## Quantum Field Theory II Homework 3 Solutions

## 1 Renormalization of Yukawa Theory

In the previous homework we considered the Yukawa theory with Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{m_{1}^{2}}{2} \phi^{2}+\bar{\psi}\left(i \not \partial-m_{2}\right) \psi-\frac{\lambda}{24} \phi^{4}-y \phi \bar{\psi} \psi . \tag{1}
\end{equation*}
$$

Consider calculating this theory within the minimal-subtraction dimensional regularization scheme $\overline{\mathrm{MS}}$.

### 1.1 Warm-up

Consider the integral which appeared repeatedly in the prevous homework:

$$
\begin{equation*}
\int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{1}{\left(\ell^{2}+A\right)^{2}} \tag{2}
\end{equation*}
$$

First argue that, on dimensional grounds, we must have forgotten a $\mu^{4-D}$ in front, so that the total dimension comes out the same as it would in $D=4$ dimensions. Then argue that the result will be proportional to $A^{\frac{D-4}{2}}$. From these facts show that the analysis from last time,

$$
\begin{equation*}
\int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{1}{\left(\ell^{2}+A\right)^{2}} \simeq \frac{1}{16 \pi^{2}} \frac{1}{\epsilon} \tag{3}
\end{equation*}
$$

should more properly have been

$$
\begin{equation*}
\mu^{4-D} \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{1}{\left(\ell^{2}+A\right)^{2}} \simeq \frac{1}{16 \pi^{2}} \frac{1}{\epsilon}\left(\frac{\mu^{2}}{A}\right)^{\frac{4-D}{2}} \tag{4}
\end{equation*}
$$

Using $A^{\epsilon}=e^{\epsilon \ln (A)} \simeq 1+\epsilon \ln (A)$, show that this equals

$$
\begin{equation*}
\frac{1}{16 \pi^{2}}\left(\frac{1}{\epsilon}+\ln \frac{\mu^{2}}{A}\right) \tag{5}
\end{equation*}
$$

up to $\mathcal{O}(\epsilon)$ corrections. That is, whenever one finds a $1 / \epsilon$ factor, it must accompany a $\ln \left(\mu^{2} / A\right)$ where $A$ is some combination of momenta or energy-invariants from the problem at hand. This will be enough for us to determine the $\mu$ dependence of the diagrams we examined last time.

### 1.1.1 Solution

The general prescription for dimensional regularization is

$$
\begin{equation*}
\int \frac{d^{4} \ell}{(2 \pi)^{4}} \rightarrow \mu^{4-D} \int \frac{d^{D} \ell}{(2 \pi)^{D}} \tag{6}
\end{equation*}
$$

This is to ensure that the dimensionality of all integrals and couplings stays the same. Therefore the factors of $\mu$ are clear. In evaluating the integral

$$
\begin{equation*}
\mu^{4-D} \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{1}{\left(\ell^{2}+A\right)^{2}} \tag{7}
\end{equation*}
$$

the first step is to replace $\ell^{2} \rightarrow \ell^{2} / A$ which is dimensionless, which by direct computation or on dimensional grounds will bring a factor of $A^{\frac{D-4}{2}}$ out front:

$$
\begin{equation*}
\left(\frac{\mu^{2}}{A}\right)^{\frac{4-D}{2}} \int \frac{d^{D} \tilde{\ell}}{(2 \pi)^{D}\left(\tilde{\ell}^{2}+1\right)^{2}} \tag{8}
\end{equation*}
$$

where the latter integrand is dimensionless and equals $\left(1 / 16 \pi^{2}\right)(1 / \epsilon+K)$ with $K$ a constant which is typically absorbed by the $\bar{\epsilon}$ definition. This reproduced Eq. (4) above.

