
Teilchenphysik:
Lecture 16: Lie groups and Lie algebras

This lecture will consist entirely of a long “aside” or review about Lie stuff.
I What is a Lie group, concretely?
I How to think about them
I Compact vs noncompact
I Lie algebra, exponentiation to get the group
I Higher representations and their meaning



2: Lie groups as matrices

Every Lie group can be viewed as a family of matrices.
Group operation is matrix multiplication. Choose a set of matrices which is closed
under multiplication and contains an identity and inverses.
“All N × N matrices doesn’t work – not all invertible. Need some added rule.
I GL(N, C): N × N complex invertible matrices
I SO(N): N × N real determinant-1 matrices M

obeying M> = M−1 or equivalently M>ij δjk Mkl = δil

I SU(N): N × N complex determinant-1 matrices M obeying M† = M−1

I SO(N, M): if gij is diagonal with N (+1) entries and M (−1) entries,
(N + M)× (N + M) matrices with M>ij gjk Mkl = gil

I SP(N), G2, F4, E6, E7, E8: something-or-other



3: Continuous: neighborhood of the identity

Mathematicians can define a metric on space of matrices.
Group has identity element. Pick neighborhood with everything less than ε away
from identity.

This is a “tiny ball” of group elements. Homeomorphic to a d-dimensional ball,
where d is the dimension of the group

The whole group will be a d-dimensional manifold.



4: An example: SU(2)

SU(2) are 2× 2 complex matrices U with U† = U−1.

U = c01 + ic1τ1 + ic2τ2 + ic3τ3 , τi Pauli matrices, c2
0 + c2

1 + c2
2 + c2

3 = 1

U†U = (c01− iciτi )(c01 + icjτj )

= c2
01 +

∑
ij

cicjτiτj

= c2
01 +

1
2

∑
ij

cicj (τiτj + τjτi )

= (c2
0 + c2

1 + c2
2 + c2

3 )1 = 1

Write it out long-hand:

Most general SU(2) is: U =
[

c0 + ic3 c2 + ic1

−c2 + ic1 c0 − ic3

]
, c2

0 + c2
i = 1



5: SU(2) interpretation

Think of 4-dimensional space of (c0, c1, c2, c3) values. SU(2) is 3-sphere



6: SU(2): neighborhood of north pole



7: SU(2): how to get to a general point

Consider some point
Find arc length from N-pole
Find direction
Name arc-length |θ|
Name direction θ̂
~θ = θi is 3-vector
(c1, c2, c3) = θ̂ sin |θ|
c0 = cos |θ|
To get to (c0, c1, c2, c3),
pick |θ| = Arccos(c0)
and pick θ̂ = (c1, c2, c3)/

√
c2

i



8: Group SU(2) is compact!

Pick a direction
Vary length |θ|
Get farther away
until |θ| = π
Reach south pole
|θ| > π: pass pole
|θ| = 2π: back to N-pole!



9: Exponentiation

How exactly do I turn ~θ into SU(2) element?
Consider |θ| tiny: c0 ' 1 and

U = cos |θ|1 + i sin |θ|θ̂iτi ' 1 + iθiτi

The iτi are directions I can travel and θi are distances to go in those directions.
Finite distance: exponentiation

U = exp(iθiτi ) ≡ 1
∞∑
n=0

(
i
∑

i θiτi
)n

n!
= 1 + iθiτi −

1
2
θiθjτiτj −

i
6
θiθjθkτiτjτk + ...

Use repeatedly
∑

ij θiθjτiτj = |θ|2:

U = 1
(

1− |θ|
2

2!
+
|θ|4

4!
...
)

+ iθiτi

(
1− |θ|

2

3!
+
|θ|4

5!
...
)

= cos |θ|1 + sin |θ|θ̂i iτi



10: What’s general to all Lie groups?

A Lie group always has
I a d-dimensional neighborhood around the identity.

d is the dimension of the group.
I a basis of d orthonormal directions T a – the Lie algebra

(for SU(2), τi/2)
I Any element1 can be found by exponentiating (i times) Lie algebra elements

times finite lengths

Cataloguing groups requires cataloguing Lie algebras. Need to know:

1. the dimension d and Lie elements T a

2. the commutation relations [T a , T b] = ifabcT c

determines the whole group.

1up to discrete structure



11: even simpler example: U(1)

consider 1× 1 complex matrices – just complex numbers!
Group U(1) is unit-length complex numbers

Most general form: eiθ. θ ∈ R but θ and θ + 2πn equivalent.

Close to identity: 1 + iε. Lie algebra: 1 direction, generated by the number i .

Exponentiation: most general element is exp(iθ) with i the “direction” and θ the
“distance”



12: Not all groups are compact!

Consider SO(1, 3) Lorentz transforms. 4× 4 matrices...
Small “boost” in x-direction has:

Λµ
ν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 '


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 + β


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


Here β is distance, that matrix is Lie-algebra direction (there are a total of 6 possible
Lie-algebra direction matrices)
Exponentiation yields:

expβ


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 =


cosh(β) − sinh(β) 0 0
− sinh(β) cosh(β) 0 0

0 0 1 0
0 0 0 1


This gets ever further from the identity.
This group is noncompact. Internal symmetries must be compact.



