Quantum Field Theory II
Homework 3 Solutions

1 Renormalization of Yukawa Theory

In the previous homework we considered the Yukawa theory with Lagrangian
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Consider calculating this theory within the minimal-subtraction dimensional regu-

larization scheme MS.

1.1 Warm-up

Consider the integral which appeared repeatedly in the prevous homework:
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First argue that, on dimensional grounds, we must have forgotten a p*~% in front,

so that the total dimension comes out the same as it would in D = 4 dimensions.
Then argue that the result will be proportional to A®7 . From these facts show that

the analysis from last time,
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should more properly have been
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up to O(e) corrections. That is, whenever one finds a 1/e€ factor, it must accompany
a In(u?/A) where A is some combination of momenta or energy-invariants from the
problem at hand. This will be enough for us to determine the 1 dependence of the

diagrams we examined last time.

1.1.1 Solution

The general prescription for dimensional regularization is
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This is to ensure that the dimensionality of all integrals and couplings stays the

same. Therefore the factors of p are clear. In evaluating the integral
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the first step is to replace £2 — ¢? /A which is dimensionless, which by direct compu-

tation or on dimensional grounds will bring a factor of A% out front:
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where the latter integrand is dimensionless and equals (1/167%)(1/e + K) with K a
constant which is typically absorbed by the € definition. This reproduced Eq. (4)

above.
We then need to expand
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We therefore verify the general property that 1/e always accompanies a In(u?/A)

with A some energy-squared associated with the physics of the problem.

1.2 Anomalous dimensions

Let us see how to compute anomalous dimensions.



Use the relation, found in the last homework, between ¢ and ¢, to rewrite the

bare propagator
Go(p) = / dPze " (0] T(¢o()$0(0))|0) (10)

as Z,G(p) with G(p) the renormalized correlator. This is the correlator with the 1/e
term removed.
The self-energy we computed in the last homework is easiest to use if we use the

inverse propagator
Gyl =2'G'(p) = Z;" (p* —m? —11(p)) . (11)

Use the expression we found for II(p) last time, and the fact that the bare correlator
has no p dependence, to evaluate the ;1 dependence of Zy and therefore the anomalous
dimension. Use the same reasoning to find the anomalous dimension of the spinor.

1.2.1 Solution

We start with
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We are concerned with the p? behavior and are instructed to drop the 1/¢ to enforce
our counterterm subtraction prescription. Since G, 'is independent of W, we must
have that:
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This is the anomalous dimension. Note that y?dZ/Zdu? = pdZ'/?/Z'?dy which is
the definition we saw in class. As expected, 7, > 0.
The same approach for the fermionic self-energy identifies the coefficient on p as

the anomalous dimension: 7, = y?/(2 * 167%).

1.3 Coupling

Use the Callan-Symanzik equation and the vertex corrections from the last home-
work, along with the anomalous dimensions from above, to determine the beta func-
tions By and 3,.

1.3.1 Solution

The bare, non-amputated correlation function has no yu dependence:
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Here the superscript refers to the number of fields and the subscript says that it is
the bare quantity.
Because ¢y = Z;/ 2¢T, this is Ggl) = 72G"Y. The renormalized 4-point function is
7*cM = 7(G,)'G¢ (17)
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where (G,)* refers to 4 powers of external renormalized propagators. Since these are

determined from 2-point functions, we have that G, = Z7'G, and therefore
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The Gy factors have no p dependence, while the Z 2 factor gives —27,, and we arrive
at 2 4
1
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which is what we computed in the previous homework. In Euclidean space we found:
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where A is a momentum-dependent coefficient which we did not calculate. The —\
factor multiplies —27,4, and when acted on by u?d/du? it gives 8y. Therefore after

a little algebra,
3
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which is even the right answer!
The same calculation for the Yukawa interaction gives
1 y3 g y3
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Here 32 is the term directly from the vertex correction, and the other terms are from
the external line anomalous dimensions; they turn out to be larger than the vertex
correction! Interestingly, the Yukawa coupling beta function is cubic in y itself. In
a theory with gauge couplings as well, there will also be terms of form yg¢? with g
a gauge coupling, but 3, is always proportional to at least one power of y. This
ensures that y = 0 is preserved under renormalization group flow, which is because
it is protected by the same chiral symmetry we saw in the last homework. Similarly,
B, o< g3 The scalar self-coupling has no such protection, as we see above, where
a term of form By o y* appears. Therefore scalar self-interactions are generically

introduced as soon as scalars couple to any other degrees of freedom.

