
Quantum Field Theory II
Homework 3 Solutions

1 Renormalization of Yukawa Theory

In the previous homework we considered the Yukawa theory with Lagrangian

L =
1

2
∂µφ∂

µφ− m2
1

2
φ2 + ψ̄(i/∂ −m2)ψ −

λ

24
φ4 − yφψ̄ψ . (1)

Consider calculating this theory within the minimal-subtraction dimensional regu-

larization scheme MS.

1.1 Warm-up

Consider the integral which appeared repeatedly in the prevous homework:∫
dD`

(2π)D
1

(`2 + A)2
. (2)

First argue that, on dimensional grounds, we must have forgotten a µ4−D in front,

so that the total dimension comes out the same as it would in D = 4 dimensions.

Then argue that the result will be proportional to A
D−4
2 . From these facts show that

the analysis from last time,∫
dD`

(2π)D
1

(`2 + A)2
' 1

16π2

1

ε
(3)

should more properly have been

µ4−D
∫

dD`

(2π)D
1

(`2 + A)2
' 1

16π2

1

ε

(
µ2

A

) 4−D
2

. (4)

Using Aε = eε ln(A) ' 1 + ε ln(A), show that this equals

1

16π2

(
1

ε
+ ln

µ2

A

)
(5)
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up to O(ε) corrections. That is, whenever one finds a 1/ε factor, it must accompany

a ln(µ2/A) where A is some combination of momenta or energy-invariants from the

problem at hand. This will be enough for us to determine the µ dependence of the

diagrams we examined last time.

1.1.1 Solution

The general prescription for dimensional regularization is∫
d4`

(2π)4
→ µ4−D

∫
dD`

(2π)D
. (6)

This is to ensure that the dimensionality of all integrals and couplings stays the

same. Therefore the factors of µ are clear. In evaluating the integral

µ4−D
∫

dD`

(2π)D
1

(`2 + A)2
(7)

the first step is to replace `2 → `2/A which is dimensionless, which by direct compu-

tation or on dimensional grounds will bring a factor of A
D−4
2 out front:(

µ2

A

) 4−D
2
∫

dD ˜̀

(2π)D(˜̀2 + 1)2
(8)

where the latter integrand is dimensionless and equals (1/16π2)(1/ε+K) with K a

constant which is typically absorbed by the ε definition. This reproduced Eq. (4)

above.

We then need to expand

1

ε

(
µ2

A

)ε
=

1

ε
eε ln(µ

2/A) ' 1

ε

(
1 + ε ln

µ2

A

)
=

1

ε
+ ln

µ2

A
. (9)

We therefore verify the general property that 1/ε always accompanies a ln(µ2/A)

with A some energy-squared associated with the physics of the problem.

1.2 Anomalous dimensions

Let us see how to compute anomalous dimensions.
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Use the relation, found in the last homework, between φ and φ0 to rewrite the

bare propagator

G0(p) =

∫
dDxeipµx

µ〈0|T(φ0(x)φ0(0))|0〉 (10)

as ZφG(p) with G(p) the renormalized correlator. This is the correlator with the 1/ε

term removed.

The self-energy we computed in the last homework is easiest to use if we use the

inverse propagator

G−10 = Z−1φ G−1(p) = Z−1φ
(
p2 −m2 − Π(p)

)
. (11)

Use the expression we found for Π(p) last time, and the fact that the bare correlator

has no µ dependence, to evaluate the µ dependence of Zφ and therefore the anomalous

dimension. Use the same reasoning to find the anomalous dimension of the spinor.

1.2.1 Solution

We start with

G−10 = Z−1φ
[
p2 −m2 − Π(p)

]
(12)

Π(p) =
1

16π2

[
−2y2p2 + 12y2m2

2 −
λ

2
m2

1

] [
1

ε
+ ln

µ2

p2

]
. (13)

We are concerned with the p2 behavior and are instructed to drop the 1/ε to enforce

our counterterm subtraction prescription. Since G−10 is independent of µ, we must

have that:

0 =
µ2d

dµ2
G−10

=
µ2d

dµ2
Z−1φ p2

[
1 +

2y2

16π2
ln
µ2

p2

]
= −Z−2φ p2

µ2dZφ
dµ2

+ Z−1φ p2
2y2

16π2
(14)

µ2dZφ
Zφdµ2

=
2y2

16π2
≡ γφ . (15)
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This is the anomalous dimension. Note that µ2dZ/Zdµ2 = µdZ1/2/Z1/2dµ which is

the definition we saw in class. As expected, γφ > 0.