We then need to expand

$$
\begin{equation*}
\frac{1}{\epsilon}\left(\frac{\mu^{2}}{A}\right)^{\epsilon}=\frac{1}{\epsilon} e^{\epsilon \ln \left(\mu^{2} / A\right)} \simeq \frac{1}{\epsilon}\left(1+\epsilon \ln \frac{\mu^{2}}{A}\right)=\frac{1}{\epsilon}+\ln \frac{\mu^{2}}{A} . \tag{9}
\end{equation*}
$$

We therefore verify the general property that $1 / \epsilon$ always accompanies a $\ln \left(\mu^{2} / A\right)$ with $A$ some energy-squared associated with the physics of the problem.

### 1.2 Anomalous dimensions

Let us see how to compute anomalous dimensions.

Use the relation, found in the last homework, between $\phi$ and $\phi_{0}$ to rewrite the bare propagator

$$
\begin{equation*}
G_{0}(p)=\int d^{D} x e^{i p_{\mu} x^{\mu}}\langle 0| \mathrm{T}\left(\phi_{0}(x) \phi_{0}(0)\right)|0\rangle \tag{10}
\end{equation*}
$$

as $Z_{\phi} G(p)$ with $G(p)$ the renormalized correlator. This is the correlator with the $1 / \epsilon$ term removed.

The self-energy we computed in the last homework is easiest to use if we use the inverse propagator

$$
\begin{equation*}
G_{0}^{-1}=Z_{\phi}^{-1} G^{-1}(p)=Z_{\phi}^{-1}\left(p^{2}-m^{2}-\Pi(p)\right) . \tag{11}
\end{equation*}
$$

Use the expression we found for $\Pi(p)$ last time, and the fact that the bare correlator has no $\mu$ dependence, to evaluate the $\mu$ dependence of $Z_{\phi}$ and therefore the anomalous dimension. Use the same reasoning to find the anomalous dimension of the spinor.

### 1.2.1 Solution

We start with

$$
\begin{align*}
G_{0}^{-1} & =Z_{\phi}^{-1}\left[p^{2}-m^{2}-\Pi(p)\right]  \tag{12}\\
\Pi(p) & =\frac{1}{16 \pi^{2}}\left[-2 y^{2} p^{2}+12 y^{2} m_{2}^{2}-\frac{\lambda}{2} m_{1}^{2}\right]\left[\frac{1}{\epsilon}+\ln \frac{\mu^{2}}{p^{2}}\right] \tag{13}
\end{align*}
$$

We are concerned with the $p^{2}$ behavior and are instructed to drop the $1 / \epsilon$ to enforce our counterterm subtraction prescription. Since $G_{0}^{-1}$ is independent of $\mu$, we must have that:

$$
\begin{align*}
0 & =\frac{\mu^{2} d}{d \mu^{2}} G_{0}^{-1} \\
& =\frac{\mu^{2} d}{d \mu^{2}} Z_{\phi}^{-1} p^{2}\left[1+\frac{2 y^{2}}{16 \pi^{2}} \ln \frac{\mu^{2}}{p^{2}}\right] \\
& =-Z_{\phi}^{-2} p^{2} \frac{\mu^{2} d Z_{\phi}}{d \mu^{2}}+Z_{\phi}^{-1} p^{2} \frac{2 y^{2}}{16 \pi^{2}}  \tag{14}\\
\frac{\mu^{2} d Z_{\phi}}{Z_{\phi} d \mu^{2}} & =\frac{2 y^{2}}{16 \pi^{2}} \equiv \gamma_{\phi} . \tag{15}
\end{align*}
$$

This is the anomalous dimension. Note that $\mu^{2} d Z / Z d \mu^{2}=\mu d Z^{1 / 2} / Z^{1 / 2} d \mu$ which is the definition we saw in class. As expected, $\gamma_{\phi}>0$.

The same approach for the fermionic self-energy identifies the coefficient on $\not p$ as the anomalous dimension: $\gamma_{\psi}=y^{2} /\left(2 * 16 \pi^{2}\right)$.

