (11)[
Ki , Kj

]
= −iεijkJk . (12)
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Next, introduce the definitions

Mi ≡
Ji + iKi

2
, Ni ≡

Ji − iKi

2
, (13)

and use the above commutation relations for J and K to show that[
Mi , Mj

]
= iεijkMk , (14)[

Ni , Nj

]
= iεijkNk , (15)[

Mi , Nj

]
= 0 . (16)

4 Lorentz algebra representations

Show that the Clifford algebra {
γµ , γν

}
= 2gµν1 (17)

and the definition

Sµν =
i

4

[
γµ , γν

]
(18)

are sufficient to prove that [
Sµν , γα

]
= i(ηναγµ − ηµαγν) (19)

and use this result to show that Sµν satisfies the same commutation relations as the gen-

erators of the Lorentz algebra Mµν . The representation they generate is called the spinor

representation.

For extra credit, show that Eq. (19) (which is the transformation rule for a vector) and the

definition S(ω) = exp(−iωµνSµν/2) guarantees S−1(ω)γµS(ω) = γµ+ωµνγ
ν for infinitesimal

ω, as claimed in class.
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