
Teilchenphysik:
Lecture 12: QED to QCD

Now we “know” QED. Complete theory for CM energies up to E ' 2mπ = 260MeV.
Go up in energy – encounter new bound states, made of quarks!

Two approaches:
I Historical: describe hadrons, see “pattern,” intuit quarks
I Synthetic: describe answer – quarks and gluons – see what it predicts and

how known hadrons come out.

I will follow “synthetic approach.”

First, describe what happens at 10 to 50 GeV energy, where “almost free”
quarks+gluons occur
Use this to define and describe the theory of strong interactions
Understand that and go down in energy to figure out how bound states form

Today: high-energy scattering and the constituents of QCD



2: Electron-Positron Annihilation

Consider an electron-positron collider.
Scattering Annihilation .

Scattering→ e−e+, but annihilation→ any possible charged particle, including
new, unknown ones. Let’s us explore and enumerate all charged particles!



3: Charged quark production

At energies E > 10 GeV, besides e−, µ−, τ−, there are 15 new spin- 1
2 charged

particle types (and their antiparticles) we can produce:
I Three new particles with charge +2/3 and mass of few MeV
I Three new particles with charge −1/3 and mass of few MeV
I Three new particles with charge −1/3 and mass ' 150 MeV
I Three new particles, charge +2/3 and mass ' 1.4 GeV
I Three new particles, charge −1/3 and mass ' 4.3 GeV

Each triplet of particles have exactly the same mass!

We call each grouping of 3 particles a flavor (udscb)
and we distinguish the three equal-mass particles with a new label, called color
because there are three (RGB) and for reasons we see soon.
So the 3 light, equal-mass, Q = 2/3 states are the red, green, and blue up quarks



4: Total annihilation cross-section

Total cross-section to produce a spin- 1
2 particle pair is

σannih =
4πQ2 α2

3s

Ratio of red up quark production to µ production is Q2 = (2/3)2 = 4/9
Sum over the three colors of up quarks, get 4/3.

Quarks fly on, interact, turn into who knows what.
But that doesn’t affect whether they got made.



5: Hadron-to-muon ratio R

By measuring ratio of hadrons to muons, we can count the sum of particle-type
times Q2:

R ≡ σhad

σµ−µ+

=
∑

q

Q2
qNc

Allows us to “count” the quarks and see Q2 × Nc .



6: Isospin vs Color symmetry

Isospin is the approximate symmetry that the three lightest, Q = 2/3 particles
interact almost like the three next-lightest, Q = −1/3 particles.

Color symmetry is the exact symmetry that the three “colors” of up quark are
identical.
Therefore there are symmetry transformations rotating between them.
Put the three up-quark colors into a 3-component column vector:

u =

 ur

ug

ub

 symmetry:

 ur

ug

ub

→
 Mrr Mrg Mrb

Mgr Mgg Mgb

Mbr Mbg Mbb

 ur

ug

ub


As long as matrix M doesn’t change length of u column, this is a symmetry.



7: The group U(3)

What are these matrices M, transforming u → Mu?

u†u =

[
u∗r u∗g u∗b

]  ur

ug

ub

 Length squared of vector u

→

[
u∗r u∗g u∗b

]  M∗rr M∗gr M∗br
M∗rg M∗gg M∗bg
M∗rb M∗gb M∗bb

 Mrr Mrg Mrb

Mgr Mgg Mgb

Mbr Mbg Mbb

 ur

ug

ub



=

[
u∗r u∗g u∗b

]
M†M

 ur

ug

ub

 Dagger is transpose and conjugate

Unchanged if M†M = 1, that is, M† = M−1. Called 3× 3 unitary matrices U(3)



8: Generators of the Group: rotations

What is the most general such matrix?
This is a Lie group. I can “build” any element as a product of many many
nearly-identity elements, just like with rotations, eg,

R(θz ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 = lim
N→∞

 1 −θ/N 0
θ/N 1 0

0 0 1

N

With rotations, that matrix in the middle is

R =

 1 0 0
0 1 0
0 0 1

 +
θ

N

 0 −1 0
1 0 0
0 0 0

N

= exp

θ
 0 −1 0

1 0 0
0 0 0





9: Rotations part II

That was a rotation about the z axis. The most general possible rotation is:

R = exp

 0 −θz θy

θz 0 −θx

−θy θx 0


= exp

θz

 0 −1 0
1 0 0
0 0 0

 + θy

 0 0 1
0 0 0
−1 0 0

 + θx

 0 0 0
0 0 −1
0 1 0


Why? Real unitary (orthogonal) matrix is exponential of a real antiHermitian
(therefore antisymmetric) matrix.
Linear combination of three independent matrices with three coefficients.

If you like Hermitian matrices, you can put −i in front of θ and i into each matrix.
Now matrices are Hermitian



10: Generators of U(3)

Now let’s do the same thing with U(3). Suppose M is almost the identity:

M = 1 + iH

with H very small. Then M† = 1− iH† and

M†M = (1− iH†)(1 + iH) = 1 + i(H − H†) +O(H2)

To linear order (enough for when we exponentiate) we need

H − H† = 0 or H = H† or H is Hermitian.

