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Here we go through the relativity basics which we will need repeatedly during the
rest of the course.

Reminder: rotations and Galilean transformations
Lorentz transformations
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4-vector notation

Repeated transformations, products, addition of velocities
Invariants and the metric

Tensors and their transformation properties
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Rotation by angle 6
about the z axis:

x' = cos(f)x — sin()y
y' = sin(0)x + cos(0)y
Z =z

It is very convenient to write x, y, z and x’, y’, Z’ as vectors:

X cos(f) —sin(@) O X
y' | =| sin() cos(f) O y
z' 0 0 1 z
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Product of two rotations about two axes:

x' [ cos(d) —sin(@) 0 10 0 X
y' | =| sin() cos(f) O 0 cos¢ —sing y
z 0 0 1 0 sin¢ cos¢ z

cos(d) —sin(f)cos(§)  sin()sin(&)
= | sin(d) cos(fd)cos() — cos(f)sin(&) y
| 0 sin(§) cos(&) z

/ / /!
X; = RjRyxi = Rk

<

some rotation about some axis.
Quick way to make sure that this is really a rotation matrix?

How was | so sure that R; and R;, were rotations?
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A rotation is something which automatically preserves vector length
X|? = xi6;% mustequal |x'|* = x/§;x]
for any choice of the vector x;. Therefore:
X,-/ = R,/X/ = R,'kats,'jR/'me = X,'(S,‘ij = Xk R,Id,-,-ijxm = X,‘(S,‘ij

Here R is the transpose, R]»,»T = Rj. Let'srename j <+ kand j <> m
X,'(R,-—ll(—(skmﬂmj))(/ = Xj ((5,]))(/ forall x; = R,I(Skamj = 5,‘/

The product of RT and R, as matrices, is the identity.

The rotation matrices are precisely’ the 3 x 3 matrices which have this property;
the so-called orthogonal matrices R € SO(3)

"We also need Det R = 1 so that we don’t mirror-image space (parity)
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If r' is moving at velocity

V = (v, 0, 0) with respect to r
then the r’ coordinates have
a time-dependent shift
compared to the r
coordinates:

t 1 00 0 t
/ _ Iy ! _ ! _ X! = v 100 X
=t xX'=x-wt, y=y Z=z or y |~ 0 010 y
7 0 0 0 {1 z

(Why the — sign?) This is a Galilean transformation, a symmetry (canonical
transformation) of classical mechanics.
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As you know, there are
v2/c? corrections to the
Galilean transform. Time
and x actually mix with each

other!
Defining v = (1 — v?/c?)~"/2, one finds:
t v —yv/c®2 0 0 t
x| | —wv y 00 X
y |- 0 0 10 y
b4 0 0 0 1 z



7: Relativity and Units
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Better to use ct instead of t and 3 = v/c, so matrix is dimensionless:

ct/ v~ —B8 0 0 ct
x| | = ~ 00 X
y' | 0 0 10 y
z' 0 0 0 1 z

» Time dilation

> Relativity of Simultaneity

» Motion

» Length contraction
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For rotations it was super useful to use vectors x;.
Including time, we call it a 4-vector x*: x° =ct, x' = x1 =x, X° =Xo =y, X’ = X3 = 2
Upper indices mean column indices; lower indices are row indices

ct’ v~ —B8 0 0 ct

! —

AR R
z 0 0 0 f z

The Lorentz transformation matrix has a lower and an upper index. Products:
X//;L — A/MVXIV — AIILVAuaon

You can contract an upper with a lower index (row with column).
You cannot contract two upper or two lower indices (yet).
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The time component is 0 not 4. (Why?)

Roman indices ijklmn are space indices, i = 1,2,3
Greek indices pvap are spacetime indices 1 =0,1,2,3
Use Greek letters in the order u, v, o, 8,7, 6, o, p...

aA alpha B beta
€E epsilon (Z zeta
liota kK kappa
vN nu E=Xi
pRrho oY sigma
¢P phi xX chi

Avoid using iota, omicron, pi, upsilon.

