Teilchenphysik: Lecture 16: Lie groups and Lie algebras

TECHNISCHE UNIVERSITÄT DARMSTADT

This lecture will consist entirely of a long "aside" or review about Lie stuff.

- What is a Lie group, concretely?
- How to think about them
- Compact vs noncompact
- Lie algebra, exponentiation to get the group
- Higher representations and their meaning

2: Lie groups as matrices

Every Lie group can be viewed as a *family of matrices*.

Group operation is matrix multiplication. Choose a set of matrices which is closed under multiplication and contains an identity and inverses.

"All $N \times N$ matrices doesn't work – not all invertible. Need some added rule.

- GL(N, C): $N \times N$ complex invertible matrices
- SO(N): N × N real determinant-1 matrices M obeying M^T = M⁻¹ or equivalently M^T_{ij}δ_{jk}M_{kl} = δ_{il}
- SU(N): $N \times N$ complex determinant-1 matrices M obeying $M^{\dagger} = M^{-1}$
- SO(N, M): if g_{ij} is diagonal with N (+1) entries and M (-1) entries, (N + M) × (N + M) matrices with $M_{ii}^{\top} g_{jk} M_{kl} = g_{il}$
- ▶ *SP*(*N*), *G*₂, *F*₄, *E*₆, *E*₇, *E*₈: something-or-other

3: Continuous: neighborhood of the identity

Mathematicians can define a metric on space of matrices.

Group has identity element. Pick neighborhood with everything less than ϵ away from identity.

This is a "tiny ball" of group elements. Homeomorphic to a d-dimensional ball, where d is the **dimension of the group**

The whole group will be a *d*-dimensional **manifold**.

4: An example: SU(2)

SU(2) are 2 × 2 complex matrices U with $U^{\dagger} = U^{-1}$.

$$U = c_0 \mathbf{1} + ic_1 \tau_1 + ic_2 \tau_2 + ic_3 \tau_3, \quad \tau_i \text{ Pauli matrices}, \quad c_0^2 + c_1^2 + c_2^2 + c_3^2 = \mathbf{1}$$

$$U^{\dagger} U = (c_0 \mathbf{1} - ic_i \tau_i)(c_0 \mathbf{1} + ic_j \tau_j)$$

$$= c_0^2 \mathbf{1} + \sum_{ij} c_i c_j \tau_i \tau_j$$

$$= c_0^2 \mathbf{1} + \frac{1}{2} \sum_{ij} c_i c_j (\tau_i \tau_j + \tau_j \tau_i)$$

$$= (c_0^2 + c_1^2 + c_2^2 + c_3^2) \mathbf{1} = \mathbf{1}$$

Write it out long-hand:

Most general *SU*(2) is:
$$U = \begin{bmatrix} c_0 + ic_3 & c_2 + ic_1 \\ -c_2 + ic_1 & c_0 - ic_3 \end{bmatrix}$$
, $c_0^2 + c_i^2 = 1$

5: SU(2) interpretation

Think of 4-dimensional space of (c_0, c_1, c_2, c_3) values. SU(2) is 3-sphere

6: *SU*(2): neighborhood of north pole

7: SU(2): how to get to a general point

Consider some point Find arc length from N-pole Find direction Name arc-length $|\theta|$ Name direction $\hat{\theta}$ $\vec{\theta} = \theta_i$ is 3-vector $(c_1, c_2, c_3) = \hat{\theta} \sin |\theta|$ $c_0 = \cos |\theta|$ To get to (c_0, c_1, c_2, c_3) , pick $|\theta| = \operatorname{Arccos}(c_0)$ and pick $\hat{\theta} = (c_1, c_2, c_3)/\sqrt{c_i^2}$

8: Group *SU*(2) is compact!

Pick a direction Vary length $|\theta|$ Get farther away until $|\theta| = \pi$ Reach south pole $|\theta| > \pi$: pass pole $|\theta| = 2\pi$: back to N-pole!

