Teilchenphysik: Lecture 18: Charged weak interactions

TECHNISCHE UNIVERSITÄT DARMSTADT

What we have learned:

- Matter-particle content
- Dominant ways particles interact: EM and Strong interactions
- How to compute scattering, decay, bound states
- Bound states of strongly interacting particles (hadrons)

What's missing:

- Too many conserved quantities so far: each fermionic species number is conserved (u, d, s, c, b, t and e, μ, τ)
- No discussion of neutrinos and how they couple
- So far, *P*, *C* and *T* are exact symmetries.
- What happens at very high energies, of order 100 GeV?

We are missing the physics of the *weak interactions* Today we will *start* to discuss the weak interactions, with the *weak charged-current* interactions

2: Conservation of up-quark number

Suppose *u* quark enters a Feynman diagram. Only vertices: $\overline{u}\gamma_{\mu}A^{\mu}u$ and $\overline{u}\gamma_{\mu}G^{\mu}u$ Any vertex a *u* enters, it also exits and vice versa *u* enters diagram – must exit.

Number entering: initial u + final \overline{u} Number exiting: initial \overline{u} + final u. So $u_i + \overline{u}_f = \overline{u}_i + u_f$, or $u_i - \overline{u}_i = u_f - \overline{u}_f$ initial number = final number Same is true for d, s, c, b, t and for e^-, μ^-, τ^-

3: What "should be" stable

According to our arguments so far, the following are stable:

- The e^- , μ^- , τ^- (lightest particles with each number)
- Lightest particle with *u*-number: π^+
- Lightest particle with net quark-number: proton $p^+ = (uud)$
- Lightest s, c, b-species: K^- , D^0 , B^-
- Anything lighter than its possible decay daughters: n, K⁰, Λ⁰, Ξ, Ω, D⁺, B⁰, Λ_c, Λ_b (n → p⁺π⁻, Λ⁰ → p⁺K⁻, etc)

Which particles are *actually* stable? e^- , p^+ (and neutrinos, γ)

We are missing an interaction

4: The interaction we are missing is weak

Particles with allowed strong-interaction *I*-respecting decays: ρ , Δ , ϕ with widths of order $\Gamma \sim 100$ MeV, lifetime $\sim 10^{-23}$ s

Particles with *I*-forbidden, high-order, or EM decays: J/ψ , η_c , π^0 , η , etc. Widths order KeV to MeV, lifetimes 10⁻¹⁶ to 10⁻²¹ s

 π^+ , K, D, B, A, \equiv , Ω , Λ_c , Λ_b , μ^- , τ^- Lifetimes $\sim 10^{-10}$ to 10^{-6} s

Particles with so-far-forbidden decays and *MeV* scale decay energy: *n*, nuclei. Lifetimes $\sim 10^3$ s to 10^{17} s

Decays occur via very weak and highly energy-dependent interaction.

5: The W boson

What we are missing is another spin-1 particle W^{\pm} with

- ▶ a big mass M_W ≃ 80.4 GeV (not MeV, GeV)
- a coupling $g_w \simeq 0.65, \, \alpha_w = rac{g_w^2}{4\pi} \simeq rac{1}{30}$
- Coupling between a fermion and a partner with charge-difference of ±1
 - $\begin{array}{ll} \text{in-line} & \quad \epsilon^{\mu}_{\lambda}, \; \lambda = \mathsf{1}, \mathsf{2}, \mathsf{3} \\ \text{out-line} & \quad \epsilon^{*\mu}_{\lambda}, \; \lambda = \mathsf{1}, \mathsf{2}, \mathsf{3} \end{array}$

Propagator $\frac{-i(g_{\mu\nu}-q_{\mu}q_{\nu}/(M^2c^2))}{q^2-M^2c^2}$ Vertex $\frac{-ig_w}{2\sqrt{2}}\gamma^{\mu}(1-\gamma^5)$

Vertex between (e, ν_e) ; (μ, ν_μ) ; (τ, ν_τ) ; (u, d'); (c, s'); (t, b')

6: Vertex between charged objects

There is a W^+ and W^- . Which is which depends on which way you "follow the propagator"

On one end, charge goes down; on the other it goes up.

If μ^- , $\overline{\nu}_{\mu}$ on one end, e^+ , ν_e on other...

7: Neutrinos finally interact!

Consider an electron neutrino (5% of Sun's luminosity is in ν_e) How can it interact with atomic nucleus?