The same approach for the fermionic self-energy identifies the coefficient on /p as

the anomalous dimension: γψ = y2/(2 ∗ 16π2).

1.3 Coupling

Use the Callan-Symanzik equation and the vertex corrections from the last home-

work, along with the anomalous dimensions from above, to determine the beta func-

tions βλ and βy.

1.3.1 Solution

The bare, non-amputated correlation function has no µ dependence:

µ2d

dµ2
〈φ0φ0φ0φ0〉 ≡

µ2 d

dµ2
G

(4)
0 = 0. (16)

Here the superscript refers to the number of fields and the subscript says that it is

the bare quantity.

Because φ0 = Z
1/2
φ φr, this is G

(4)
0 = Z2G

(4)
r . The renormalized 4-point function is

Z2G(4)
r = Z2(Gr)

4G(4)
r,amp (17)

where (Gr)
4 refers to 4 powers of external renormalized propagators. Since these are

determined from 2-point functions, we have that Gr = Z−1G0 and therefore

µ2 d

dµ2
Z−2(G0)

4G(4)
r,amp = 0 . (18)

The G0 factors have no µ dependence, while the Z−2 factor gives −2γφ, and we arrive

at

0 =

(
−2γφ +

µ2 d

dµ2

)
G(4)
r,amp (19)

which is what we computed in the previous homework. In Euclidean space we found:

G(4)
r,amp = −λ+

3
2
λ2 − 24y4

16π2

(
ln
µ2

A
+ const

)
(20)
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where A is a momentum-dependent coefficient which we did not calculate. The −λ
factor multiplies −2γφ, and when acted on by µ2 d/dµ2 it gives βλ. Therefore after

a little algebra,

βλ =
3
2
λ2 + 4λy2 − 24y4

16π2
(21)

which is even the right answer!

The same calculation for the Yukawa interaction gives

βy =

(
γψ +

1

2
γφ

)
y +

y3

16π2
=

5
2
y3

16π2
. (22)

Here y3 is the term directly from the vertex correction, and the other terms are from

the external line anomalous dimensions; they turn out to be larger than the vertex

correction! Interestingly, the Yukawa coupling beta function is cubic in y itself. In

a theory with gauge couplings as well, there will also be terms of form yg2 with g

a gauge coupling, but βy is always proportional to at least one power of y. This

ensures that y = 0 is preserved under renormalization group flow, which is because

it is protected by the same chiral symmetry we saw in the last homework. Similarly,

βg ∝ g3. The scalar self-coupling has no such protection, as we see above, where

a term of form βλ ∝ y4 appears. Therefore scalar self-interactions are generically

introduced as soon as scalars couple to any other degrees of freedom.

2 Renormalization Group and QED

We found in class that the beta function of QED is:

µ de

dµ
=

4

3

e3

16π2
. (23)

Assume that this is true at all scales. (It’s not – this is if there are only electrons!!)

Use that, for µ = 511KeV, that

α =
e2

4π
=

1

137
. (24)

Find an explicit expression for e or α as a function of µ and determine the value of

µ for which e diverges. Compare this scale to the Planck scale, the scale by which

gravity must become strongly coupled, which is 1.22× 1019GeV.
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Actually, QED gets embedded into the Standard Model and becomes “hyper-

charge.” Above the electroweak scale µ ∼ 246GeV, the “hyper”fine structure con-

stant is α = 1/98 and the beta function, featuring electrons, their heavier partners,

quarks, and Higgs bosons, reads:

µ de

dµ
=

41

6

e3

16π2
. (25)

(It’s a long story to see where 41/6 comes from – let’s not talk about it today.) For

THIS expression, what is the scale where the coupling diverges? Is it still above the

Planck scale?

2.1 Solution

We have

12π2

e3
de =

dµ

µ
(26)

6π2

e20
− 6π2

e2
= ln(µ/µ0) (27)

e2 =
1

e−20 + 1
6π2 ln(µ0/µ)

. (28)

Here µ0 is a constant of integration, as is e0. We can choose them to be 511KeV and

e20/4π = 1/137. Then the coupling diverges when

0 = e−20 +
1

6π2
ln(µ0/µ) (29)

ln(µ/µ0) =
6π2

e20
=

3π

2

4π

e20
(30)

µ = µ0 exp((3π/2)137) (31)

If I put in µ0 = 0.000511GeV, I find that the divergence occurs at µ = 1.2×10277GeV.

