
Quantum Field Theory II
Homework 4 Solutions

1 Strong Interactions with Symmetric Tensors

Your crazy friend Jim (based on a real person) has a particle physics model where,

in addition to the six known fundamental-representation quark flavors, there are

new quark species which are in the 6 (symmetric tensor or ) representation. In

his model, these have a mass of a few GeV. You are trying to figure out how such

particles would change QCD, in order to persuade Jim that they are unlikely to be

experimentally viable.

1. What effect would N6 such quark species have on the beta function of QCD (at

one loop or lowest order)? How many species can there be before asymptotic

freedom is lost?

2. What would be the simplest and lightest new hadronic bound states containing

one of these new quarks Q? What would the expected spin and isospin be?

3. Suppose these new hadrons are to carry an integer electric charge. What are the

allowed electric charges of the new Q particles? What is the smallest possible

contribution to R the ratio of hadronic to muonic states in e+e− annihilation,

above the Q mass threshold?

For extra points, see if you can find any literature or other source which presents

experimental limits on such particles.

1.1 Solution

• The beta function of QCD at 1 loop is:

µ
d
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g =

g3

16π2

(
−11

3
C(A) +

∑
f

4

3
C(f)

)
(1)
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where the sum runs over all quark species – normal and new. For standard

QCD, C(f) = 1/2 and we get −11 + 2Nf/3 which famously is negative up to

Nf = 16. But the 6 representation has C(f) = 5/2. Therefore we now have

−11 + 2nf/3 + 10nf ′/3 where nf ′ is the number of new quarks. So each new

quark has the same “weight” as 5 standard quarks. Therefore, 1 or 2 new

quarks preserve asymptotic freedom, but 3 new quarks would ruin asymptotic

freedom.

• The new quark can couple to two antiquarks which combine into an anti-

6 color representation. That’s color-symmetric, so something else must be

antisymmetric. The lowest energy is the antisymmetric spin-0, so the flavor

must be symmetric – isospin 1. So we expect a spin 1/2 isospin-triplet set of

states: Qūū, Q(ūd̄+ d̄ū)/
√

2, Qd̄d̄.

• We see that the new-quark will be partnered with d̄d̄, with d̄ū or with ūū,

which have charge +2/3, −1/3, and −4/3 respectively. So it needs to have a

charge of 1/3 plus an integer: Q = (1/3) + n.

The contribution toR isQ2df and df = 6 is the dimension of the representation.

So if Q = 1/3 then the contribution is 2/3, whereas for Q = −2/3 it would be

8/3. These are twice as large as the contributions of the b-quark and of the

c-quark respectively.

See https://arxiv.org/pdf/1204.1119.pdf for experimental limits, at around

500 GeV. The PDG lists a bound on q6 of 84 GeV. The paper https://arxiv.org/abs/2005.02512

more-or-less solves this problem for general representations.

2 Beta function to the UV

The strong coupling in the 5-quark MSbar scheme at the scale µ = 91 GeV is

αs = 0.118. Use the 1-loop beta function to determine the value of αs at µ = 173

GeV, the top quark mass.

At this scale, switch to the 6-quark scheme to include top quark effects. Evolve

the coupling to the scale µ = 1016 GeV, where the strong coupling may take the
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same value as the weak coupling and the properly rescaled hypercharge coupling.

2.1 Solution

The one-loop beta function of QCD is

µ2 d

dµ2
g2 = −

(
11− 2

3
Nf

)
g4

16π2

d(1/g2)

d(lnµ2)

1

16π2

(
11− 2

3
Nf

)
. (2)

We see in the second line that it’s easier to write the beta function in terms of 1/g2

since this eliminates g2 on the righthand side. The solution is a straight line with

slope (11− 2Nf/3)/16π2.

First let’s check the factors of 2. If αs = 0.118 = g2/4π then 1/g2 = 1/(4π×0.118)

or 1/g2 = 0.674. This value will reach zero when we change ln(µ2) by 0.674 ∗
16π2/(11−2Nf/3) = 13.9. Therefore the coupling hits zero at Λ = 91 exp(−13.9/2) =

0.087 GeV or 87 MeV. This is smaller than the 300 MeV we were expecting because

we are including 5 quark species all the way down. But the point is that it isn’t

orders of magnitude off, so we got the 2s right.

