
Teilchenphysik:
Lecture 10: Quantum Electrodynamics

Our first genuinely useful theory: Quantum Electrodynamics
I Spin- 1

2 particles: electrons
I Also protons or muons or ...
I Spin-1 particles: photons as Aµ field
I Interactions: AµJµ

Feynman rules? Results for real quantities?
We’ll see how far we get!



2: Feynman rules for Scalars

Recall the Feynman rules for a scalar: L = 1
2φ(−∂µ∂µ + m2)φ + gφ3

Object Symbol Value .

Incoming line

Outgoing line

Internal line (Propagator)

Vertex



3: Free spin-half

L = ψ̄(iγµ∂µ −m)ψ

Object Symbol Value .

Incoming line (particle)

Incoming line (antiparticle)

Outgoing line (particle)

Outgoing line (antiparticle)

Internal line (Propagator)



4: Spin 1 and vertex

L =
1
4

FµνFµν + eAµJµ ' 1
2

Aµ∂ν∂
νAµ − eAµψ̄γ

µψ

Object Symbol Value .

Incoming line

Outgoing line

Internal line (Propagator)

Vertex



5: What are these polarization things?

As you know from classical EM, the A field is orthogonal to propagation and there
are two polarization states:

ε(1)
µ , ε(2)

µ with gµνε(i)
µ (ε(j)

ν )∗ = −δij and pµε(i)
µ = 0

For instance, for pµ in z direction and magnitude p, we have

pµ =


p
0
0
p

 ε(1)
µ =


0
1
0
0

 ε(2)
µ =


0
0
1
0


Plane polarizations.
Alternative, also useful: circular polarizations

ε+
µ =

ε(1)
µ + iε(2)

µ√
2

, ε−µ =
ε(1)
µ − iε(2)

µ√
2



6: Example: electron scatters from a Muon

Vertices have same particle type going out as in!



7: Example: electron-electron scattering

Identical final states!



8: Wait – a minus sign?

The matrix element for e−e− → e−e− has two contributions.
The sign on one contribution isn’t important since I will square.
Relative sign is important and there is a minus sign!

Why? Because e− are fermions. The external state

|e1e2〉 = −|e2e1〉

is antisymmetric on changing “labels” on the electrons.
The matrix element picks up a − from this antisymmetry.

Also don’t forget to integrate over half of momentum space, or use a factor 1
2 .



9: Example with photons: Compton



10: How to evaluate these?

For specific in and out momenta and specific spins,
use the known forms of u(p, s) etc and εi

µ.
Problems: final state ū(p, s) change with changing p.
Most experiments don’t measure spin / polarization state.
Most beams are an even mix of spins

More useful to ask about spin summed/averaged results



11: Spin sums and averages

Average over initial spin states:
Usually you know the total number of particles in beam, not their spins.
Half are one spin, half are the other. average.

Sum over final spin states:
Your detector will detect the particle regardless of its spin.
Therefore you sould sum each possibility.(

1
2

)#incoming∑
sin

∑
sout



12: New simplifications

I really wantM∗M, notM: ifM contains ū(p4, s4)γµu(p1, s1), I want

ū(p4, s4)γµu(p1, s1)×(ū(p4, s4)γνu(p1, s1))∗ = ū(p4, s4)γµu(p1, s1)ū(p1, s1)γνu(p4, s4)

(not obvious, you need (γν )∗γ0 = γ0γν )

Spin sum then includes terms like∑
s

u(p1, s)ū(p1, s) = γµpµ
1 + mc and

∑
s

v (p1, s)v̄ (p1, s) = γµpµ
1 −mc

(Prove in rest frame, use covariance...)
This is reason for weird normalization of u, v ....



13: Turning things into traces

Consider ū1γ
µu2ū2γ

νu1

This is (row)(matrix)(column)(row)(matrix)(column)

ū1,iγ
µ
ij u2,j ū2,kγ

ν
klu1,l

With indices explicit, I can put symbols where I want:

u1,l ū1,iγ
µ
ij u2,j ū2,kγ

ν
kl

Now interpret ul ūi as a matrix with (l , i) indices, and uj ūk as a matrix with (j , k )
indices. l at front and back – trace of product of matrices

Tr(u1ū1)γµ(u2ū2)γν and
∑
s1s2

Tr(u1ū1)γµ(u2ū2)γν = Tr(γαpα+mc)γµ(γβpβ+mc)γν



14: Dirac’s notation

Dirac thought it takes too long to write γµpµ, so he introduced a shorthand:

γµpµ ≡ /p

Stop for a moment to appreciate the compactness of this expression. pµ is a
4-component vector. γµ are four different 4× 4 matrices. The tidy expression /p
means:

/p = γ0p0 − γ1p1 − γ2p2 − γ3p3 =


p0 0 pz px − ipy

0 p0 px + ipy −pz

−pz −px + ipy −p0 0
−px − ipy pz 0 −p0



Good notation plays a big role in making hard calculations feasible.



15: Calculating traces

start with gµνgµν = 4

and Tr 1 = 4

and γµγν + γνγµ = 2gµν1

Derive: Tr γµγν = 4gµν

Tr γµγνγαγβ = 4(gµνgαβ + gµβgνα − gµαgνβ)

Tr /A/B = 4A · B
Tr /A/B /C /D = 4(A · B C · D + A · D B · C − A · C B · D)

Tr (odd # gammas) = 0

γµγµ = 4

γµ /Aγµ = −2/A

γµ /A/Bγµ = 4A · B
γµ /A/B /Cγµ = −2/C/B /A



16: Real calculations

These tools let you do real calculations.
The amount of algebra involved is large.
But they are totally do-able, with some effort.
As long as we work to the lowest order.

Graph theoretically, “tree level.” Life gets tough when we do loops....



17: Summary

Feynman rules with spin are more complicated
I Incoming and outgoing lines have u, v̄ and ū, v or εµ, ε∗µ
I Vertices have γµ to connect spin, 4-vector indices
I Propagators have /p + m or −gµν numerators
I Identical external states lead to minus signs now

Calculations possible but clumsy in general. Nicer if you average/sum
incoming/outgoing spins, corresponding to usual expt. situation
Reduces to evaluating traces of products of gamma matrices. Trace rules....


