Teilchenphysik: Lecture 19: Weak hadronic decays

Last time: weak interactions with leptons.

New but "straightforward"

This time: weak interactions with quarks.

- Quarks start out in bound states
- Quarks need to end up in bound states.
- Final state possibilities: no hadrons, one hadron, several hadrons
- Will require more information about hadronic bound states etc
- ▶ Which quark couples to which, via W boson?? Complicated.

Related issues: doubly-weak processes:

- Some decays are doubly weak.
- Doubly-weak oscillation phenomena
- Box diagrams, CP violation

postponed for later lectures

2: Heavy quarks are easier

There are three *energy ranges* to consider:

- 1. Once a heavy quark decays to a light one, plenty of energy available to create multiple hadrons.
- 2. Once a heavier quark decays, enough energy to make a few extra hadrons
- Initial meson doesn't have enough energy to create any final-state mesons; decay must be leptonic

Case 1: heavy quark decays as if it's alone in vacuum. Easy to analyze.

Case 2: quark decay mixed up with final state, particle-rearrangement in complex way.

Case 3: q and \bar{q} in meson must annihilate into W. Only one process, but need information about meson to compute it.

Let's start with case 1.

3: Heavy quark decay

This case isn't really discussed in the book, but it's easy so let's do it. Consider $B^- = b\overline{u}$ The *b* can decay Energy available: $m_b\sim 5\,{
m GeV}$ Binding energies: $\sim 300\,\text{MeV}$ Binding energy negligible Decays as if in vacuum, Decay products figure out how to assemble into mesons afterwords.

Prediction: decay width almost same for $\overline{B}^0 = b\overline{d}$, $B^- = b\overline{u}$, $\Lambda_b = udb$ Prediction: e, μ, τ similar probability; ud, cs each $3 \times$ that likely.

4: Do predictions work?

Yes! $\tau_{\overline{B}^0} = 1.638 \times 10^{-12} \,\text{s}, \quad \tau_{B^-} = 1.519 \times 10^{-12} \,\text{s}, \quad \tau_{\Lambda_b} = 1.471 \times 10^{-12} \,\text{s}$

In each case, about 11% decays each to $e^-\overline{\nu}_e X$, $\mu^-\overline{\nu}_\mu X$, $\tau^-\overline{\nu}_\tau X$, with *X* any hadrons. ~ 67% of decays are $W \to d\overline{u}$ or $s\overline{c}$, producing only hadrons.

But wait a minute: value of lifetime is all wrong. It "should" be $\tau = \tau_{\mu^-} (m_{\mu}/m_B)^5/9$ but is much larger. And shouldn't *b* only couple to the *t* quark, which is too heavy???

5: CKM matrix

Think first about leptons and neutrinos. There are 3 neutrino states. The *W* couples each lepton to its own neutrino state. The ν_e is *defined* as the neutrino which the *W* boson couples to an e^- ; similarly the ν_μ and μ^- , the ν_τ and τ^- .

Now consider quarks. There are 3 charge--1/3 quarks. We can name the one which *u* couples to *d'*, the one *c* couples to *s'*, and the one *t* couples to *b'*. These are automatically orthogonal.

But who's to say that these are the *same* as the mass eigenstates *d*, *s*, *b*? If "whoever gives masses" *doesn't talk to* "whoever sets *W*-couplings" then these could be different.

And they are different. But they happen to be close for reasons we don't understand.

6: CKM matrix

The mass-eigenstates (d, s, b) are not the flavor eigenstates (d', s', b') which the *W* couples to the (u, c, t) respectively. Instead,

$$\begin{bmatrix} d'\\ s'\\ b' \end{bmatrix} = V_{ij} \begin{bmatrix} d\\ s\\ b \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d\\ s\\ b \end{bmatrix}$$

Here V_{ij} the CKM matrix is a 3 × 3 *complex, unitary* matrix. Meaning: V_{ij} is how strongly $i \in \{u, c, t\}$ couples to $j \in \{d, s, b\}$ Standard phase conventions, not showing a few tiny imaginary parts:

$$V_{ij} = \begin{bmatrix} 0.9743 & 0.2253 & .0013 - .0033i \\ -.2252 & 0.9734 & 0.0412 \\ .0081 - .0033i & -.0404 & 0.9991 \end{bmatrix}$$

It happens that V_{ii} is nearly diagonal.

b-quark decay proportional to $|V_{cb}|^2 + |V_{ub}|^2 \sim 1/600$ explains why τ_b so big.