The value of 1/g2 at the scale µ is then:

g−2(µ) = 0.674 +
11− 2Nf/3

8π2
ln

µ

91
(3)

where it’s 1/8π2 because I am using ln(µ/µ0) rather than ln(µ2/µ2
0). Using Nf = 5

and µ = 173 we find g−2 = 0.737 or αs = g2/4π = 0.108. Starting here and going

to µ = 1016 with Nf = 6 gives g−2 = 3.546 or αs = 0.0224 or 1/αs = 44.6. For

comparison, the weak coupling at the scale 91 GeV is about 1/αw = 30. So at this

huge scale, the strong coupling may not be the strongest coupling any more.

3 quark-ghost scattering

Calculate the initial-state spin averaged, final-state spin summed squared matrix

element for a quark scattering against a ghost. Look up the Feynman rules and
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remember that the ghost is a spin-scalar and in the adjoint representation. Express

your answer in terms of Mandelstamm variables. Remember that there is a minus

sign due to the ghost loop which means that your result is actually negative.

3.1 Solution

The color factor averaged over initial colors is

CF =
1

dFdA
Tr FT

ATB Tr AT
ATB

=
1

dFdA
C[F ]δABC[A]δAB

=
1

dFdA
dA
C2[F ]dF
dA

C2[A]

=
C2[F ]C2[A]

dA
=

4

3

3

8
=

1

2
. (4)

The matrix element squared averaged over initial spins for initial momenta p, p′ and

final momenta k, k′ is

|M|2 =
g4

2((p− p′)2)2
Tr /p/p

′/k/p
′

=
4g4

t2
p · p′ k · p′ = g4 su

t2
. (5)

Here I took the Feynman rule for the gluon-ghost vertex, which gives p′ν , and con-

tracted it with the γµ and the ηµν from the propagator to write it as /p′. An ordinary

scalar would have (p′ + k′) where this has p′. This would lead to su→ −4su.

Our answer is negative so we don’t need another minus sign. Multiplying by the

group theory factor gives g4su/2t2. But including antighosts provides another factor

of 2. It’s fine if you missed this subtlety.

4 Momentum fraction in gluons

This problem takes some work, but maybe it’s worth it.

Consider the Altarelli-Parisi equations of QCD, Peskin Eq.(17.128) to (17.130).

Assume that four flavors of quark are light and are relevant in our discussion (udsc).
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It has been observed that about half of the energy/momentum of a proton is

carried by the gluons and about half by the quarks and antiquarks. Is this reason-

able? Should we expect gluon radiation to turn the proton into purely glue at high

resolution scale Q, or do the evolution equations favor a balance between quarks and

gluons?

To investigate this, define the total fraction of the proton’s energy which is carried

by gluons to be

Xg ≡
∫ 1

0

x fg(x,Q) dx =

∫ 1

0

x g(x, µ) dx (6)

following either Peskin’s notation or the more common one where the PDF is written

as g(x, µ). Similarly, the energy fraction in quarks and antiquarks is

Xq ≡
∫ 1

0

x

(∑
f

fqf (x,Q) + fqf (x,Q)

)
dx =

∫ 1

0

x

(∑
f

qf (x, µ) + qf (x, µ)

)
dx .

(7)

Here the sum is over quark flavors. Note that Xg, Xq are functions of Q (or µ

depending on notation). We want to explore this scale dependence.

Use the Altarelli-Parisi equations to determine dXg/d(ln(Q)) and dXq/d(ln(Q)).

Show that dXg/d(ln(Q))+dXq/d(ln(Q)) = 0 which is conservation of energy. Which

one grows and which one shrinks, or does the answer depend on the values of Xg

and Xq? Do you find that there is a value of Xg for which the momentum fraction

is stable with scale? Is it a UV attractor?

(These quantities Xg and Xq are called the first Mellin moments of the PDFs.

One can define Mellin moments with any nonnegative integer power of x and analyze

their evolution, and for some problems they are simpler and more directly relevant

than the PDFs themselves. The moment with x0 counts the total number of partons;

it grows without limit as Q is increased, indeed I think its Q-derivative contains log

divergences – total parton number is not well defined. The x3 moment for quarks is

relevant for neutrino scattering on nucleons; these moments are finite and decrease

with increasing Q....)
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4.1 Solution

First let’s write the general form of the DGLAP equations: call the species fa(x, µ
2)

and the splitting functions Pfa←fb(x, µ
2). The DGLAP equations are:

µ2∂

∂µ2
fa(x, µ

2) =
∑
fb

∫ 1

x

dz

z
fb(x/z, µ

2)Pfa←fb(z, µ
2) . (8)

We have defined

Xa(µ
2) ≡

∫ 1

0

fa(x, µ
2) x dx (9)

and we want to know each

µ2∂

∂µ2
Xa(µ

2) =
∑
b

∫ 1

0

x dx
∂

∂µ2
fa(x, µ

2) Definition in Eq. (9)