9: Exponentiation

How exactly do I turn $\vec{\theta}$ into *SU*(2) element? Consider $|\theta|$ tiny: $c_0 \simeq 1$ and

$$U = \cos | heta|$$
1 + $i \sin | heta| \hat{ heta}_i au_i \simeq$ 1 + $i heta_i au_i$

The $i\tau_i$ are directions I can travel and θ_i are distances to go in those directions. Finite distance: **exponentiation**

$$U = \exp(i\theta_i\tau_i) \equiv \mathbf{1} \sum_{n=0}^{\infty} \frac{\left(i\sum_i \theta_i\tau_i\right)^n}{n!} = \mathbf{1} + i\theta_i\tau_i - \frac{1}{2}\theta_i\theta_j\tau_i\tau_j - \frac{i}{6}\theta_i\theta_j\theta_k\tau_i\tau_j\tau_k + \dots$$

Use repeatedly $\sum_{ij} \theta_i \theta_j \tau_i \tau_j = |\theta|^2$:

$$U = \mathbf{1} \left(1 - \frac{|\theta|^2}{2!} + \frac{|\theta|^4}{4!} \dots \right) + i\theta_i \tau_i \left(1 - \frac{|\theta|^2}{3!} + \frac{|\theta|^4}{5!} \dots \right)$$
$$= \cos |\theta|\mathbf{1} + \sin |\theta|\hat{\theta}_i i\tau_i$$

10: What's general to all Lie groups?

A Lie group always has

- a *d*-dimensional neighborhood around the identity. *d* is the dimension of the group.
- a basis of *d* orthonormal directions *T^a* the Lie algebra (for *SU*(2), *τ_i*/2)
- Any element¹ can be found by exponentiating (*i* times) Lie algebra elements times finite lengths

Cataloguing groups requires cataloguing Lie algebras. Need to know:

- 1. the dimension d and Lie elements T^a
- **2**. the commutation relations $[T^a, T^b] = if_{abc}T^c$

determines the whole group.

¹up to discrete structure

11: even simpler example: U(1)

consider 1×1 complex matrices – just complex numbers! Group U(1) is unit-length complex numbers

Most general form: $e^{i\theta}$. $\theta \in \mathcal{R}$ but θ and $\theta + 2\pi n$ equivalent.

Close to identity: $1 + i\epsilon$. Lie algebra: 1 direction, generated by the number *i*.

Exponentiation: most general element is $\exp(i\theta)$ with *i* the "direction" and θ the "distance"

12: Not all groups are compact!

Consider SO(1, 3) Lorentz transforms. 4×4 matrices... Small "boost" in x-direction has:

Here β is distance, that matrix is Lie-algebra direction (there are a total of 6 possible Lie-algebra direction matrices) Exponentiation yields:

This gets ever further from the identity. This group is *noncompact*.

Internal symmetries must be compact.

13: The group SU(3)

The group *SU*(3) is 3 × 3 complex matrices with $U^{\dagger} = U^{-1}$ and with unit determinant.

Consider an element very close to the identity:

 $U = \mathbf{1} + i\epsilon + \mathcal{O}(\epsilon^2)$

Here ϵ is a *matrix* of small numbers. We need

$$U^{\dagger}U = (\mathbf{1} - i\epsilon^{\dagger})(\mathbf{1} + i\epsilon) = \mathbf{1} + i(\epsilon - \epsilon^{\dagger}) + \mathcal{O}(\epsilon^{2})$$

to be the identity: so $\epsilon - \epsilon^{\dagger} = 0$ or $\epsilon = \epsilon^{\dagger}$.

Put another way, ϵ must be Hermitian. Also

$$\mathsf{Det} U \simeq \mathsf{1} + i \operatorname{Tr} \epsilon = \mathsf{1} \qquad \Rightarrow \qquad \mathsf{Tr} \epsilon = \mathsf{0}$$

14: The group SU(3) part 2

Now consider ϵ a *finite* Hermitian matrix. Consider

$$U = \exp[i\epsilon] \equiv \sum_{n=0}^{\infty} \frac{(i\epsilon)^n}{n!}$$
 and its dagger $U^{\dagger} = \sum_{n=0}^{\infty} \frac{(-i\epsilon)^n}{n!} = \exp[-i\epsilon]$

The product is:

$$U^{\dagger}U = \sum_{n=0}^{\infty} (i\epsilon)^n \times \sum_{m=0}^n \frac{(-1)^m}{m!(n-m)!}$$

= $\sum_{n=0}^{\infty} \frac{(i\epsilon)^n}{n!} \times \sum_{m=0}^n (-1)^m \frac{n!}{m!(n-m)!} = \sum_{n=0}^{\infty} \frac{(i\epsilon)^n}{n!} \times (1-1)^n = \mathbf{1}$

so the exponential of *i* times a finite Hermitian matrix is in SU(3).

15: Lie algebra generators

What's the most general Hermitian matrix ϵ ? Useful to build a *orthonormal basis* of traceless Hermitian matrices Most general value is a linear combination with arbitrary coefficients.