Neutrino ν_e must turn into e^-W^+ . The W^+ can merge with an *n* to give a p^+

8: A case we can calculate

Replace ν_e with ν_{μ} (from atmosphere or beam), *n*, *p* with e^- , ν_e

$$\mathcal{M} = \frac{g_w^2}{8} \frac{g_{\mu\nu} - q_{\mu}q_{\nu}/M_W^2}{q^2 - M_W^2} \bar{u}_{\mu}\gamma^{\mu}(1 - \gamma^5) u_{\nu\mu}\bar{u}_{\nu e}\gamma^{\nu}(1 - \gamma^5) u_{e}$$

If e^- at rest, then unless u_μ super-high energy, $|q^2| \ll M_W^2$ and replace propagator with

$$\begin{aligned} \frac{g_{\mu\nu} - q_{\mu}q_{\nu}/M_{W}^{2}}{q^{2} - M_{W}^{2}} &\to -\frac{g_{\mu\nu}}{M_{W}^{2}} \\ |\overline{\mathcal{M}}|^{2} &= \frac{1}{2} \left(\frac{g_{W}^{2}}{8M_{W}^{2}}\right)^{2} \operatorname{Tr} \gamma^{\mu} (1 - \gamma^{5}) \not\!\!\!\!/ p_{1} \gamma^{\nu} (1 - \gamma^{5}) (\not\!\!\!/ p_{3} + m_{\mu}) \\ &\times \operatorname{Tr} \gamma_{\mu} (1 - \gamma^{5}) \not\!\!\!/ p_{2} \gamma_{\nu} (1 - \gamma^{5}) \not\!\!\!/ p_{4} \end{aligned}$$

Neglecting m_e , using $m_{\nu} = 0$. Wait – why spin-average of 1/2?

9: 1 $-\gamma^5$ is a Left-projector

Let's look harder at 1 – γ^5 :

$$1 - \gamma^5 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

Apply to particle moving on z axis, R or L handed:

$$(1 - \gamma^5)u_R = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{E+m} \\ 0 \\ \frac{p}{\sqrt{E+m}} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{E+m-p}{\sqrt{E+m}} \\ 0 \\ \frac{p-E-m}{\sqrt{E+m}} \\ 0 \end{bmatrix}$$
$$(1 - \gamma^5)u_L = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ \sqrt{E+m} \\ 0 \\ \frac{-p}{\sqrt{E+m}} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{E+m+p}{\sqrt{E+m}} \\ 0 \\ \frac{-p-E-m}{\sqrt{E+m}} \end{bmatrix}$$

Square-length of $(1 - \gamma^5)u_R$ is 2(E - p) and for u_L it's 2(E + p). $(1 - \gamma^5)$ "kills off" R-handed part for $E \gg m$. Recall $-m_{\nu} = 0$, exact for neutrinos.

10: But what about parity?

Parity: mirror reflection should keep physics the same.

Turns $R \leftrightarrow L$. So production of L and of R should be equally likely, if P is a good symmetry.

Well, it's NOT! The W-boson interactions break P as badly as they could!

- Parity flips sign on γ^5 .
- $\blacktriangleright~$ If interaction were γ^{μ} I would not flip sign
- If interaction were γ^μγ⁵ I would flip sign once at each vertex. Two vertices no net sign flip.
- Because it's γ^μ(1 γ⁵), parity fundamentally changes interaction and is **not** a symmetry. Specifically, it's cross-terms with one γ⁵ factor which matter.
- Also destroy *C* symmetry, but preserve combination *CP*.

11: Calculations with $\gamma^{\rm 5}$

In performing traces, what does γ^5 do?

$$\operatorname{Tr} \gamma^{5} = \operatorname{Tr} \gamma^{\mu} \gamma^{\nu} \gamma^{5} = 0 \qquad \operatorname{Tr} \gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\beta} \gamma^{5} = 4i \epsilon^{\mu\nu\alpha\beta}$$

Therefore

We also need

$$\begin{split} \epsilon_{\mu\nu\alpha\beta} \left(p_1^{\alpha} p_3^{\beta} + p_3^{\alpha} p_1^{\beta} - g^{\alpha\beta} p_1 \cdot p_3 \right) &= 0 \\ \epsilon_{\mu\nu\alpha\beta} \epsilon^{\mu\nu\kappa\sigma} &= -2 \left(g_{\alpha}^{\kappa} g_{\beta}^{\sigma} - g_{\alpha}^{\sigma} g_{\beta}^{\kappa} \right) \,. \end{split}$$

Use these to do all the algebra....

12: Scattering: results

Using these methods one finds:

$$|\overline{M}|^{2} = 2\left(\frac{g_{w}^{2}}{M_{W}^{2}}\right)^{2} (p_{1} \cdot p_{2})(p_{3} \cdot p_{4}), \quad \sigma = \frac{1}{8\pi} \left(\frac{g_{w}^{2}}{M_{W}^{2}}\right)^{2} E_{\nu}^{2} \left(1 - \frac{m_{\mu}}{2E}\right)^{2}$$

Key observations:

- ▶ Result depends on g_w^2/M_W^2 , but not on g_w^2 , M_W^2 separately. Low-energy phenomena are only sensitive to this ratio.
- Cross-sections usually scale as E⁻². This scales as E⁺²
- That means, weak phenomena rapidly get less important at low-E.
- Scale where weak, EM phenomena have equal σ is of order M_W .