=
∑
b

∫ 1

0

x dx

∫ 1

x

dz

z
fb(x/z, µ

2)Pfa←fb(z, µ
2) Used Eq. (8)

=
∑
b

∫ 1

0

dz

∫ z

0

dx
x

z
fb(x/z, µ

2)Pfa←fb(z, µ
2) Reordered integrals

=
∑
b

∫ 1

0

dz

∫ 1

0

z dy yfb(y, µ
2)Pfa←fb(z, µ

2) Introduced y = x/z

=
∑
b

Xb(µ
2)

∫ 1

0

dz zPfa←fb(z, µ
2) Definition of Xb

≡
∑
b

CabXb(µ
2) ,

Cab ≡
∫ 1

0

dz zPfa←fb(z, µ
2) . (10)

All we have to do is to evaluate these coefficients Cab. Energy conservation is obtained

if
∑

aX
′(a) = 0 =

∑
abCabXb which is true independent of Xb only if

∑
aCab = 0.

Note that the way we have written the equations, the sum over a should include each

flavor and should count quark and antiquark separately.
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Now let’s find the coefficients explicitly:

Cqq =
4

3

αs
2π

∫ 1

0

dz z

[
3

2
δ(1− z) +

1 + z2

(1− z)+

]
=

4

3

αs
2π

∫ 1

0

dz z

[
3

2
δ(1− z) +

2

(1− z)+

− (z + 1)

]
(11)

I have written

z2

(1− z)+

=
1 + z2 − 1

(1− z)+

=
1

(1− z)+

− (1− z)(1 + z)

(1− z)+

=
1

(1− z)+

− (1 + z) (12)

where the last expression is nonsingular so the + subscript is irrelevant. That way

we only need to perform one integral involving this funny subscript:∫ 1

0

dz z
1

(1− z)+

≡
∫ 1

0

dz
z − 1

(1− z)
= −1 (13)

With this integral in hand, the other integrals are simple:

Cqq =
4

3

αs
2π

[
3

2
− 2− 5

6

]
=

4

3

αs
2π

[
−4

3

]
. (14)

Meanwhile,

Cgq =
4

3

αs
2π

∫ 1

0

dz z

[
1 + (1− z)2

z

]
=

4

3

αs
2π

[
1 +

1

3

]
= −Cqq (15)

Therefore
∑

aCaq = 0 as expected.

Next consider the gluons:

Cqg =
αs
2π

∫ 1

0

dz z
1

2

[
z2 + (1− z)2

]
=
αs
2π

1

2

[
1

4
+

1

12

]
=

1

6

αs
2π

(16)

which must be summed (eventually) over quark+antiquark and nf quark flavors:

1/6→ nf/3. Similarly, the Cgg coefficient has two parts: the part from nf ,

Cgg1 =
αs
2π

∫ 1

0

dz z
[
−nf

3
δ(1− z)

]
= −nf

3

αs
2π

(17)
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which will cancel with
∑

q,q̄ Cqg, and

Cgg2 =
αs
2π

∫ 1

0

dz z

[
11

2
δ(1− z) + 6

z2 + (1− z)2 + z2(1− z)2

z(1− z)+

]
=
αs
2π

(
11

2
+

∫ 1

0

dz z 6

[
1− z
z

+ z(1− z) +
z

(1− z)+

])
=
αs
2π

(
11

2
+ 6

[
1

2
+

1

12
− 3

2

])
= 0 (18)

In summary, for each quark and antiquark species, we have

µ2d

dµ2
Xq(µ

2) = CqqXq + CqgXg =
αs
2π

(
1

6
Xg −

16

9
Xq

)
. (19)

If we write XQ =
∑

f Xqf +Xq̄f this becomes

µ2d

dµ2
XQ(µ2) =

αs
2π

(
nf
3
Xg −

16

9
XQ

)
(20)

Similarly

µ2d

dµ2
Xg(µ

2) = CggXg +
∑
f

CgqfXq =
αs
2π

(
−nf

3
Xg +

16

9
XQ

)
. (21)

Clearly XQ+Xg does not change, since their evolution involves the same combination

with opposite coefficients.

The individual energy fractions stay the same if nf/3Xg = 16/9XQ which occurs

when the gluons have a total energy fraction of (16/9)/(16/9 + nf/3) which for 4

species is 16/9/(16/9 + 4/3) = 4/7 so the DGLAP evolution is driven towards the

point where the gluons have 4/7 of the energy and the quarks have 3/7.
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