
Teilchenphysik:
Lecture 2: Relativity Review

Here we go through the relativity basics which we will need repeatedly during the
rest of the course.
I Reminder: rotations and Galilean transformations
I Lorentz transformations
I 4-vector notation
I Repeated transformations, products, addition of velocities
I Invariants and the metric
I Tensors and their transformation properties



2: Reminder: rotations

Rotation by angle θ
about the z axis:

x ′ = cos(θ)x − sin(θ)y

y ′ = sin(θ)x + cos(θ)y

z′ = z

It is very convenient to write x , y , z and x ′, y ′, z′ as vectors: x ′

y ′

z′

 =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 x
y
z





3: Repeated rotations

Product of two rotations about two axes: x ′

y ′

z′

 =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 1 0 0
0 cos ξ − sin ξ
0 sin ξ cos ξ

 x
y
z


=

 cos(θ) − sin(θ) cos(ξ) sin(θ) sin(ξ)
sin(θ) cos(θ) cos(ξ) − cos(θ) sin(ξ)

0 sin(ξ) cos(ξ)

 x
y
z


x ′i = RijR′jk xk = R′′ik xk

some rotation about some axis.
Quick way to make sure that this is really a rotation matrix?

How was I so sure that Rij and R′jk were rotations?



4: Invariant length

A rotation is something which automatically preserves vector length

|x |2 ≡ xiδijxj must equal |x ′|2 ≡ x ′i δijx ′j

for any choice of the vector xi . Therefore:

x ′i = Rijxj ⇒ Rik xkδijRjmxm = xiδijxj ⇒ xk R>ki δijRjmxm = xiδijxj

Here R> is the transpose, R>ji = Rij . Let’s rename i ↔ k and j ↔ m

xi

(
R>ik δkmRmj

)
xj = xi

(
δij

)
xj for all xi ⇒ R>ik δkmRmj = δij

The product of R> and R, as matrices, is the identity.

The rotation matrices are precisely1 the 3× 3 matrices which have this property;
the so-called orthogonal matrices R ∈ SO(3)

1We also need Det R = 1 so that we don’t mirror-image space (parity)



5: Galilean Invariance

If r ′ is moving at velocity
~v = (v , 0, 0) with respect to r
then the r ′ coordinates have
a time-dependent shift
compared to the r
coordinates:

t ′ = t , x ′ = x − vt , y ′ = y z′ = z or


t ′

x ′

y ′

z′

 =


1 0 0 0
−v 1 0 0
0 0 1 0
0 0 0 1




t
x
y
z


(Why the − sign?) This is a Galilean transformation, a symmetry (canonical
transformation) of classical mechanics.



6: Relativity: Lorentz Transform

As you know, there are
v2/c2 corrections to the
Galilean transform. Time
and x actually mix with each
other!

Defining γ = (1− v2/c2)−1/2, one finds:
t ′

x ′

y ′

z′

 =


γ −γv/c2 0 0
−γv γ 0 0

0 0 1 0
0 0 0 1




t
x
y
z





7: Relativity and Units

Better to use ct instead of t and β = v/c, so matrix is dimensionless:
ct ′

x ′

y ′

z′

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




ct
x
y
z


I Time dilation
I Relativity of Simultaneity
I Motion
I Length contraction



8: 4-vector, matrix notation

For rotations it was super useful to use vectors xi .
Including time, we call it a 4-vector xµ: x0 = ct , x1 = x1 = x , x2 = x2 = y , x3 = x3 = z
Upper indices mean column indices; lower indices are row indices

ct ′

x ′

y ′

z′

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




ct
x
y
z

 or x ′µ = Λµνxν

The Lorentz transformation matrix has a lower and an upper index. Products:

x ′′µ = Λ′
µ
νx ′ν = Λ′

µ
νΛ

ν
αxα

You can contract an upper with a lower index (row with column).
You cannot contract two upper or two lower indices (yet).



9: Greek letters...

The time component is 0 not 4. (Why?)
Roman indices ijklmn are space indices, i = 1, 2, 3
Greek indices µναβ are spacetime indices µ = 0, 1, 2, 3
Use Greek letters in the order µ, ν,α,β, γ, δ,σ, ρ...

αA alpha βB beta γΓ gamma δ∆ delta

εE epsilon ζZ zeta ηH eta θΘ theta

ιI iota κK kappa λΛ lambda µM mu

νN nu ξΞ xi oO omicron πΠ pi

ρR rho σΣ sigma τT tau υΥ upsilon

φΦ phi χX chi ψΨ psi ωΩ omega

Avoid using iota, omicron, pi, upsilon.



