Theoretische Physik I: Klassische Mechanik - Präsenzübung

Prof. Dr. Guy Moore

Sommersemester 2022 Übungsblatt 11

Aufgabe 11.1: About waves.

Assume that the density of air is $\rho_0(x,t) + q(x,t)$ where ρ_0 is the average density and q(x,t) is some extra over- or underdensity. Such an over- or underdensity propagates according to the wave equation

$$\frac{\partial^2}{\partial t^2}q(x,t) = c_s^2 \frac{\partial^2}{\partial x^2}q(x,t)$$
(11.1.1)

with c_s the speed of sound.

11.1a)

Show that, for two arbitrary functions of one variable $q_1(z)$ and $q_2(z)$, that $q(x,t) = q_1(x-c_st) + q_2(x+c_st)$ is a solution to the wave equation.

11.1b)

Consider the "triangle function"

$$q_t(z) = \begin{cases} 0 & z < -1 \\ 1+z & -1 < z < 0 \\ 1-z & 0 < z < 1 \\ 0 & z > 1 \end{cases}$$
(11.1.2)

Draw this function. Assume that $q(x,t) = q_t(x-c_s t)$. Draw q(x,t=0) and q(x,t=1) for the case $c_s = 2$ (that is, make a plot of q vs x for each time.)

11.1c)

For the solution we just found, what is $\dot{q}(x, t = 0)$ (where the dot indicates derivative with respect to time)? Plot it.

11.1d)

Now take the same function q_t but use it for q_2 , that is, $q(x,t) = q_t(x+c_st)$. Find $\dot{q}(x,t=0)$ and q(x,t=1). Plot them.

11.1e)

Suppose that initially $q(x, t = 0) = q_t(x)$ but $\dot{q}(x, t = 0) = 0$. Write the complete time dependent solution for q(x, t) and draw it for the times t = 0, t = 1, and t = 2.

Präsenzübung Klassische Mechanik

11.1f)

If time permits, suppose that q(x, t = 0) = 0 but $\dot{q}(x, t = 0) = \frac{dq_t(x)}{dx}$. Now what is q(x, t)? Draw the result at t = 0, t = 1, and t = 2.