
Quantum Field Theory II
Homework 2 Solutions

All problems in this homework will refer to Yukawa theory with fields φ, ψ a real

scalar and a Dirac spinor respectively, with Lagrangian

L =
1

2
∂µφ∂

µφ− m2
1

2
φ2 + ψ̄(i/∂ −m2)ψ −

λ

24
φ4 − yφψ̄ψ . (1)

I will refer to λ as the scalar self-coupling and y as the Yukawa coupling.

1 Bare and renormalized

The bare Lagrangian is the one written above, with all fields and couplings labeled

with a 0, eg, φ0, ψ0, y0, λ0,m1,0,m2,0. The renormalized Lagrangian is a rewritten

form of the bare Lagrangian:

L =
1

2
Zφ∂µφr∂

µφr −
m2

1,r + δm2
1

2
Zφφ

2
r −

λr + δλ

24
Z2
φφ

4
r

+ Zψψ̄r(i/∂ − (m2,r + δm2))ψr − (yr + δy)Z
1/2
φ Zψφrψ̄rψr . (2)

Write an expression for the relation between each renormalized and each bare quan-

tity, eg, φr = Z
−1/2
φ φ0 etc.

1.1 Solution

φr = Z
−1/2
φ φ0 (3)

ψr = Z
−1/2
ψ ψ0 (4)

m2
1r = m2

10 − δm2
1 (5)

m2r = m20 − δm2 (6)

λr = λ0 − δλ (7)

yr = y0 − δy . (8)
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2 Divergent diagrams

In this problem we will only attempt to find which diagrams are divergent and what

the factors of 1/ε are in their 1-loop expressions.

Based on the power counting arguments we presented, find all diagrams which

are divergent at 1-loop order. How divergent do you expect each diagram to be (eg,

logarithmic, linear, quadratic)?

2.1 Solution

A diagram is divergent if the sum of 1 for each external scalar line plus 3/2 for each

external fermionic line is at most 4. Since the number of fermionic lines must be

even by angular momentum conservation and since the one and three scalar cases

are zero by the discrete φ→ −φ symmetry, we have:

2 scalars D = 4− 2 = 2 quadraticdivergent

4 scalars

2 spinors

2− spinor

D = 4− 2× 3
2 = 1 linear− divergent

D = 4− 2 ∗ (3/2)− 1 = 0 Log − divergent

D = 4− 4 = 0 log − divergent

1− scalar
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3 Self-energies

Write an expression for each scalar-field self-energy diagram (there should be two

diagrams). Evaluate each in the MS scheme, but do not try to perform all integrals

exactly – only try to determine the coefficient multiplying 1/ε (which will be simpler).

Labeling the incoming momentum as p, your answer should be of form

Π = (Ap2 +B)
1

ε

where A,B are combinations of couplings and 4π type factors.

Repeat for the fermionic self-energy. Here you should find only one relevant

diagram, and an answer of form

Σ = (A/p+B)
1

ε
.

You should find that B ∝ m2.

3.1 Solution

Since the propagator is i/(p2 −m2) and

i

p2 −m2
+

i

p2 −m2
(−iΠ)

i

p2 −m2
+ . . . =⇒ i

p2 −m2 − Π
(9)

we define Π to be i times the amputated diagram. Therefore the scalar contribution

is

Πbosonloop(p) = (i)
−iλ

2

∫
dD`

(2π)D
i

`2 −m2
1 + iε

=
λ

2

∫
dD`E
(2π)D

1

`2E +m2
1

(10)

while the fermionic contribution is

Πfermionloop(p) = (i)(−iy)2(−1)

∫
dD`

(2π)D
Tr

i(/p+ /̀+m2)i(/̀+m2)

((p+ `)2 −m2
2 + iε)(`2 −m2

2 + iε)

= −i4y2
∫

dD`

(2π)D
`2 + ` · p+m2

2

((p+ `)2 −m2
2 + iε)(`2 −m2

2 + iε)

= −4iy2
∫ 1

0

dx

∫
dD`

(2π)D
`2 + (1− 2x)` · p− x(1− x)p2 +m2

2

(`2 −m2
2 + x(1− x)p2 + iε)2

(11)
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where I performed the trace and combined denominators with a Feynman parameter.