Far above any interesting scale!

For the standard model version, 1/6π2 gets replaced by 41/48π2 and 137 gets

replaced by 98, and .000511 becomes 246, and we find

µ = (246) exp((12π/41)× 98) = 3× 1041 GeV

which is still crazy high!
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3 Renormalization group and Banks-Zacks

Write t = ln(µ2), so µ2dx/dµ2 = dx/dt. It’s simpler and more compact to study

renormalization group in terms of t, and we will work in the notation where µ2,

rather than µ, is used – this is common in the modern literature.

In QCD the beta function, expressed in terms of a = α/4π = g2/16π2 rather

than g, can be written:
d a

dt
= −β0a2 − β1a3 . (32)

According to https://arxiv.org/pdf/1701.01404.pdf, the values of β0 and β1 for

Nc-color, Nf -flavor QCD are:

β0 =
11

3
Nc −

2

3
Nf , (33)

β1 =
34

3
N2
c −

10

3
NcNf − 4

N2
c − 1

4Nc

Nf . (34)

(In comparison to the reference, I used CA = Nc, TF = 1/2 and CF = (N2
c −1)/(2Nc).

Here TF is what we called C(F ) in class, and CF is what we called C2(F ). These are

also common notation choices, I don’t know why.)

For Nc = 3, for what values of Nf are β0 > 0 but β1 < 0? In this range, the beta

function has a zero at finite a value a0. What is the value of a0? Are there any Nc

values for which this zero occurs where a0 is small?

See if you can compute the complete t dependence of a assuming that a(t = 0)

lies between 0 and a0. If you cannot, then find the behavior of a(t) just in the vicinity

of a0.
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3.1 Solution

The condition β0 > 0 is Nf > 33/2 which is true for Nf = 0, .., 16. The condition

β1 < 0 is

0 >
34

3
32 − 10

3
3Nf − 4

8

12
Nf (35)

0 > 102− 38

3
Nf (36)

Nf >
153

19
(37)

which starts at Nf = 9. So for Nf = 9, 10, .., 15, 16 we have β0 > 0 but β1 < 0.

For the rest of the problem we just treat β0 and β1 as coefficients. The zero occurs

where β1a0 = −β0 or a0 = −β0/β1 (recall that β1 < 0). We can rewrite

d a

dt
= − β2

0

|β1|
a2(a0 − a)

I got kinda close to solving this by rearranging,

da

a2(a0 − a)
= −β0

a0
dt (38)(

1

a0a2
+

1

(a0 − a)a20
+

1

aa20

)
da = −β0

a0
dt (39)

− 1

a0a
+

1

a20
ln(a(a0 − a)) = −β0

a0
(t− t0) (40)

but it’s not clear how to solve this for a.

To do better, let’s call a − a0 = x and we will Taylor series expand about small

x:
dx

dt
=
β4
0

β3
1

x+O(x2) , x ' exp

(
β4
0

β3
1

(t− t0)
)
.

We see that as t becomes large, x grows – the solution flows away from a = a0 in the

UV, towards a = 0 if we start with a < a0 – but as t becomes very negative, x→ 0 –

in the IR, a approaches a0 and the theory approaches this IR interacting conformal

fixed point.
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4 Group theory

4.1 Fundamental representation

In carrying out some calculation, you find yourself needing to perform two group-

theory calculations, in SU(3) gauge theory:

Answer 1 = Tr TATATBTB , (41)

Answer 2 = Tr TATBTATB . (42)

Here TA = λA

2
are the fundamental-representation generators of the SU(3) Lie alge-

bra, which are half the Gell-Mann matrices. Sums over repeated indices are implicit

as usual.

First, carry out each calculation using the group-theory tricks we learned, and

evaluate them using:

C[F ] =
1

2
(43)

C[A] = Nc = 3 (44)

dF = Nc = 3 (45)

dA = N2
c − 1 = 8 (46)

C2[F ] =
dAC[F ]

dF
=
N2
c − 1

2Nc

=
4

3
. (47)

Second, carry them out using the explicit expressions for each Gell-Mann matrix,

by actually conducting all of the matrix multiplications, sums, and traces involved.