7: CKM matrix: examples

Consider B^- decay again. Then consider $D^+ \to \overline{K}^0 e^+ \nu_e$ and finally, $n \to p e^- \overline{\nu}_e$.

8: Pion decay

For *b*-decay I just ignored binding into hadrons. 10% corrections. For *D*, Λ_c decays, it's more like 30% corrections For π^+ decay? It's 100% correction, because there is no energy to make *any final-state hadrons at all*. How does decay even happen?

The $u\overline{d}$ must annihilate off completely!

9: Pion decay constant

Diagram again:

The *u*, *d* part is: $\bar{v}_d \gamma^{\mu} (1 - \gamma^5) u_u$ times some wave-function information about (u, \overline{d}) which I really don't know.

But I know it has μ index! Only available 4-vector is pion 4-momentum *p*:

$$\mathcal{M} = \frac{V_{ud}g_w^2}{8M_W^2}\overline{u}_\nu\gamma^\mu(1-\gamma^5)v_\ell\;F^\mu\,,\qquad F^\mu = f_\pi p_{\pi^+}^\mu$$

Here f_{π} is some constant of proportionality, units of energy, describing how much u, \overline{d} overlap in pion. OK, let's compute $|\mathcal{M}|^2$:

$$|\mathcal{M}|^{2} = ... = \frac{|V_{ud}|^{2} f_{\pi}^{2} g_{W}^{4}}{8M_{W}^{4}} \left(2(p_{\pi} \cdot p_{\ell})(p_{\pi} \cdot p_{\nu}) - p_{\pi}^{2}(p_{\ell} \cdot p_{\nu}) \right)$$

10: Finishing pion decay

Since it's 1 \rightarrow 2 there is no kinematics to do! And p_{ν}^2 = 0, p_{ℓ}^2 = m_{ℓ}^2 , p_{π}^2 = m_{π}^2 ,

$$p^{2} = (p_{\ell} + p_{\nu})^{2} = p_{\ell}^{2} + 2p_{\ell} \cdot p_{\nu} + p_{\nu}^{2} \quad \Rightarrow \quad 2p_{\ell} \cdot p_{\nu} = m_{\pi}^{2} - m_{\ell}^{2}$$

Similarly $p_{\pi} \cdot p_{\ell} = (p_{\ell} + p_{\nu}) \cdot p_{\ell} = m_{\ell}^2 + p_{\nu} \cdot p_{\ell}$ etc, and we can compute everything! After super-simple phase-space integral, some algebra, we find:

$$\Gamma_{\pi^{+}} = \frac{|V_{ud}|^2 f_{\pi}^2}{\pi m_{\pi}^3} \frac{g_w^4}{256 M_W^4} m_{\ell}^2 (m_{\pi}^2 - m_{\ell}^2)^2$$

Result: $f_{\pi} = 130 \text{ MeV}$.

Prediction:

$$\frac{\Gamma(\pi^+ \to \mu^+ \nu_{\mu})}{\Gamma(\pi^+ \to e^+ \nu_e)} = \frac{m_e^2 (m_{\pi}^2 - m_e^2)^2}{m_{\mu}^2 (m_{\pi}^2 - m_{\mu}^2)} = 1.28 \times 10^{-4}$$

far, far more likely to decay to μ , ν_{μ} than *e*, ν_{e} .

11: Why won't pions decay to electrons?

This is about spins. The *W* couples to *L*-handed matter, *R*-handed antimatter: For $\pi^+ \rightarrow e^+\nu_e$, the e^+ is *R*-handed, ν_e *L*-handed. But π is spin-0.

Suppressed by E - p which we discussed last lecture! This turns into m^2/m_{π}^2 factor. Limit of small mass–decay doesn't happen.

12: Kaon decay: K⁺

The same decay as π^+ can happen: $u ar{s} o W^+ o \mu^+
u_\mu$

- Somewhat different decay constant: $f_{K} = 1.19 f_{\pi}$ (not surprising)
- Since $m_{K}^{2}/m_{\mu}^{2} \simeq$ 22, now also mass-suppressed
- Suppressed by $|V_{us}|^2 = 1/20$ (as are all decays!)