### 1.3 Coupling

Use the Callan-Symanzik equation and the vertex corrections from the last homework, along with the anomalous dimensions from above, to determine the beta functions $\beta_{\lambda}$ and $\beta_{y}$.

### 1.3.1 Solution

The bare, non-amputated correlation function has no $\mu$ dependence:

$$
\begin{equation*}
\frac{\mu^{2} d}{d \mu^{2}}\left\langle\phi_{0} \phi_{0} \phi_{0} \phi_{0}\right\rangle \equiv \frac{\mu^{2} d}{d \mu^{2}} G_{0}^{(4)}=0 \tag{16}
\end{equation*}
$$

Here the superscript refers to the number of fields and the subscript says that it is the bare quantity.

Because $\phi_{0}=Z_{\phi}^{1 / 2} \phi_{r}$, this is $G_{0}^{(4)}=Z^{2} G_{r}^{(4)}$. The renormalized 4-point function is

$$
\begin{equation*}
Z^{2} G_{r}^{(4)}=Z^{2}\left(G_{r}\right)^{4} G_{r, \mathrm{amp}}^{(4)} \tag{17}
\end{equation*}
$$

where $\left(G_{r}\right)^{4}$ refers to 4 powers of external renormalized propagators. Since these are determined from 2-point functions, we have that $G_{r}=Z^{-1} G_{0}$ and therefore

$$
\begin{equation*}
\frac{\mu^{2} d}{d \mu^{2}} Z^{-2}\left(G_{0}\right)^{4} G_{r, \mathrm{amp}}^{(4)}=0 \tag{18}
\end{equation*}
$$

The $G_{0}$ factors have no $\mu$ dependence, while the $Z^{-2}$ factor gives $-2 \gamma_{\phi}$, and we arrive at

$$
\begin{equation*}
0=\left(-2 \gamma_{\phi}+\frac{\mu^{2} d}{d \mu^{2}}\right) G_{r, \mathrm{amp}}^{(4)} \tag{19}
\end{equation*}
$$

which is what we computed in the previous homework. In Euclidean space we found:

$$
\begin{equation*}
G_{r, \mathrm{amp}}^{(4)}=-\lambda+\frac{\frac{3}{2} \lambda^{2}-24 y^{4}}{16 \pi^{2}}\left(\ln \frac{\mu^{2}}{A}+\mathrm{const}\right) \tag{20}
\end{equation*}
$$

where $A$ is a momentum-dependent coefficient which we did not calculate. The $-\lambda$ factor multiplies $-2 \gamma_{\phi}$, and when acted on by $\mu^{2} d / d \mu^{2}$ it gives $\beta_{\lambda}$. Therefore after a little algebra,

$$
\begin{equation*}
\beta_{\lambda}=\frac{\frac{3}{2} \lambda^{2}+4 \lambda y^{2}-24 y^{4}}{16 \pi^{2}} \tag{21}
\end{equation*}
$$

which is even the right answer!
The same calculation for the Yukawa interaction gives

$$
\begin{equation*}
\beta_{y}=\left(\gamma_{\psi}+\frac{1}{2} \gamma_{\phi}\right) y+\frac{y^{3}}{16 \pi^{2}}=\frac{\frac{5}{2} y^{3}}{16 \pi^{2}} . \tag{22}
\end{equation*}
$$

Here $y^{3}$ is the term directly from the vertex correction, and the other terms are from the external line anomalous dimensions; they turn out to be larger than the vertex correction! Interestingly, the Yukawa coupling beta function is cubic in $y$ itself. In a theory with gauge couplings as well, there will also be terms of form $y g^{2}$ with $g$ a gauge coupling, but $\beta_{y}$ is always proportional to at least one power of $y$. This ensures that $y=0$ is preserved under renormalization group flow, which is because it is protected by the same chiral symmetry we saw in the last homework. Similarly, $\beta_{g} \propto g^{3}$. The scalar self-coupling has no such protection, as we see above, where a term of form $\beta_{\lambda} \propto y^{4}$ appears. Therefore scalar self-interactions are generically introduced as soon as scalars couple to any other degrees of freedom.