We can drop the (1− 2x)` · p term, which vanishes on angular integration and is odd

under x→ 1− x. I will also rewrite the numerator as

`2 − x(1− x)p2 +m2
2

(`2 −m2
2 + x(1− x)p2)2

=
1

`2 −m2
2 + x(1− x)p2

+ 2
m2

2 − x(1− x)p2

(`2 −m2 + x(1− x)p2)2
. (12)

We are now ready to Wick rotate, introducing a factor of i and also flipping the sign

on `2:

Πfermionloop(p) = 4y2
∫ 1

0

dx

∫
dD`E
(2π)D

[
2m2 − 2x(1− x)p2

(`2E+m2 − x(1−x)p2)2
− 1

`2E+m2 − x(1−x)p2

]
(13)

where the first term is log divergent and the second is quadratically divergent.

Next we use that ∫
dD`E
(2π)D

1

`2 + A
=
A

D−2
2 Γ(1−D/2)

(4π)D/2Γ(1)

=
A

16π2

[
−1

ε
+O(1)

]
(14)∫

dD`E
(2π)D

1

(`2 + A)2
=
A

D−4
2 Γ(2−D/2)

(4π)D/2Γ(2)

=
1

16π2

(
1

ε
+O(1)

)
. (15)

Note that the first expression first diverges at 1−D/2 = 0 which is D = 2, which is

how we identify it to be quadratically divergent. The coefficient on 1/ε in the second

expression does not depend on A, which is convenient.

Applying these expressions, we find that

Πbosonloop = −λ
2

m2
1

16π2

1

ε
(16)

Πfermionloop =
4y2

16π2

1

ε

[∫ 1

0

dx
(
2m2

2 + 2x(1− x)p2 +m2 − x(1− x)p2
)]

=
y2

16π2

1

ε

(
12m2

2 − 2p2
)
. (17)
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In total,

Π(p) =
1

16π2

1

ε

[
−2y2 p2 + 12y2m2

2 −
λ

2
m2

1

]
. (18)

Now let’s repeat the analysis for the fermion. We similarly find that

Σ(p) = (i)(−iy)2
∫

dD`

(2π)D
i(/̀+ /p+m2)i

((`+ p)2 −m2
2 + iε)(`2 −m2

1 + iε)

= iy2
∫ 1

0

dx

∫
dD`

(2π)D

/̀+ x/p−m2

(`2 − xm2
1 − (1− x)m2

2 − x(1− x)p2 + iε)2
(19)

where we combined denominators using the Feynman trick. The term proportional

to /̀ is odd in ` and therefore integrates to zero, which shows that the diagram is at

most log divergent. Handling the denominator is the same as in the scalar case; we

Wick rotate and apply Eq. (15), and we find

Σ(p) = −y2
∫ 1

0

dx

∫
dD`E
(2π)D

x/p−m2

(`2E + xm2
1 + (1− x)m2

2 + x(1− x)p2)2

= − y2

16π2

(
1

ε
+O(1)

)(
1

2
/p−m2

)
. (20)

The constant term is proportional to m2 and vanishes if m2 = 0.

4 Vertex

Draw all one-loop amputated 1PI vertex correction diagrams – separately for the φ4

vertex and the φψ̄ψ diagram. You should find two diagrams for the φ4 case but only

one diagram for the Yukawa case.

Compute these diagrams in dimensional regularization. Again, only try to deter-

mine the 1/ε coefficient, not any finite or momentum-dependent corrections beyond

this level.

In the next homework, we will see what these diagrams imply for the anomalous

dimensions and beta functions of the theory.
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4.1 Solution

The all-scalar 4-point diagram gives

3
(−iλ)2

2

∫
dD`

(2π)D
i

`2 −m2
1 + iε

i

(`+ p)2 −m2
1 + iε

(21)

=
3iλ2

2

∫ 1

0

dx

∫
dD`E
(2π)D

1

(`2E +m2
1 + x(1− x)p2)2

(22)

'3iλ2

2

1

16π2

(
1

ε
+O(1)

)
(23)

where p is the sum of two incoming momenta and the factor of 3 is a sum over which

pair of incoming momenta it is. Because the 1/ε part of Eq. (15) doesn’t depend

on A, the diagram doesn’t depend on p which is why I have been sloppy about

identifying it correctly.