But now enough energy for new decays:

 $K^+ \to \pi^+ \pi^0$ (20% of time) or even 3 pions (7%). Also $K^+ \to \ell^+ \nu_\ell \pi^0$ occur, 8% of decays. *D*: semileptonic $\sim f_D^2 m_c^3$ but total $\sim m_c^5$... almost always have final-state hadrons

13: What about K⁰?

The π^0 decays straight to photons. But $K^0 = d\overline{s}$ cannot: EM conserves strangeness.

```
How does it decay?

Obvious ways,

K^0 \rightarrow \pi\pi

Also K^0 \rightarrow \pi^- e^+ \nu_e

and K^0 \rightarrow \pi\pi\pi

(just enough energy)
```

Also, interesting way: ${\cal K}^0
ightarrow \mu^+ \mu^-$

14: Doubly weak processes

Look at diagram for $K^0
ightarrow \mu^+ \mu^-$

Surely this is $\propto 1/M_W^8$, and negligible? Actually, no. Loop momentum, $q \sim M_W$ dominates. Suppressed only by factor $\alpha_w/\pi \sim 1/100$. And $V_{ud}V_{us}^*$

15: We are forgetting something!!

Draw diagram again, but remember all quark types!

$$\mathcal{M} = \mathcal{M}_{u} V_{ud} V_{us}^{*} + \mathcal{M}_{c} V_{cd} V_{cs}^{*}$$

Unitarity of V: $V_{ud} V_{us}^* + V_{cd} V_{cs}^* + V_{td} V_{ts}^* = 0$ (and $V_{td} V_{ts} \simeq .0004$) Cancel if $\mathcal{M}_u \simeq \mathcal{M}_c$ (GIM). Corrections $\propto m_c^2/M_W^2$, predicted m_c !!!

16: Where else does this happen?

Think about the neutral kaon again: $\overline{K}^0 = s\overline{d}$ and $K^0 = d\overline{s}$:

The K^0 can turn into \overline{K}^0 and *vice versa* The correct eigenstates are K^S and K^L , the *CP* even/odd states

$$K^{S} = \frac{d\overline{s} - s\overline{d}}{\sqrt{2}}, CP \text{ even }, \qquad K^{L} = \frac{d\overline{s} + s\overline{d}}{\sqrt{2}}, CP \text{ odd}$$

CP-even can decay to $\pi\pi$, while *CP*-odd must decay to 3π , slower.

17: Why doesn't it decay first?

The effect we are talking about is suppressed by α_w and small CKM angles / m_c^2/M_W^2 .

How can it compete with annihilation? Won't K^0 decay before this can play any role?

Key: decay involves square of matrix element $|\langle \psi_f | H_l | \psi_l \rangle|^2 \propto 1/M_W^4$ Oscillation involves matrix element $\langle \psi_2 | H_l | \psi_1 \rangle \propto 1/M_W^4$

Naively, oscillation phenomena should be far faster than decay. It's only because of strong suppression of oscillation that they are even comparable.

18: CP violation!

The mixing involves enough CKM elements to possess phases

Phases flip under *CP*. Phase means the mixing is not to exact *CP* states Every now and then a K^L decays to $\pi\pi$. (Observed 1964, Nobel 1980)

19: CP in other neutral systems

The same *should* happen in D^0/\overline{D}^0 . Effects are small.

Similar things *do* happen in B^0/\overline{B}^0 .

Exquisitely well studied in this system.

Several distinct *CP* violating effects observed in B^0 and in B_s systems.

Motivated "factories" producing large number of B^0 , \overline{B}^0 pairs.

But we don't have time to discuss this further.

20: Summary

- Decay of heavy quarks: quark decays, final-state particles stick together
- Which quarks couple to which: CKM matrix V_{ij}
- Decay of light quarks: initial, final states play essential role
- Pions decay by annihilation to leptons. f_{π} .
- Kaons can decay leptonically, semileptonically, hadronically
- Doubly-weak processes are less suppressed than you might guess But involve nontrivial cancellations between heavy/light quarks
- Lead to $\Delta s = 2$ oscillation phenomena
- *CP* is not conserved, but violation involves these oscillations.