## 2 Renormalization Group and QED

We found in class that the beta function of QED is:

$$
\begin{equation*}
\frac{\mu d e}{d \mu}=\frac{4}{3} \frac{e^{3}}{16 \pi^{2}} . \tag{23}
\end{equation*}
$$

Assume that this is true at all scales. (It's not - this is if there are only electrons!!) Use that, for $\mu=511 \mathrm{KeV}$, that

$$
\begin{equation*}
\alpha=\frac{e^{2}}{4 \pi}=\frac{1}{137} . \tag{24}
\end{equation*}
$$

Find an explicit expression for $e$ or $\alpha$ as a function of $\mu$ and determine the value of $\mu$ for which $e$ diverges. Compare this scale to the Planck scale, the scale by which gravity must become strongly coupled, which is $1.22 \times 10^{19} \mathrm{GeV}$.

Actually, QED gets embedded into the Standard Model and becomes "hypercharge." Above the electroweak scale $\mu \sim 246 \mathrm{GeV}$, the "hyper" fine structure constant is $\alpha=1 / 98$ and the beta function, featuring electrons, their heavier partners, quarks, and Higgs bosons, reads:

$$
\begin{equation*}
\frac{\mu d e}{d \mu}=\frac{41}{6} \frac{e^{3}}{16 \pi^{2}} . \tag{25}
\end{equation*}
$$

(It's a long story to see where $41 / 6$ comes from - let's not talk about it today.) For THIS expression, what is the scale where the coupling diverges? Is it still above the Planck scale?

### 2.1 Solution

We have

$$
\begin{align*}
\frac{12 \pi^{2}}{e^{3}} d e & =\frac{d \mu}{\mu}  \tag{26}\\
\frac{6 \pi^{2}}{e_{0}^{2}}-\frac{6 \pi^{2}}{e^{2}} & =\ln \left(\mu / \mu_{0}\right)  \tag{27}\\
e^{2} & =\frac{1}{e_{0}^{-2}+\frac{1}{6 \pi^{2}} \ln \left(\mu_{0} / \mu\right)} . \tag{28}
\end{align*}
$$

Here $\mu_{0}$ is a constant of integration, as is $e_{0}$. We can choose them to be 511 KeV and $e_{0}^{2} / 4 \pi=1 / 137$. Then the coupling diverges when

$$
\begin{align*}
0 & =e_{0}^{-2}+\frac{1}{6 \pi^{2}} \ln \left(\mu_{0} / \mu\right)  \tag{29}\\
\ln \left(\mu / \mu_{0}\right) & =\frac{6 \pi^{2}}{e_{0}^{2}}=\frac{3 \pi}{2} \frac{4 \pi}{e_{0}^{2}}  \tag{30}\\
\mu & =\mu_{0} \exp ((3 \pi / 2) 137) \tag{31}
\end{align*}
$$

If I put in $\mu_{0}=0.000511 \mathrm{GeV}$, I find that the divergence occurs at $\mu=1.2 \times 10^{277} \mathrm{GeV}$. Far above any interesting scale!

For the standard model version, $1 / 6 \pi^{2}$ gets replaced by $41 / 48 \pi^{2}$ and 137 gets replaced by 98 , and .000511 becomes 246 , and we find

$$
\mu=(246) \exp ((12 \pi / 41) \times 98)=3 \times 10^{41} \mathrm{GeV}
$$

which is still crazy high!

## 3 Renormalization group and Banks-Zacks

Write $t=\ln \left(\mu^{2}\right)$, so $\mu^{2} d x / d \mu^{2}=d x / d t$. It's simpler and more compact to study renormalization group in terms of $t$, and we will work in the notation where $\mu^{2}$, rather than $\mu$, is used - this is common in the modern literature.