For SU(2) there were $2^2 - 1 = 3$ independent matrices: Pauli matrices For SU(3) there are $3^2 - 1 = 8$ independent matrices: Gell-Mann matrices

So, is $\exp(ic^{\alpha}\lambda^{\alpha}) = \cos |c|\mathbf{1} + \sin |c|\hat{c}^{\alpha}\lambda^{\alpha}$ like for *SU*(2)? Sadly, no. Because $\lambda^{\alpha}\lambda^{\beta} + \lambda^{\beta}\lambda^{\alpha} \neq 2\delta^{\alpha\beta}\mathbf{1}$.

I can get the most general SU(3) element by exponentiation.

But there is no beautiful interpretation as a sphere in 9 dimensions, as there was for SU(2).

16: Do orbits always close in SU(3)?

No they don't. Consider

$$\exp\left(ia\lambda^{3} + ib\sqrt{3}\lambda^{8}\right) = \exp\left[\begin{array}{ccc}i(b+a) & 0 & 0\\ 0 & i(b-a) & 0\\ 0 & 0 & -2ib\end{array}\right] = \left[\begin{array}{ccc}e^{i(a+b)} & 0 & 0\\ 0 & e^{i(b-a)} & 0\\ 0 & 0 & e^{-2ib}\end{array}\right]$$

This only returns to the identity if $m(b + a) = n(b - a) = 2\ell b$ for (ℓ, m, n) three integers. Generically (a + b), (b - a), 2b are irrationally related and the orbit never closes.

Note that λ^3 and λ^8 commute.

The dimension of maximal commuting subset of Lie algebra is the **rank**. The rank of SU(N) is N - 1. For SO(N) it's floor(N/2).

17: Interpretation: torus

The subgroup you reach by exponentiating $a\lambda^3 + b\lambda^8$ is geometrically a torus.

Orbits don't close, but they don't get farther and farther away. Group is compact.

18: Representations

A Representation is an embedding of group G into matrices.

Requirement: if U_1 , U_2 represented by M_1 , M_2 , then (U_1U_2) represented by (M_1M_2) . A field is *acted upon* by a group representation: $\psi \to M\psi$...

Simplest example: the fundamental representation: matrices = group itself

$$U \in G$$
, transformation under U is $\psi \rightarrow U\psi$

Antifundamental representation:

 $U \in G$, transformation under U is $\psi
ightarrow U^* \psi$

if ψ is in fundamental, its antiparticle $\overline{\psi}$ is in antifundamental.

19: Antifundamental and SU(2)

For SU(2), fundamental and antifundamental are related!

$$q = \left[egin{array}{c} u \\ d \end{array}
ight]
ightarrow U q ext{ then } \overline{q} = \left[egin{array}{c} \overline{u} \\ \overline{d} \end{array}
ight]
ightarrow U^* \overline{q}$$

But introducing $\epsilon = i\sigma_2$ we find that

$$\tilde{q} = \begin{bmatrix} -\overline{d} \\ \overline{u} \end{bmatrix} = \epsilon \overline{q} \to \epsilon U^* \overline{q} = U \epsilon \overline{q} = U \tilde{q}$$

Swapping \overline{u} , \overline{d} and adding a minus sign gives the same transformation properties as the quarks.

20: Antifundamental of SU(3)

The same is *not* true of SU(3). Antifundamental is really different.

- qq̄ can be colorless. Indeed, qq̄ can combine into 8-element adjoint or 1-element singlet (colorless)
- qq cannot be colorless. They combine into 6 (symmetric) or $\overline{3}$ (antisymmetric).
- Add one more quark: qqq can combine into 10, 8, 8, or 1

How do I figure this out?

We need to discuss products of representations

But I don't think we have time to do so today.

21: Summary

- Lie groups can be thought of as continuous families of matrices.
- Our favorite, SU(2), has the topology of the 3-sphere
- Useful to consider the neighborhood near the identity.
- There are d directions (d=dimension of group) in which to leave the identity element
- Directions define the Lie algebra of group
- Generic group elements reached by starting at identity and propagating a finite distance in some initial direction
- matrix exponentiation performs exactly this.
- Not all Lie groups are compact, but those describing internal symmetries must be.
- The group SU(3) is a lot like SU(2), but some special SU(2) properties don't work in SU(3)
- In particular, antifundamental representation of SU(2) is equivalent to fundamental. For SU(3) it is not.