13: The group SU(3)

The group SU(3) is 3× 3 complex matrices with U† = U−1

and with unit determinant.
Consider an element very close to the identity :

U = 1 + iε +O(ε2)

Here ε is a matrix of small numbers. We need

U†U = (1− iε†)(1 + iε) = 1 + i(ε− ε†) +O(ε2)

to be the identity: so ε− ε† = 0 or ε = ε†.

Put another way, ε must be Hermitian. Also

DetU ' 1 + i Tr ε = 1 ⇒ Tr ε = 0



14: The group SU(3) part 2

Now consider ε a finite Hermitian matrix. Consider

U = exp[iε] ≡
∞∑
n=0

(iε)n

n!
and its dagger U† =

∞∑
n=0

(−iε)n

n!
= exp[−iε]

The product is:

U†U =
∞∑
n=0

(iε)n ×
n∑

m=0

(−1)m

m!(n −m)!

=
∞∑
n=0

(iε)n

n!
×

n∑
m=0

(−1)m n!
m!(n −m)!

=
∞∑
n=0

(iε)n

n!
× (1− 1)n = 1

so the exponential of i times a finite Hermitian matrix is in SU(3).



15: Lie algebra generators

What’s the most general Hermitian matrix ε?
Useful to build a orthonormal basis of traceless Hermitian matrices
Most general value is a linear combination with arbitrary coefficients.

For SU(2) there were 22 − 1 = 3 independent matrices: Pauli matrices
For SU(3) there are 32 − 1 = 8 independent matrices: Gell-Mann matrices

So, is exp(icαλα) = cos |c|1 + sin |c|ĉαλα like for SU(2)?
Sadly, no. Because λαλβ + λβλα 6= 2δαβ1.

I can get the most general SU(3) element by exponentiation.
But there is no beautiful interpretation as a sphere in 9 dimensions, as there was
for SU(2).



16: Do orbits always close in SU(3)?

No they don’t. Consider

exp
(

iaλ3 + ib
√

3λ8
)

= exp

 i(b + a) 0 0
0 i(b − a) 0
0 0 −2ib

 =

 ei(a+b) 0 0
0 ei(b−a) 0
0 0 e−2ib


This only returns to the identity if m(b + a) = n(b − a) = 2`b for (`, m, n) three

integers. Generically (a + b), (b − a), 2b are irrationally related and the orbit never
closes.

Note that λ3 and λ8 commute.
The dimension of maximal commuting subset of Lie algebra is the rank.
The rank of SU(N) is N − 1. For SO(N) it’s floor(N/2).



17: Interpretation: torus

The subgroup you reach by exponentiating aλ3 + bλ8 is geometrically a torus.

Orbits don’t close, but they don’t get farther and farther away. Group is compact.



18: Representations

A Representation is an embedding of group G into matrices.
Requirement: if U1, U2 represented by M1, M2, then (U1U2) represented by (M1M2).
A field is acted upon by a group representation: ψ → Mψ...

Simplest example: the fundamental representation: matrices = group itself

U ∈ G, transformation under U is ψ → Uψ

Antifundamental representation:

U ∈ G, transformation under U is ψ → U∗ψ

if ψ is in fundamental, its antiparticle ψ is in antifundamental.



19: Antifundamental and SU(2)

For SU(2), fundamental and antifundamental are related!

q =
[

u
d

]
→ Uq then q =

[
u
d

]
→ U∗q

But introducing ε = iσ2 we find that

q̃ =
[
−d
u

]
= εq → εU∗q = Uεq = Uq̃

Swapping u, d and adding a minus sign gives the same transformation properties
as the quarks.



20: Antifundamental of SU(3)

The same is not true of SU(3). Antifundamental is really different.
I qq̄ can be colorless. Indeed, qq̄ can combine into 8-element adjoint or

1-element singlet (colorless)
I qq cannot be colorless. They combine into 6 (symmetric) or 3̄ (antisymmetric).
I Add one more quark: qqq can combine into 10, 8, 8, or 1

How do I figure this out?
We need to discuss products of representations

But I don’t think we have time to do so today.



21: Summary

I Lie groups can be thought of as continuous families of matrices.
I Our favorite, SU(2), has the topology of the 3-sphere
I Useful to consider the neighborhood near the identity.
I There are d directions (d=dimension of group) in which to leave the identity

element
I Directions define the Lie algebra of group
I Generic group elements reached by starting at identity and propagating a

finite distance in some initial direction
I matrix exponentiation performs exactly this.
I Not all Lie groups are compact, but those describing internal symmetries

must be.
I The group SU(3) is a lot like SU(2), but some special SU(2) properties don’t

work in SU(3)
I In particular, antifundamental representation of SU(2) is equivalent to

fundamental. For SU(3) it is not.