13: Muon decay

Move around which lines are incoming and outgoing to get muon decay process! Also get matrix element:

$$|\overline{\mathcal{M}}|^2 = 2\left(\frac{g_w^2}{M_W^2}\right)^2 p_1 \cdot p_2 p_3 \cdot p_4$$

Note: dot is between e^- , ν_{μ} , and between μ , $\bar{\nu}_e$ momenta.

width
$$\Gamma = \frac{1}{2m_{\mu}} \int \frac{d^3p_2 d^3p_3 d^3p_4}{(2\pi)^9 2p_1 2p_2 2p_3} |\overline{\mathcal{M}}|^2 (2\pi)^4 \delta^4 (p_1 - p_2 - p_3 - p_4)$$

14: Three-body final phase space

The book discusses this final phase space in some detail.

- It's ugly, too ugly to show in a lecture, but
- It's not that ugly, you can understand it with patience
- Each individual momentum can range from p = 0 up to $p = m_{\mu}/2$
- Total cross-section and distribution of electron-momentum can be computed with reasonable effort

$$\Gamma = m_{\mu}^4 \left(\frac{g_W^2}{M_W^2}\right)^2 \frac{m_{\mu}}{12(8\pi)^3}$$

Usually expect $\Gamma \propto m$, but now extra m^4/M_W^4 factor. Due to incredibly unfortunate historial accident, the combination $G_F \equiv g_w^2/(4\sqrt{2} M_W^2)$ is often used, in which case $\Gamma = G_F^2 m_u^5/192\pi^3$.

Corresponding lifetime is $\tau = 2.197 \times 10^{-6}$ seconds.

15: Muon lifetime: Prediction?

The muon lifetime *is not* a prediction of *W*-interaction model. It only serves as a *measurement* of G_F . Energy distribution, helicity of e^- *is* a prediction, and ...

Consider any other weak process, now that G_F is measured. Now the decay width *is* a prediction.

$$\Gamma_{ au^-} = \Gamma_{\mu^-} imes rac{m_ au^5}{m_\mu^5} imes$$
 number of available final species

For μ^- , decay must be to $\nu_\mu e^- \bar{\nu}_e$.

But τ^- has energy to make $e^- \bar{\nu}_e$, $\mu^- \bar{\nu}_\mu$, $d\bar{u}$ (3 colors). 5 available species. Also predicts: 3/5 of τ decays should be to hadrons. Works out well, up to calculable $\mathcal{O}(\alpha_s/2\pi)$ corrections.

16: Free neutron decay?

Let's pretend that Wcouples to (p, n) the same as to (ν, e^{-}) or (u, d). Then I can compute the decay $n \rightarrow p^+e^-\bar{\nu}_e$ same as μ^- decay.

What's different? The *n*, *p* have nearly same mass: $m_n = 939.57$ MeV, $m_p = 938.28$ MeV, $m_n - m_p = 1.29$ MeV. Electron mass $m_e = 0.511$ MeV not negligible.

Phase space is different, with final-state *p* carrying almost no kinetic energy.

17: Predictions

Distribution of e⁻-energy E is approximately

$$rac{d\Gamma}{dE} \propto E \sqrt{E^2 - m_{e}^2} \left((m_n - m_{p}) - E
ight)^2$$

b Decay lifetime is $\tau \sim$ 1318 seconds. Oops (expt: 886 sec)

Energy distribution fairly close except near E = 0. Lifetime right order, but not close in detail. Why not?

• (*n*, *p*) DO NOT couple to *W* "just" like (*d*, *u*). Turns out, must replace $\gamma^{\mu}(1 - \gamma^5) \rightarrow \gamma^{\mu}(1 - c_A \gamma^5)$, and $\Gamma \propto 1 + 3c_A^2$ (But c_A separately measurable)

▶ p⁺, e⁻ are charged. So the approximation that e⁻ flies out as free particle is wrong – especially at low energy, it has distorted wave-function which enhances emission.

18: Other nuclei?

Many nuclei energetically allow either $n \rightarrow p^+ e^- \bar{\nu}_e$ or $p^+ \rightarrow n e^+ \nu_e$ (or electron capture: $p^+ e^- \rightarrow n \nu_e$) Generically, eg, for $^{239}U^{92} \rightarrow ^{239}Np^{93}e^- \bar{\nu}_e$, final nucleus different from initial: overlap of old nucleus, with one *n* switched to *p*, onto new nucleus. For *superallowed* processes, nuclei before/after match up! Sometimes nuclei have very different spins, *e*, ν must carry off angular momentum, with impact on wave-function (forbidden decays)

 e^- wave-function distortion large as nuclear charge gets big

This is turning into nuclear physics and we won't say anything more.

19: Summary

There is another force-carrier W^{\pm} , but this time it's super heavy!

- The *W* interactions change species-type: $e^- \rightarrow \nu_e$ etc.
- This breaks many would-be conservation laws. e⁻ number not conserved, only e⁻ number plus v_e number (e-type lepton number)
- Also maximally break P and C symmetry, but respect CP
- Large W mass makes effects suppressed by E^4/M_W^4 factor
- Explains instability, but large lifetime, of numerous particles
- Role in nuclear physics is important, somewhat confusing

Next time: look in more detail at W interactions with quarks, weak meson decays....