
Teilchenphysik:
Lecture 14: Bound States

This lecture will be two somewhat disjoint parts.

First: why do we expect bound states in QCD,
and how should we think about them?

Second: how do bound states work in an example we understand, QED?

A more detailed discussion of QCD bound states will have to wait for January.



2: The idea of potential energy

Consider an electron e− and a proton p+. Two approaches.
Approach 1: perturb in the EM interaction. Diagrams:

At low velocities I have to resum the ladders. I get Schrödinger Eq.
(No, it’s not easy to show, and we will not try.)



3: Potential energy II

The other approach is that I don’t perturb in A0.
I treat p as at rest (CM coord, reduced mass), solve for A0, solve e− fully in A0 BG
But I perturb in Ai the vector potential, suppressed by v/c.

Unperturbed solution for A0: A0 = −α/r . Electron solves Dirac equation with A0:

(iγµDµ −m)ψ = 0

iγµ(∂µ + ieAµ)ψ = mψ

iγµ∂µψ = mψ + A0γ
0ψ =

(
m − α

r
γ0
)
ψ

This is relativistic generalization of Schrödinger:
the Dirac equation for an electron in a hydrogen atom.



4: Back to QCD

Consider a quark and an antiquark. To make the argument simpler, assume for
now that at least one is heavy.
Similar situation as QED: treat G0 explicitly, it is a potential.
We already saw that for singlet color combination, it’s attractive:

V (r ) = −4αs

3r
, αs =

g2
s

4π
≥ 1

8

But what value of αs should be used? It’s energy dependent!

Very good question. Answer, roughly:
I For r < ~c

500 MeV ∼ 0.4 fm, use αs at energy scale E = ~c/r .
I For longer distances – not obvious what you should do.
I Indications (models, lattice QCD, etc): V (r ) rises nearly linearly at larger

distances! (QCD string ...)



5: Cartoon picture of effective potential

Roughly speaking, potential is −4α/3r at short distance, σr at large:

Confinement: q and q̄ can never escape.



6: String breaking

Existence of light quarks changes that.
It doesn’t cost much energy to generate a new qq̄ pair:

Pull q and q̄ apart: new ones appear in between, and you get two (or more)
isolated hadrons.



7: QCD: What we expect

I Potential is V ∼ −1/r at short range, V ∼ r at long range
I For heavy quarks forming tight bound states, should be a lot like hydrogen
I For light quarks exploring nearly linear part, should be a little like hydrogen

(spherical harmonics and radial functions) but very different energy levels

Exact calculations are hard.
Qualitative picture less hard. Sort of like hydrogen.

So let’s start by reviewing what happens with hydrogen!



8: Hydrogen: Dirac equation

Dirac eq. for hydrogen: iγ0∂0ψ =
(
−iγ i∇i +

mc
~
− αγ0

r

)
ψ

There are two approaches.
I Dirac’s way: directly solve it. Doable, but somewhat harder than
I Nonrelativistic approximation: assume mc � α~/r .

Perturb in mc � ~α/r and upper ψ components� lower components.

Of course Dirac’s way is “right.”

But we want to see how Schrödinger equation emerges from this,
so we will pursue the nonrelativistic approximation way.

Also since proton is static, i∂0 → E/~.
And I will stop writing ~ and c now.



9: Very lowest order

γ0Eψ = mψ


E 0 0 0
0 E 0 0
0 0 −E 0
0 0 0 −E



ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 = m


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)


Two solutions with E = m: first and second entry.
Two solutions with E = −m: I don’t want those.

I should work in terms of blocks: the upper two components,
and the lower two components

At lowest order, only the upper elements of ψ are nonzero



10: Next order: lower entries

The gradient term requires that the bottom enties not be zero: including the −iγ i∇i

term, we find, in 2× 2 blocks:[
E −m − V 0

0 −E −m − V

] [
ψup(x)
ψdown(x)

]
=
[

0 −iσi∇i

iσi∇i 0

] [
ψup(x)
ψdown(x)

]
The lower component is the equation

(−E −m − V )ψdown(x) = iσi∇iψup(x)

We can approximate −E −m − V = −2m here. The upper equation is

(E −m − V )ψup(x) = −iσi∇iψdown(x)

Inserting the approximated first equation:

Eψup(x) ' (m + V )ψup(x)− 1
2m

σiσj∇i∇jψup(x)



11: Schrödinger equation emerges

Eψup(x) ' (m + V )ψup(x)− 1
2m

σiσj∇i∇jψup(x)

The derivatives commute, so

σiσj∇i∇j =
σiσj + σjσi

2
∇i∇j = δij∇i∇j = ∇2

and we get the Schrödinger equation!

Eψ(x) =
(

m + V (r )− 1
2m
∇2
)
ψ

However
I ψ is now two-component
I Had there been ~A and magnetic fields, things would be different



12: Magnetic field?