In QCD the beta function, expressed in terms of $a=\alpha / 4 \pi=g^{2} / 16 \pi^{2}$ rather than $g$, can be written:

$$
\begin{equation*}
\frac{d a}{d t}=-\beta_{0} a^{2}-\beta_{1} a^{3} \tag{32}
\end{equation*}
$$

According to https://arxiv.org/pdf/1701.01404.pdf, the values of $\beta_{0}$ and $\beta_{1}$ for $N_{c}$-color, $N_{f}$-flavor QCD are:

$$
\begin{align*}
& \beta_{0}=\frac{11}{3} N_{c}-\frac{2}{3} N_{f},  \tag{33}\\
& \beta_{1}=\frac{34}{3} N_{c}^{2}-\frac{10}{3} N_{c} N_{f}-4 \frac{N_{c}^{2}-1}{4 N_{c}} N_{f} . \tag{34}
\end{align*}
$$

(In comparison to the reference, I used $C_{A}=N_{c}, T_{F}=1 / 2$ and $C_{F}=\left(N_{c}^{2}-1\right) /\left(2 N_{c}\right)$. Here $T_{F}$ is what we called $C(F)$ in class, and $C_{F}$ is what we called $C_{2}(F)$. These are also common notation choices, I don't know why.)

For $N_{c}=3$, for what values of $N_{f}$ are $\beta_{0}>0$ but $\beta_{1}<0$ ? In this range, the beta function has a zero at finite $a$ value $a_{0}$. What is the value of $a_{0}$ ? Are there any $N_{c}$ values for which this zero occurs where $a_{0}$ is small?

See if you can compute the complete $t$ dependence of $a$ assuming that $a(t=0)$ lies between 0 and $a_{0}$. If you cannot, then find the behavior of $a(t)$ just in the vicinity of $a_{0}$.

### 3.1 Solution

The condition $\beta_{0}>0$ is $N_{f}>33 / 2$ which is true for $N_{f}=0, . ., 16$. The condition $\beta_{1}<0$ is

$$
\begin{align*}
0 & >\frac{34}{3} 3^{2}-\frac{10}{3} 3 N_{f}-4 \frac{8}{12} N_{f}  \tag{35}\\
0 & >102-\frac{38}{3} N_{f}  \tag{36}\\
N_{f} & >\frac{153}{19} \tag{37}
\end{align*}
$$

which starts at $N_{f}=9$. So for $N_{f}=9,10, . ., 15,16$ we have $\beta_{0}>0$ but $\beta_{1}<0$.
For the rest of the problem we just treat $\beta_{0}$ and $\beta_{1}$ as coefficients. The zero occurs where $\beta_{1} a_{0}=-\beta_{0}$ or $a_{0}=-\beta_{0} / \beta_{1}$ (recall that $\beta_{1}<0$ ). We can rewrite

$$
\frac{d a}{d t}=-\frac{\beta_{0}^{2}}{\left|\beta_{1}\right|} a^{2}\left(a_{0}-a\right)
$$

I got kinda close to solving this by rearranging,

$$
\begin{align*}
\frac{d a}{a^{2}\left(a_{0}-a\right)} & =-\frac{\beta_{0}}{a_{0}} d t  \tag{38}\\
\left(\frac{1}{a_{0} a^{2}}+\frac{1}{\left(a_{0}-a\right) a_{0}^{2}}+\frac{1}{a a_{0}^{2}}\right) d a & =-\frac{\beta_{0}}{a_{0}} d t  \tag{39}\\
-\frac{1}{a_{0} a}+\frac{1}{a_{0}^{2}} \ln \left(a\left(a_{0}-a\right)\right) & =-\frac{\beta_{0}}{a_{0}}\left(t-t_{0}\right) \tag{40}
\end{align*}
$$

but it's not clear how to solve this for $a$.
To do better, let's call $a-a_{0}=x$ and we will Taylor series expand about small $x$ :

$$
\frac{d x}{d t}=\frac{\beta_{0}^{4}}{\beta_{1}^{3}} x+\mathcal{O}\left(x^{2}\right), \quad x \simeq \exp \left(\frac{\beta_{0}^{4}}{\beta_{1}^{3}}\left(t-t_{0}\right)\right)
$$

