
Quantum Field Theory Homework 5

Due 25 June 2021

1 Euler-Lagrange and Dirac equations

Consider the Lagrangian

L = ψ̄(−m+ iγµ∂µ)ψ (1)

where the ∂µ acts to its right, that is, on ψ.

Since ψ̄ is proportional to the conjugate of ψ, one may treat it as an independent field.

[That is, considering ψ and ψ̄ as independent fields and making variations with respect to

each is equivalent to treating the real and imaginary parts of ψ as independent and ψ̄ as

composed of these real and imaginary parts. If you don’t buy this, you should verify that the

results you get for the first two derivations are unchanged if you treat the real and imaginary

parts as the independent variables.] Find the Euler-Lagrange equation,

∂L
∂ψ̄

= ∂µ
∂L

∂(∂µψ̄)
(2)

which is called the Dirac equation. What was a little funny about the derivation?

Now find the Euler Lagrange equation obtained by varying with respect to ψ,

∂L
∂ψ

= ∂µ
∂L

∂(∂µψ)
(3)

which should be a relation on ψ̄. Using

γ†µγ
0 = γ0γµ (4)

and that γ0 is nonsingular, show that the dagger of the Euler-Lagrange equation you find is

equivalent to the Dirac equation.

Now show that the original Lagrangian differs from the following Lagrangian,

L′ = −mψ̄ψ − i(∂µψ̄)γµψ , (5)

by a total derivative; so it should give equivalent physics. Derive the Euler-Lagrange equation

for ψ from this Lagrangian, which should again return the Dirac equation.
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2 Gamma matrix identities

Using only that the γ matrices are 4× 4 matrices satisfying the Clifford algebra, and using

the definition

/a ≡ γµaµ ,

verify the following:

/k/k = k2 (6)

/k/p/k = 2p · k/k − k2/p (7)

γµγµ = 4 (8)

γµ/kγµ = −2/k (9)

γµ/p/kγµ = 4p · k (10)

γµ/p/kq/γµ = −2q//k/p . (11)

Hint: DO NOT multiply any 4×4 matrices to do this problem! Just use repeatedly that

AB =
{
A , B

}
−BA and recycle each identity as you prove successive ones.

3 Gamma-5

Define γ5 ≡ γ5 = iγ0γ1γ2γ3. We will find some of its properties. In this problem we will

avoid using the explicit expressions for the gamma matrices but will rely instead on their

basic properties.

Using only the Clifford algebra {
γµ , γν

}
= 2ηµν1 (12)

show that (
γ5
)2

= 1 ,
{
γ5 , γµ

}
= 0 ∀µ ∈ {0, 1, 2, 3} (13)

(where 1 is the 4× 4 identity or unit matrix).

Use the definition of γ5, the periodicity of the trace, and the Clifford algebra to show

that

Tr
(
γ5
)

= Tr
(
−γ5

)
and therefore Tr

(
γ5
)

= 0 (14)

and combine this with (γ5)2 = 1 to show that γ5 has two eigenvalues equal to 1 and two

eigenvalues equal to −1.

Next, use the Clifford algebra and the fact that (γ0)† = γ0 while each (γi)† = −γi to

show that (
γ5
)†

= γ5 (15)

2



is Hermitian. Hint: take the Hermitian conjugate of the explicit expression for γ5. Use the

hermiticity properties to express the result in terms of gamma matrices (without daggers),

and use the Clifford algebra repeatedly to re-organize the order of the operators to get it

back to the original form.

Next show that

PL ≡
1− γ5

2
, Pr ≡ 1 + γ5

2
(16)

form a complete basis of projection matrices, in the sense that

P 2
L = PL ,

2

Pr = Pr , PL Pr = 0 , PL + Pr = 1 (17)

Combine with what we know about the eigenvalues of γ5 to argue that each projector has

two +1 eigenvalues and two 0 eigenvalues.