When there’s a magnetic field: ∇i → Di = ∇i + igeAi , Ai the vector potential.
Now derivatives don’t commute: 2AB = (AB + BA) + (AB − BA), so

σiσjDiDj =
1
4

({
σi , σj

}
+
[
σi , σj

])({
Di , Dj

}
+
[
Di , Dj

])
=

1
4

(
(2δij + 2iεijkσk )

) (
(DiDJ + DjDi )− ige(∂iAj − ∂jAi ))

)
= D2 + geεijk

σk

2
Fjk

= D2 + geσk Bk = D2 + 2geSk Bk

This is twice the spin-dot-magnetic effect you might have expected.

I There is an interaction between spin and magnetic fields!
I It is twice as strong “as expected” with g-factor 2.



13: Back to Schrödinger

Write ∇2 in terms of L2 and a radial part:

∇2ψ =
(

1
r2 ∂r r2∂r +

1
r2 L2

)
ψ

Look for eigenstates of L2 with definite `: L2 → `(` + 1) with ` = 0, 1, 2, 3, ... (spdf)
Solve each radial equation, finding

E = mc2 − α2

2n
mc2 , n = (` + 1), (` + 2), (` + 3), ...

The fact that our particle has spin has not yet entered in discussion, nor are there
relativistic effects at this point.

There is an accidental degeneracy between 2s = 2p, 3s = 3p = 3d , etc.



14: Relativistic corrections

We took two exact equations:

(E −m − V )ψup(x) = −iσi∇iψdown(x), (−E −m − V )ψdown(x) = iσj∇jψup(x)

and then approximated E + V = m in the latter. If we don’t, we get

(E −m − V )ψup(x) = −iσi∇i 1
−E −m − V

iσj∇jψup(x)

Here E 6= m and the ∇i can act on V .
This gives rise to relativistic corrections including spin-orbit coupling.

The corrections are down by another power of α2:

∆Enj = −α4mc2 1
4n4

(
2n

j + 1
2

− 3
2

)
.

Still some degeneracy: 2s has j = 1/2, 2p has j = 1/2, 3/2...



15: Higher corrections

We could work harder and find α6 corrections.
BUT we would be missing something – quantum fluctuations in ~A.
These take real work to compute and enter at α5mc2.

Also the proton has spin, and with it a dipolar magnetic field.
So there is also spin-spin coupling. It’s proportional to

∆Ess ∼ α4mc2 me

mp

suppressed by the “large” proton mass. The 1s Hydrogen state has a spin- 1
2 e−

and spin- 1
2 p+ and can therefore be either spin-0 or spin-1.

Spin-0 is lower energy. The splitting is 21cm....



16: What about e+e−??

When e+ and e− meet, they don’t instantly annihilate.
First they stick together into an “atom” Positronium.

At the crudest level: Schrödinger with reduced mass µ = me/2.

E = 2mc2 − α2

4n2 mc2 , ` = 0, 1, 2, ... n = (` + 1), (` + 2), ...

Relativistic corrections are different because e+

I has a way bigger magnetic moment
I moves as much as the e− does

Spin-spin effects are now part of the fine structure, ∼ α4.



17: Positronium

We need to talk about positronium because it’s a good analogue for what can
happen with two quarks.
To find the energy levels, do following:
I First find ` = 0, 1, 2, ...
I Allowed n values are n = (` + 1), (` + 2), ...
I Next combine the spins. The total spin can be Stot = 0 or Stot = 1
I Next combine S and L to get J values.

E = 2mc2 − α2mc2

4n2
+
α4mc2

2n3

[
11

32n
− 2 + ε

2(2` + 1)

]
, ε =


0 s = 0

−(3`+4)
(`+1)(2`+3) s = 1, j = ` + 1

1
`(`+1) s = 1, j = `
3`−1

`(2`−1) s = 1, j = `− 1

Plus one more effect!



18: Virtual pair annihilation

If ` = 0 the e+, e− meet.
If j = 1, they have the same quantum numbers as a photon. So

This virtual process is allowed. Shifts energy up by

∆Eann = α4mc2 1
4n3 δ`0δj1



19: Positronium decays!

The e− and e+ need to “collide” which requires ` = 0
The C of initial and final states must be same:

Cpositronium = (−1)`+s = (−1)s , Cnγphotons = (−1)nγ

For s = 0 we need nγ even (2). For s = 1 we need nγ odd (3).
Decay goes as α3 to get the e−, e+ to find each other, times α2 or α3 from
annihilation diagram:
I Width of s = 0 (para-positronium) is Γ = α5mec2/2
I Width of s = 1 (ortho-positronium) is Γ ∼ α6mec2

Later it will be important that the s = 1 state is much longer lived.



20: Summary

I Bound states arise because of an attractive potential energy
I For QCD we expect singlet qq̄ to be attractive with ∼ −1/r short-distance and
∼ r large-distance behavior

I This leads to confinement: new qq̄ pairs appear when q, q̄ move away from
each other, forming 2+ colorless objects.

I For a feel for what happens, we revisit hydrogen and positronium
I We see how Schrödinger emerges from Dirac, and how high-order

corrections also arise
I For hydrogen (heavy-light), spin-orbit is important but spin-spin is a small

effect.
I Fine structure in positronium depends on spin-spin, not just j , `
I The tightest-bound state is s = 0, j = 0
I The j = 0 decays to 2γ, j = 1 to 3γ much more slowly.