If I were you I would do this using Mathematica, not by hand, but you are welcome

to do it by hand if you really have to.

4.1.1 Solution

Well TATA = C2[R] so the first answer is

Tr TATATBTB = C2[F ]C2[F ] Tr 1 = dFC2[F ]2 = 3

(
4

3

)2

=
16

3
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For the second expression, we use

TATB =
[
TA , TB

]
+ TBTA

The latter turns into Answer 1 because the trace is cyclic. The commutator con-

tributes

ifABC Tr TCTATB =
i

2
fABC Tr TC(TATB − TBTA) (48)

=
i2

2
fABCfABD Tr TATD (49)

=
−1

2
fABCfABDC[F ]δAD (50)

= −1

2
dAC[A]C[F ] = −1

2
8× 3× 1

2
= −6 (51)

Combining, we would get 16/3− 6 = −2/3.

I succeeded in getting Mathematica to do this calculation directly, but I won’t

show the transcript here. There is surely a better way than what I found.

4.2 Six representation

Oh, but wait! The particles you THOUGHT were in the fundamental representation

are actually in the symmetric tensor or 6 representation! This is the representation

containing |uu〉 the state with two up quarks, and all states you arrive at through

raising and lowering operators from this state. We know that this rep has dimension

dR = 6 and Dynkin index (trace normalization) C[R] = 5/2, that is, Tr 1 = 6 and

Tr TATB = (5/2)δAB. Can you carry out the same calculations as before, for this

rep?

For extra credit, if you are really hard-line, see if you can find somehow the

actual TA matrices for this representation, and carry out the calculation directly. I

recommend that you not attempt this extra credit, but if you want to you can try.
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4.2.1 Solution

First we just re-use the expressions we found, giving C2[R] = dAC[R]/dR = 8(5/2)/6 =

10/3

Answer 1 = dRC2[R]2 = 6(10/3)2 =
200

3
(52)

Answer 2 = Answer 1− 1

2
dAC[A]C[R] =

200

3
− 1

2
(8)(3)(5/2) =

200

3
− 30 =

110

3
(53)

For the extra credit, let’s start by choosing a basis for writing the 6 representation:

rr

(rg + gr)/
√

2

gg

(rb+ br)/
√

2

(gb+ bg)/
√

2

bb


(54)

where (r, g, b) are the three possible color combinations. Next we use that T 1 + iT 2

is the raising operator, which turns a g into a r. Similarly T 1 − iT 2 is the lowering

operator, T 4 and T 5 do the same for r, b and T 6, T 7 do the same for g, b. And T 3

counts 1/2 for red and −1/2 for green, while T 8 counts 1/(2
√

3) for r and g and
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−1/
√

3 for b. Therefore, for instance, in our basis,

T 3 =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 1/2 0 0

0 0 0 0 −1/2 0

0 0 0 0 0 0


(55)

√
3T 8 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1/2 0 0

0 0 0 0 −1/2 0

0 0 0 0 0 −2


(56)

because wherever you see a state, you return the same state (diagonal entries) with a

coefficient equal to the sum of charges on those entries. Now T 1 is the sum of raising

and lowering operators T 1 = (Tr→g + Tg→r)/2. T 2 is the same but with a relative -

sign between raising and lowering and a factor of i:

T 1 =



0 1/
√

2 0 0 0 0

1/
√

2 0 1/
√

2 0 0 0

0 1/
√

2 0 0 0 0

0 0 0 0 1/2 0

0 0 0 1/2 0 0

0 0 0 0 0 0


(57)

T 2 =



0 −i/
√

2 0 0 0 0

i/
√

2 0 −i/
√

2 0 0 0

0 i/
√

2 0 0 0 0

0 0 0 0 −i/2 0

0 0 0 i/2 0 0

0 0 0 0 0 0


. (58)

If we square any of these matrices and take the trace, we get the trace normalization

or Dynkin index C[R], which is indeed 5/2. If we take the product of two distinct
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matrices and trace, we get zero: Tr TATB ∝ δAB. The expressions for T 4,5 and T 6,7

are like T 1,2 but with the roles of the rows changed.

Really I should also check that these matrices satisfy the same Lie algebra as the

Gell-Mann matrices (over 2), and I should try out all the expressions explicitly, but

I don’t have the energy and I am sure that it will work.
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