We see that as $t$ becomes large, $x$ grows - the solution flows away from $a=a_{0}$ in the UV, towards $a=0$ if we start with $a<a_{0}$ - but as $t$ becomes very negative, $x \rightarrow 0$ in the IR, $a$ approaches $a_{0}$ and the theory approaches this IR interacting conformal fixed point.

## 4 Group theory

### 4.1 Fundamental representation

In carrying out some calculation, you find yourself needing to perform two grouptheory calculations, in $\mathrm{SU}(3)$ gauge theory:

$$
\begin{align*}
& \text { Answer } 1=\operatorname{Tr} T^{A} T^{A} T^{B} T^{B}  \tag{41}\\
& \text { Answer } 2=\operatorname{Tr} T^{A} T^{B} T^{A} T^{B} \tag{42}
\end{align*}
$$

Here $T^{A}=\frac{\lambda^{A}}{2}$ are the fundamental-representation generators of the $\mathrm{SU}(3)$ Lie algebra, which are half the Gell-Mann matrices. Sums over repeated indices are implicit as usual.

First, carry out each calculation using the group-theory tricks we learned, and evaluate them using:

$$
\begin{align*}
C[F] & =\frac{1}{2}  \tag{43}\\
C[A] & =N_{c}=3  \tag{44}\\
d_{F} & =N_{c}=3  \tag{45}\\
d_{A} & =N_{c}^{2}-1=8  \tag{46}\\
C_{2}[F] & =\frac{d_{A} C[F]}{d_{F}}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3} . \tag{47}
\end{align*}
$$

Second, carry them out using the explicit expressions for each Gell-Mann matrix, by actually conducting all of the matrix multiplications, sums, and traces involved. If I were you I would do this using Mathematica, not by hand, but you are welcome to do it by hand if you really have to.

### 4.1.1 Solution

Well $T^{A} T^{A}=C_{2}[R]$ so the first answer is

$$
\operatorname{Tr} T^{A} T^{A} T^{B} T^{B}=C_{2}[F] C_{2}[F] \operatorname{Tr} 1=d_{F} C_{2}[F]^{2}=3\left(\frac{4}{3}\right)^{2}=\frac{16}{3}
$$

For the second expression, we use

$$
T^{A} T^{B}=\left[T^{A}, T^{B}\right]+T^{B} T^{A}
$$

The latter turns into Answer 1 because the trace is cyclic. The commutator contributes

$$
\begin{align*}
i f_{A B C} \operatorname{Tr} T^{C} T^{A} T^{B} & =\frac{i}{2} f_{A B C} \operatorname{Tr} T^{C}\left(T^{A} T^{B}-T^{B} T^{A}\right)  \tag{48}\\
& =\frac{i^{2}}{2} f_{A B C} f_{A B D} \operatorname{Tr} T^{A} T^{D}  \tag{49}\\
& =\frac{-1}{2} f_{A B C} f_{A B D} C[F] \delta_{A D}  \tag{50}\\
& =-\frac{1}{2} d_{A} C[A] C[F]=-\frac{1}{2} 8 \times 3 \times \frac{1}{2}=-6 \tag{51}
\end{align*}
$$

Combining, we would get $16 / 3-6=-2 / 3$.
I succeeded in getting Mathematica to do this calculation directly, but I won't show the transcript here. There is surely a better way than what I found.