~Ir gamma
nH eta

AN lambda
00O omicron
7T tau

YWV psi

A delta
0O theta
uM mu

7l pi

vT upsilon
wS) omega
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Product of two Lorentz transformations, both in x-direction:

w/’ —'g" 0 0 ¥y -8 0 0 YA +p'8)  —'v(B +B) 0 0
-8’ v 0 o -8 vy 0 0 B +B) Av(1+8'8 0 0
0 0 10 0 0 1 o0 0 0 10
0 0 0 1 0 0o 0 1 0 0 0 1

Same as a Lorentz transformation with velocity

B B v i+v
or Vit= ———
Brot = ot = T /2

1456
What adds trivially is the rapidity y = atanh(3): yiot = ¥’ + J.

v —B 0 0 cosh(y) —sinh(y) 0 O
-8 v 0 0| | —sinh(y) cosh(y) 0 O
0 0 1 0|~ 0 0 10
0 0O 0 1 0 0 0 1
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An example: the product of two valid Lorentz matrices

O U - ¥y -8 0 0 Yy o =B '8 0
0 1 0 0 —B 0 0 0| _ —B o 0 0
-8 0 0 0 0 1 0 | = B 0
0 0 0 1 0 0 0 1 0 0 0o 1

What is this? Not symmetric, not pretty.
Admixture of a “boost” (velocity-change Lorentz transformation) and a rotation
(which is also a kind of Lorentz transform, just a boring one)

If | just hand you a matrix, like this last one, how do you know if it's a legit Lorentz
transformation or not?

Again, it must preserve an invariant length ...
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The invariant length-squared of x* = (ct, x, y, z) is:

2=t —x®—y? — 22 =(ct)? — X?

Note the minus sign.

ct

> X% > 0: X is timelike e A L
X< =

> x? < 0: x" is spacelike y

> x2 = 0: x* is lightlike z

The row vector we need has the space entries sign-flipped. Define

1 0 0 0
3 0 -1 0 0 s
XN = ng/X ) g;,w = 0 0 1 0 X = XHX
0 O 0o -1
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A Lorentz transform A, is any? transformation which preserves invariant length
X2 = xtgux" = x"gux"
X" g x” = N o x g N gxP
X' guux” = x% (Alugw/\yﬁ)xﬁ
x* (g,“,)x” = x" (/\;“galgAﬁu>x” G = Azo‘gagl\ﬁy

or ATgA = g. Just like rotations but §; — g,
Because g,,,, has one positive and 3 negative entries, we call these A € SO(3, 1)

2Also A% > 1 so we don't reverse time, and Det A = 1 so we don’t mirror-image space.
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We call upper indices contravariant: x*, P* are contravariant vectors.

Lower indices are covariant: x,,, P,, are covariant vectors.

You can think of them as columns and rows, and A*,, as a matrix, as long as there
are only a few indices.

When there are more indices, there is no good vector/matrix interpretation. But
upper and lower indices transform under Lorentz transformations as:

X" — N, x" Xy — NXo with A, = g, 5N 9"
TH 5 NN TP X, P 5 NN GNP SN X707

Contravariant vector, covariant vector, rank-2 contravariant tensor, rank-4 tensor
with one covariant and three contravariant indices.
Here g"" is the inverse matrix of g,,,,, which turns out to be the same.

Guw = MNP Gop = gu i invariant. Similarly, T#, — T*,
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There is one more invariant: the totally antisymmetric tensor
Euuaﬁ - _eyuaﬁ — _Eauuﬁ — _Eﬁl/au , 60123 -1

Careful: eg123 = goo9117229a3€° 23 = —1

Under a Lorentz transform
P 5 NN N GNP 07T = P Det A
We know g = AT gA so
Detg = DetATgA = DetA" Detg DetA = Detg(DetA)?

so DetA = +1.Ifit's -1, e changes sign — it's a pseudotensor.
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Oh yes! We haven’t touched on how rotations and boosts fail to commute with each
other, that is, on the group structure of SO(3, 1) and what it implies. But | will leave
that for a Quantum Field Theory course.

Next time we will talk about the consequences for energy, momentum, and what
particles can do....