Finally, show that Sµν defined in the last problem commutes with γ5, that is,[
Sµν , γ5

]
= 0 ∀ {µ, ν} . (18)

That means that we can seek simultaneous eigenoperators of PL ,Pr and representations of

Sµν . Specifically (don’t show this), the upper two (left-handed) components of the Dirac

spinor are preserved and the lower two set zero by PL , and vice versa for Pr.

4 Extra credit: Grassmann integrals

For those who want to know more about Grassmann integration, here is an extra problem

for you. If you want to just assume that “someone knows what they are doing, I will just

trust it,” you can just skip this problem.

We have introduced Grassmann or anticommuting numbers. In this problem I will use

the symbol Θ to write all Grassmann numbers; when there is more than one of them, I will

index them Θ1,Θ2.

To define the path integral, I have to define integration. We require integration to obey

the following three rules, in analogy to how normal integration works:

d

dΘ

∫
dΘA(Θ) = 0 Integrating removes Θ-dependence∫

dΘ
d

dΘ
A(Θ) = 0 Integration by parts∫

dΘ1 A(Θ1)B(Θ2) =

[∫
dΘ1A(Θ1)

]
B(Θ2) .

The last equation shows that if the integrand is the product of something which DOES

depend on Θ1 and something which does not, then the part which does not can be factored

out of the integral. BUT CAREFUL: the order that we factor things out matters.
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Integration also obeys the usual “distribution” rule:∫
dΘ(c1A(Θ) + c2B(Θ)) = c1

∫
dΘ A(Θ) + c2

∫
dΘ B(Θ)

where c1, c2 are ordinary numbers – that is, the integral of a linear combination is a linear

combination of the integrals, as usual.

A) Show as a consequence of the first relation that∫
dΘ Θ = const

that is, you get a constant without any further factors of Θ.

B) Show as a consequence of the second relation that∫
dΘ 1 = 0 Hint: 1 =

d

dΘ
Θ .

By convention we choose the constant above to be 1, that is,∫
dΘ Θ = 1.

C) Show using this normalization that∫
dΘ1

∫
dΘ2 Θ2Θ1 = 1

BUT that ∫
dΘ2

∫
dΘ1 Θ2Θ1 = −1

which means that the order of integrations can be exchanged, but again, there are minus

signs; two integration symbols anticommute.

Now for the fun part of the problem. For this part, I imagine that the Grassmann

numbers are split into two subsets, the Θ̄ and the Θ, just as the fermionic fields are ψ̄ and

ψ. So Θ̄1,Θ1, Θ̄2,Θ2 are four independent Grassmann numbers.

Exponentiation can be defined based on the Taylor series for the exponential function.

D) Show that exponentials are super simple:

exp(mΘ̄Θ) = 1 +mΘ̄Θ

exp(m1Θ̄1Θ1 +m2Θ̄2Θ2) = 1 +m1Θ̄1Θ1 +m2Θ̄2Θ2 +m1m2Θ̄1Θ1Θ̄2Θ2

that is, show that all higher-order terms in the Taylor series are automatically zero! (Here

m,m1,m2 are ordinary numbers.)
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E) Integrate over exponentials! Use what you learned about exponentials and about

integrating to show that: ∫
dΘdΘ̄ exp(mΘ̄Θ) = m∫

dΘ1dΘ̄1dΘ2dΘ̄2 exp

( ∑
i,j=1,2

mijΘ̄iΘj

)
= m11m22 −m12m21

We see a pattern here: the integral gave the determinant of the matrix mij. This holds for

any number of indices, but it would be a little too much work to show it in a homework.

F) Finally, show that for Θ̄,Θ, η̄, η four Grassmann numbers, that∫
dΘdΘ̄ exp

(
mΘ̄Θ + η̄Θ + Θ̄η

)
= m exp

(
±m−1η̄η

)
and determine whether the ± is a + or a −. Note that the inverse of the “matrix” m appears

here; we could consider the N×N case with a matrix mij and we would find that the inverse

matrix appears in the integration, but I won’t ask you to do that in this homework.
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