### 4.2 Six representation

Oh, but wait! The particles you THOUGHT were in the fundamental representation are actually in the symmetric tensor or 6 representation! This is the representation containing $|u u\rangle$ the state with two up quarks, and all states you arrive at through raising and lowering operators from this state. We know that this rep has dimension $d_{R}=6$ and Dynkin index (trace normalization) $C[R]=5 / 2$, that is, $\operatorname{Tr} 1=6$ and $\operatorname{Tr} T^{A} T^{B}=(5 / 2) \delta_{A B}$. Can you carry out the same calculations as before, for this rep?

For extra credit, if you are really hard-line, see if you can find somehow the actual $T^{A}$ matrices for this representation, and carry out the calculation directly. I recommend that you not attempt this extra credit, but if you want to you can try.

### 4.2.1 Solution

First we just re-use the expressions we found, giving $C_{2}[R]=d_{A} C[R] / d_{R}=8(5 / 2) / 6=$ 10/3

Answer $1=d_{R} C_{2}[R]^{2}=6(10 / 3)^{2}=\frac{200}{3}$
Answer $2=$ Answer $1-\frac{1}{2} d_{A} C[A] C[R]=\frac{200}{3}-\frac{1}{2}(8)(3)(5 / 2)=\frac{200}{3}-30=\frac{110}{3}$

For the extra credit, let's start by choosing a basis for writing the 6 representation:

$$
\left[\begin{array}{c}
r r  \tag{54}\\
(r g+g r) / \sqrt{2} \\
g g \\
(r b+b r) / \sqrt{2} \\
(g b+b g) / \sqrt{2} \\
b b
\end{array}\right]
$$

where $(r, g, b)$ are the three possible color combinations. Next we use that $T^{1}+i T^{2}$ is the raising operator, which turns a $g$ into a $r$. Similarly $T^{1}-i T^{2}$ is the lowering operator, $T^{4}$ and $T^{5}$ do the same for $r, b$ and $T^{6}, T^{7}$ do the same for $g, b$. And $T^{3}$ counts $1 / 2$ for red and $-1 / 2$ for green, while $T^{8}$ counts $1 /(2 \sqrt{3})$ for $r$ and $g$ and
$-1 / \sqrt{3}$ for $b$. Therefore, for instance, in our basis,

$$
\begin{align*}
T^{3} & =\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]  \tag{55}\\
\sqrt{3} T^{8} & =\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & -2
\end{array}\right] \tag{56}
\end{align*}
$$

because wherever you see a state, you return the same state (diagonal entries) with a coefficient equal to the sum of charges on those entries. Now $T^{1}$ is the sum of raising and lowering operators $T^{1}=\left(T_{r \rightarrow g}+T_{g \rightarrow r}\right) / 2 . T^{2}$ is the same but with a relative sign between raising and lowering and a factor of $i$ :

$$
\begin{align*}
& T^{1}=\left[\begin{array}{cccccc}
0 & 1 / \sqrt{2} & 0 & 0 & 0 & 0 \\
1 / \sqrt{2} & 0 & 1 / \sqrt{2} & 0 & 0 & 0 \\
0 & 1 / \sqrt{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]  \tag{57}\\
& T^{2}=\left[\begin{array}{cccccc}
0 & -i / \sqrt{2} & 0 & 0 & 0 & 0 \\
i / \sqrt{2} & 0 & -i / \sqrt{2} & 0 & 0 & 0 \\
0 & i / \sqrt{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -i / 2 & 0 \\
0 & 0 & 0 & i / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \tag{58}
\end{align*}
$$

If we square any of these matrices and take the trace, we get the trace normalization or Dynkin index $C[R]$, which is indeed $5 / 2$. If we take the product of two distinct
matrices and trace, we get zero: $\operatorname{Tr} T^{A} T^{B} \propto \delta_{A B}$. The expressions for $T^{4,5}$ and $T^{6,7}$ are like $T^{1,2}$ but with the roles of the rows changed.

Really I should also check that these matrices satisfy the same Lie algebra as the Gell-Mann matrices (over 2), and I should try out all the expressions explicitly, but I don't have the energy and I am sure that it will work.