10: Two Lorentz’s in the same direction

Product of two Lorentz transformations, both in x-direction:
 γ′ −γ′β′ 0 0
−γ′β′ γ′ 0 0

0 0 1 0
0 0 0 1


 γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 =

 γ′γ(1 + β′β) −γ′γ(β′ + β) 0 0
−γ′γ(β′ + β) γ′γ(1 + β′β) 0 0

0 0 1 0
0 0 0 1


Same as a Lorentz transformation with velocity

βtot =
β + β′

1 + ββ′
or vtot =

v ′ + v
1 + vv ′/c2

What adds trivially is the rapidity y = atanh(β): ytot = y ′ + y .
γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 =


cosh(y ) − sinh(y ) 0 0
− sinh(y ) cosh(y ) 0 0

0 0 1 0
0 0 0 1





11: Which matrices are valid Lorentz matrices?

An example: the product of two valid Lorentz matrices
γ′ 0 −γ′β′ 0
0 1 0 0

−γ′β′ 0 γ′ 0
0 0 0 1




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 =


γ′γ −γ′γβ −γ′β′ 0
−γβ γ 0 0

−γ′γβ′ γ′γβ′β γ′ 0
0 0 0 1


What is this? Not symmetric, not pretty.

Admixture of a “boost” (velocity-change Lorentz transformation) and a rotation
(which is also a kind of Lorentz transform, just a boring one)

If I just hand you a matrix, like this last one, how do you know if it’s a legit Lorentz
transformation or not?

Again, it must preserve an invariant length ...



12: Invariant length in Relativity

The invariant length-squared of xµ = (ct , x , y , z) is:

x2 ≡ (ct)2 − x2 − y2 − z2 = (ct)2 − ~x2

Note the minus sign.
I x2 > 0: xµ is timelike
I x2 < 0: xµ is spacelike
I x2 = 0: xµ is lightlike

x2 =

[
ct −x −y −z

]
ct
x
y
z


The row vector we need has the space entries sign-flipped. Define

xµ = gµνxν , gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 x2 = xµxµ



13: Invariant length and Metric

A Lorentz transform Λµν is any2 transformation which preserves invariant length

x2 ≡ xµgµνxν = x ′µgµνx ′ν

xµgµνxν = ΛµαxαgµνΛνβxβ

xµgµνxν = xα
(
Λ>α

µgµνΛνβ
)

xβ

xµ
(

gµν
)

xν = xµ
(
Λ>µ

αgαβΛβν
)

xν gµν = Λ>µ
αgαβΛβν

or Λ>gΛ = g. Just like rotations but δij → gµν
Because gµν has one positive and 3 negative entries, we call these Λ ∈ SO(3, 1)

2Also Λ0
0 ≥ 1 so we don’t reverse time, and DetΛ = 1 so we don’t mirror-image space.



14: Tensors and Terminology

We call upper indices contravariant : xµ, Pµ are contravariant vectors.
Lower indices are covariant : xµ, Pµ are covariant vectors.
You can think of them as columns and rows, and Λµν as a matrix, as long as there
are only a few indices.
When there are more indices, there is no good vector/matrix interpretation. But
upper and lower indices transform under Lorentz transformations as:

xµ → Λµνxν xµ → Λµ
αxα with Λµ

α = gµβΛβκgκα

Tµν → ΛµαΛ
ν
βTαβ Xµαβγ → Λµ

κΛασΛ
β
δΛ
γ
τXκσδτ

Contravariant vector, covariant vector, rank-2 contravariant tensor, rank-4 tensor
with one covariant and three contravariant indices.
Here gµν is the inverse matrix of gµν , which turns out to be the same.

gµν → Λµ
αΛν

βgαβ = gµν is invariant. Similarly, Tµµ → Tµµ



15: One more invariant

There is one more invariant: the totally antisymmetric tensor

εµναβ = −ενµαβ = −εανµβ = −εβναµ , ε0123 = 1

Careful: ε0123 = g00g11g22g33ε
0123 = −1

Under a Lorentz transform

εµναβ → ΛµκΛ
ν
ρΛ

α
σΛ

β
τ ε
κρστ = εµναβ DetΛ

We know g = Λ>gΛ so

Det g = DetΛ>gΛ = DetΛ> Det g DetΛ = Det g( DetΛ)2

so DetΛ = ±1. If it’s -1, ε changes sign – it’s a pseudotensor.



16: Is there more to learn?

Oh yes! We haven’t touched on how rotations and boosts fail to commute with each
other, that is, on the group structure of SO(3, 1) and what it implies. But I will leave
that for a Quantum Field Theory course.

Next time we will talk about the consequences for energy, momentum, and what
particles can do....