Similarly, for the fermionic loop, we actually have to sum over the six orderings

that the external lines can attach to the loop. Each gives a contribution of form

(−)(−iy)4
∫

dD`

(2π)D
Tr

i(/̀+/p1+m)

(`+p1)2−m2+iε

i(/̀+/p2+m)

(`+p2)2−m2+iε

i(/̀+/p3+m)

(`+p3)2−m2+iε

i(/̀+m)

`2−m2+iε
(24)

where p1,2,3 are linear combinations of external momenta. If we only try to keep track

of the terms with the most powers of ` in this, the trace becomes 4(`2)2/((`2) +A)4

which has the same UV behavior as Eq. (15). Including the aforementioned factor

of 6 from the orderings and the i from Wick rotation, we find

−24iy4
1

16π2

(
1

ε
+O(1)

)
(25)

where the O(1) will be some complicated function of the invariants built from the

external momenta which we will definitely not try to compute.

Note that the λ2 term has the opposite sign of the −iλ leading order contribution,

while the y4 term has the same sign. They will therefore contribute with opposite

sign to the beta function, as we will see. The origin of this sign comes down to the

− sign which occurs in fermion loops due to the fermionic nature of the field, or

equivalently the Grassmann nature of the fermionic integration.
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Finally there is the Yukawa coupling. The diagram has as its Feynman rule

(−iy)3
∫

dD`

(2π)D
i

`2 −m2
1 + iε

i(/̀+ /p+m2)

(`+ p)2 −m2
2 + iε

i(/̀+ /p+ /q +m2)

(`+ p+ q)2 −m2
2 + iε

(26)

which again keeping the maximum power of ` is

' y3
∫

dD`

(2π)D
`2

(`2 − A)3

= iy3
∫

dD`E
(2π)D

`2E
(`2E + A)3

= iy3
1

16π2

(
1

ε
+O(1)

)
. (27)

Again, to express A correctly, we would actually need to combine denominators with

two Feynman parameters and we would find a complicated functional dependence

on (p, q) the external momenta, but this all only appears in the O(1) part and does

not affect the divergent part of the diagram or the needed counterterm. The sign is

opposite the leading-order −iy contribution, just as for the λ2 correction to λ.

5 Fermion mass

Something curious happens with the momentum-independent term in the fermionic

self-energy. It could have been divergent already for D = 3, but you should find

that this divergence cancels on angular integration, and the first pole as a function

of D occurs for D = 4, indicating that the diagram is truly log divergent. And the

log divergence is proportional to the mass m2, meaning that, if m2 = 0, there is no

such contribution. In other words, if the bare mass m2 = 0, then the renormalized

mass is also zero. (This was not true for the scalar field, where the diagram diverges

already for D = 2, and the log divergence in D = 4 depends both on m2
1 and m2

2.)

This is actually a consequence of a symmetry which appears when we set m2 = 0.

Consider the following (discrete) transformation:

ψ → γ5ψ

φ → −φ
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First, show that ψ̄ → −ψ̄γ5. (Why is there a − sign here?)

Next, show that ψ̄ /∂ψ is invariant under this symmetry, and so is φψ̄ψ, but ψ̄ψ is not.

Therefore, if this symmetry is present, it is impossible for a mass term to appear in

the Lagrangian. Since the symmetry is present in the renormalized as well as the

bare theory, the fermion must be exactly massless at the renormalized, as well as

bare, level.

This is a discrete case of a chiral symmetry. Such symmetries will be important

in QCD.

5.1 Solution

Consider ψ → γ5ψ. Then

ψ† → ψ†γ†5 = ψ†γ5 (28)

because γ5 is Hermitian. (I freely interchange the notation γ5 = γ5 to keep the 5

away from the †.) By definition

ψ = ψ†γ0 → ψ†γ5γ
0 = −ψ†γ0γ5 = −ψγ5 . (29)

Therefore

ψ̄γµ∂µψ → −ψ̄γ5γµ∂µγ5ψ
= −ψ̄γ5γµγ5∂µψ
= +ψ̄γµ∂µψ (30)

and this term is unchanged. However,

ψ̄ψ → −ψ̄γ5γ5ψ = −ψ̄ψ (31)

flips sign. If φ also flips sign then φψ̄ψ → φψ̄ψ without sign change. All other

Lagrangian terms are φ-even so this transformation leaves the m2 = 0 Lagrangian

unchanged. However the transformation would take mψ̄ψ → −mψ̄ψ so a mass term

is not compatible with this symmetry transformation.

If the Lagrangian respects the symmetry then every term in every Feynman dia-

gram must respect the symmetry and the result of any diagram must also respect it,
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meaning that no mass can be generated. This ensures that any mass renormalization

must be proportional to m2 as the only Lagrangian term which does not respect the

symmetry.
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