Hermitian: real components symmetric, imaginary components antisymmetric:

H =

 r11 r12 + ig12 r13 + ig13

r12 − ig12 r22 r23 + ig23

r13 − ig13 r23 − ig23 r33


Nine independent coefficients: six rij and three gij



11: A standard basis: Gell-Mann matrices

Standard basis: Gell-Mann matrices

H =
9∑

a=1

ciλi ,

λ1 =

 0 1 0
1 0 0
0 0 0

 λ2 =

 0 −i 0
i 0 0
0 0 0

 λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 λ5 =

 0 0 −i
0 0 0
i 0 0

 λ6 =

 0 0 0
0 0 1
0 1 0


λ7 =

 0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

 −1 0 0
0 −1 0
0 0 2

 λ9 =

√
2
3

 1 0 0
0 1 0
0 0 1


Funny normalization? Chosen so Tr λ2

a = 2 for each a. All Hermitian, all but λ9

traceless.



12: But U(3) = SU(3)× U(1)

The matrix λ9, proportional to identity, commutes with all others. Its exponential is a
pure phase exp(iθλ9) = eiθ

√
2/31.

Any matrix M can be written as a pure phase times a unitary, determinant-1 matrix:

U(3) = SU(3)× U(1)

The symmetry is really two symmetries: overall phases, and true rotations of the
3-color basis.

The way the theory behaves under U(1) and SU(3) can be different.
It turns out the U(1) factor is an approximate global symmetry broken by the weak
interactions, while the SU(3) is a true, gauged, symmetry.

And what is SU(3) “like”? A lot like SU(2), but bigger.



13: Gauge interactions

What role can this exact SU(3) play? It can be “gauged” and allow coupling of
photon-like fields. Let’s remember how that works.

Think about the Schrödinger equation

i∂tψ = − 1
2m
∇2ψ + Vψ

We know the probability density is ψ∗ψ. In fact, ψ → eiθψ changes nothing.
And ψ → eiθ(x ,t)ψ doesn’t change probability distribution.

But it does change the physics, because

∂teiθ(x ,t)ψ 6= eiθ(x ,t)∂tψ

Derivative can act on the phase. Buuuuuttttt....



14: Gauge theory: Phase freedom

What if I “fix up” the derivatives:

∂µ → ∂µ + ieAµ

with Aµ some new fields. When I change the phase, I change the A at the same
time:

ψ → eieθ(x ,t)ψ and Aµ → Aµ − ∂µθ(x , t)

∂µψ → ∂µeieθ(x ,t)ψ = eieθ(x ,t)(∂µψ + ie(∂µθ)ψ)

but (∂µ + ieAµ)ψ → eieθ(x ,t)(∂µψ + ieAµψ + ie(∂µθ)ψ − ie(∂µθ)ψ)

= eieθ(x ,t)(∂µ + ieAµ)ψ

With addition of Aµ, covariant derivative is now unchanged when I perform global
phase change.
Gauge field “patches up” derivative to be unchanged when I make
space-dependent phase transformation (gauge transformation)



15: QED again

So what is the theory of QED? Theory where I can simultaneously change overall
phase on every field:

ψa → eiθ(x ,t)eQaψa , Q = charge of ψa field

Fix it up by ∂µψa → (∂µ + ieQaAµ)ψa

Gauge field changes by Aµ → Aµ − ∂µθ

Any other exact continuous transformation symmetry could have the same
modification. QCD is theory where this occurs with SU(3).



16: Color Gauge Fields: Gluons

Consider (gauge) transformation, rotating between colors at every xµ:

u(xµ)→ exp

(
−igs

8∑
a=1

θa(xµ)
λa

2

)
u(xµ)

(and simultaneously the same transformation to d , s, c, b)

Every normal derivative is replaced with covariant derivative:

γµ∂µu → γµ

(
∂µ − igs

∑
a

Ga
µ

λa

2

)
u

and same for d , s, c, b. And the Gµ (gluon fields) transform as

Ga
µ → Ga

µ + ∂µθa + ...



17: How gauge fields transform

But wait!
Consider G1

µ. It couples green to red. This is “green-anti-red” gluon field.

Perform a spacetime-independent rotation which trades green for blue.
Surely I will now have a G4

µ field, “blue-anti-red”? Yes, even though θ was
spacetime independent. Accounting for this requires an extra term:

Ga
µ → Ga

µ + ∂µθa + fabcGb
µθc

where fabc are coefficients describing failure to commute:[
λa , λb

]
= 2ifabcλc

Nontrivial gauge behavior will also cause gluons to interact with each other.



18: Quantum Chromodynamics

This leads to the theory Quantum Chromodynamics. Like QED but
I Particles (quarks) have color index
I Vertices have Gell-Mann matrices λa.
I Eight “photon” fields Ga

µ the gluons
I Gluons interact with each other



19: Feynman Rules!



20: Summary

I Quarks are new charged particles which come in identical triplets
I We distinguish elements of triplet with a “color” index
I There are 5 “flavors” (also at high energies, the top quark).
I In e+e− annihilation, we can count the charges and colors
I Colors transform under SU(3) color transformations
I SU(3) is to Gell-Mann as SU(2) is to Pauli matrices
I Gluons change color under gauge transform, and interact with each other
I More complicated Feynman rules.