2 Renormalization Group and QED

We found in class that the beta function of QED is:
pde 4
dp 31672
Assume that this is true at all scales. (It’s not — this is if there are only electrons!!)
Use that, for © = 511KeV, that
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i for which e diverges. Compare this scale to the Planck scale, the scale by which
gravity must become strongly coupled, which is 1.22 x 1019GeV.



Actually, QED gets embedded into the Standard Model and becomes “hyper-

2

charge.” Above the electroweak scale u ~ 246GeV, the “hyper”fine structure con-
stant is a = 1/98 and the beta function, featuring electrons, their heavier partners,
quarks, and Higgs bosons, reads:
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(It’s a long story to see where 41/6 comes from — let’s not talk about it today.) For
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THIS expression, what is the scale where the coupling diverges? Is it still above the

Planck scale?

2.1 Solution

We have
1272 du
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Here 1 is a constant of integration, as is eg. We can choose them to be 511KeV and

e2/4m = 1/137. Then the coupling diverges when
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If I put in o = 0.000511GeV, I find that the divergence occurs at = 1.2x10*"GeV.
Far above any interesting scale!

For the standard model version, 1/672 gets replaced by 41/487% and 137 gets
replaced by 98, and .000511 becomes 246, and we find

p = (246) exp((127/41) x 98) = 3 x 10*' GeV

which is still crazy high!



3 Renormalization group and Banks-Zacks

Write ¢ = In(p?), so p?dx/du* = dx/dt. It’s simpler and more compact to study
renormalization group in terms of ¢, and we will work in the notation where 2,
rather than p, is used — this is common in the modern literature.

In QCD the beta function, expressed in terms of a = «a/4r = ¢?/167* rather

than g, can be written:
da

% = —ﬁoaz — ﬁla?’ . (32)

According to https://arxiv.org/pdf/1701.01404.pdf, the values of 5y and f3; for
Nc-color, Ns-flavor QCD are:
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(In comparison to the reference, Tused Cy = N,, Tr = 1/2 and Crp = (N?—1)/(2N.).
Here T is what we called C(F) in class, and CF is what we called Cy(F'). These are
also common notation choices, I don’t know why.)

For N, = 3, for what values of Ny are 8y > 0 but $; < 07 In this range, the beta
function has a zero at finite a value ag. What is the value of ay? Are there any N,
values for which this zero occurs where aq is small?

See if you can compute the complete ¢ dependence of a assuming that a(t = 0)
lies between 0 and ag. If you cannot, then find the behavior of a(t) just in the vicinity

Of agp.



3.1 Solution

The condition £y > 0 is Ny > 33/2 which is true for Ny = 0,..,16. The condition
b1 < 0is
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which starts at Ny =9. So for Ny = 9,10, ..,15,16 we have 8, > 0 but 3; < 0.
For the rest of the problem we just treat 5y and ; as coefficients. The zero occurs
where (1ag = —fy or ag = — /1 (recall that B; < 0). We can rewrite
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I got kinda close to solving this by rearranging,
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but it’s not clear how to solve this for a.

To do better, let’s call a — ayg = x and we will Taylor series expand about small
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We see that as t becomes large, x grows — the solution flows away from a = ag in the
UV, towards a = 0 if we start with a < ag — but as ¢t becomes very negative, v — 0 —
in the IR, a approaches ag and the theory approaches this IR interacting conformal
fixed point.



4 Group theory

4.1 Fundamental representation

In carrying out some calculation, you find yourself needing to perform two group-

theory calculations, in SU(3) gauge theory:

Answer 1 = Tr TATATPTE (41)

Answer 2 = Tr TATPTATE . (42)

Here T4 = % are the fundamental-representation generators of the SU(3) Lie alge-

bra, which are half the Gell-Mann matrices. Sums over repeated indices are implicit
as usual.

First, carry out each calculation using the group-theory tricks we learned, and

evaluate them using:

CIF] = % (43)
CIAl = N, =3 (44)
dp = N, = 3 (45)
da=N?—1= (46)
e =40 Lol 2 (47)

Second, carry them out using the explicit expressions for each Gell-Mann matrix,
by actually conducting all of the matrix multiplications, sums, and traces involved.
If T were you I would do this using Mathematica, not by hand, but you are welcome

to do it by hand if you really have to.

4.1.1 Solution

Well TAT# = Cy[R] so the first answer is

2
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For the second expression, we use
TATE — [TA, TB} 4 TBTA

The latter turns into Answer 1 because the trace is cyclic. The commutator con-

tributes
ifapc Te TCTATE = %fABC Te T9(TATP — TPT4) (48)
= ngBCfABD Tr TATP (49)
= ;fABCfABDC[F](SAD (50)
= —JAACTAICIF] = 38 x 3 x 5 = 6 (51

Combining, we would get 16/3 — 6 = —2/3.
I succeeded in getting Mathematica to do this calculation directly, but I won’t

show the transcript here. There is surely a better way than what I found.

4.2 Six representation

Oh, but wait! The particles you THOUGHT were in the fundamental representation
are actually in the symmetric tensor or 6 representation! This is the representation
containing |uu) the state with two up quarks, and all states you arrive at through
raising and lowering operators from this state. We know that this rep has dimension
dr = 6 and Dynkin index (trace normalization) C[R] = 5/2, that is, Tr 1 = 6 and
Tr TATP = (5/2)045. Can you carry out the same calculations as before, for this
rep?

For extra credit, if you are really hard-line, see if you can find somehow the
actual T matrices for this representation, and carry out the calculation directly. I

recommend that you not attempt this extra credit, but if you want to you can try.
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4.2.1 Solution

First we just re-use the expressions we found, giving Co[R] = d4C[R]/dr = 8(5/2)/6 =
10/3

200

Answer1::dchuﬂ2::6ao/3V::-7;- (52)
Answer 2 — Answer 1 — %dAC[A]C[R] _ ? - %(8)(3)(5/2) _ 2%0 30— %
(53)

For the extra credit, let’s start by choosing a basis for writing the 6 representation:

(rg +g7)/v2
99
(rb+br)/v2
(9 +bg)/ V2
bb

(54)

where (7, g, b) are the three possible color combinations. Next we use that 7" + 7>
is the raising operator, which turns a ¢ into a r. Similarly 7! — i7? is the lowering
operator, 7% and T do the same for r,b and 7% T7 do the same for g,b. And T3
counts 1/2 for red and —1/2 for green, while T® counts 1/(2v/3) for r and g and
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-1/ V/3 for b. Therefore, for instance, in our basis,
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because wherever you see a state, you return the same state (diagonal entries) with a

coefficient equal to the sum of charges on those entries. Now T is the sum of raising

and lowering operators T' = (T,_, + Ty—,)/2. T? is the same but with a relative -

sign between raising and lowering and a factor of 4:

T? =
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If we square any of these matrices and take the trace, we get the trace normalization
or Dynkin index C[R], which is indeed 5/2. If we take the product of two distinct
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matrices and trace, we get zero: Tr TATP o §45. The expressions for T%° and 767
are like 712 but with the roles of the rows changed.

Really I should also check that these matrices satisfy the same Lie algebra as the
Gell-Mann matrices (over 2), and I should try out all the expressions explicitly, but
I don’t have the energy and I am sure that it will work.
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