
Teilchenphysik:
Lecture 21: Field theory in More Detail

We want to understand the Higgs mechanism and the Standard Model.
To get there we have to think harder about how gauge theories work
And what happens when a gauge theory contains scalar fields
I Field theory in more detail
I Gauge fields in more detail
I Scalar fields and gauge fields
I Spontaneous symmetry breaking
I Higgs mechanism



2: What is Physics

Physics is an attempt to apply some physical laws to either
1. Predict how initial conditions (Qi , Pi )

will evolve, or

2. Explain how, if you start at Qi and
end at Qf , you got from one to the
other

If you can do one of these things, you
can do the other.

Newton’s laws set up to do 1.
Lagrange/Hamilton approach does 2. -

6

t

x



3: How do we solve all physics

Action principle: All physics follows from the action S
The action is the time-integral of a Lagrangian L

S =
∫ tf

ti
dt L(Q(t), Q′(t))

If I know L and boundary (Pi , Qi or Qi , Qf ) data,
Then you can determine all dynamics.
I Classical physics: Q(t) are values which extremize S
I Quantum physics: amplitude to go from 〈ψi |Qi〉 = ψi (Q) at t = ti to
〈ψf |Qf 〉 = ψf (Q) at t = tf is

A(ψi ,ψf ) =
∫ ψf

ψi

DQ exp(iS(Q)/~)

Path integral will be dominated by saddlepoints in S(Q) if ~ is “small.” Saddlepoint
condition is ∂S/∂Q = 0 which says that small ~ limit of QM is classical mechanics.



4: Relativistic classical particles

The action has to respect all symmetries.
That means S has to be the same in all reference frames.
Given trajectory ~x(t), what is the same in all frames?
I Rewrite ~x(t)→ xµ(τ ) with τ the proper time, dτ = dt/

√
1− v2

I Total proper time is

τ =
∫ xµ

f

xµ
i

dτ =
∫ xµ

f

xµ
i

√
c2 − v2dt =

∫ √
c2dt2 − dx2

I Because c2dt2 − dx2 is the same in all frames, so is τ !
I Action is S = mc τ = mc

∫ xf

xi
dτ so L = mc2

√
1− v2/c2

Canonical momentum: pi =
∂L
∂vi

= mv/
√

1− v2/c2

Hamiltonian: H = pivi − L(x , p) =
mc2√

1− v2/c2



5: Relativistic field?

Suppose there is a field φ(x , t) varying through space and time.

S =
∫

dt L(φ(x , t), φ̇(x , t))

Here L is a function of φ at all coordinates x .
Locality: It must be a single space integral over φ(x) and its derivatives:

L(φ(x , t)) =
∫

d3x L(φ, ∂µφ)

Lagrangian density L is function of φ at that point, and its space and time
derivatives.

What should I expect the function L to look like?



6: Constraints on Lagrangian

The Lagrange density can’t be anything you want. Rules?
I Depends on φ(x) and its derivatives – not on φ at other points (locality,

causality) Without this, physics cannot be predictive.

I L should be spacetime scalar (Lorentz invariance)
I L must be Hermitian (so evolution is unitary)
I L should not contain too many powers of field+derivative

This is totally not obvious. It’s a deep Quantum Field Theory thing called renormalizability.

I L should be positive in Euclidean signature (stability)
This makes sure Hamiltonian is bounded from below. Theories without this have dynamics which “blows up”

Real scalar field: not many things available:

L(φ) =
Z
2
∂µφ∂

µφ− V (φ) , V (φ) = V0 + V1φ +
m2

2
φ2 +

g
6
φ3 +

λ

24
φ4



7: Interesting, puzzling case

Consider two-component scalar field φa with a = 1, 2
Suppose there is an SO(2) symmetry rotating between components.
I will use summation conventions on the a indices.

L(φa) = ∂µφa∂
µφa − V0 −

m2

2
φaφa −

λ

24
φaφaφbφb

For m2 > 0 the lowest-energy classical state has φ1 = 0 = φ2

The quantum vacuum is some sort of (small) fluctuations about this classical state.

But what if m2 = −µ2 < 0? Theory is still stable, but ...



8: Spontaneous symmetry breaking

My theory has a symmetry in which we rotate between φ1,φ2.

Potential energy is invariant:

V (φ) = V0 −
µ2

2
φaφa +

λ

24
φaφaφbφb

= K0 +
λ

24
(φaφa − v2)2 ,

v2 = 6µ2

V (φa) minimized when φaφa = v2

Not when φ = 0.
There are many equally good vacua!



9: Goldstone’s Theorem

My theory has a symmetry, but the vacuum does not.

Goldstone proved that, when
this happens with a global
internal symmetry, there are
always massless particles,
Goldstone bosons,
associated with vacuum
value varying through space.

Locally, field “feels” like it’s
vacuum. Only by comparing
with neighboring regions –
through gradients – can it
realize there is a fluctuation
occurring.



10: Scalar with global SU(2) symmetry

Suppose we have a column vector of complex scalars:

φ =
[
φ1

φ2

]
L = ∂µφ†∂µφ + V (φ†φ) =

[
∂µφ

∗
1 ∂µφ

∗
2

] [
∂µφ1

∂µφ2

]
+ ...

If I apply φ→ Uφ with U ∈ SU(2) a (constant) matrix,
then the Lagrange density remains unchanged!

φ→ Uφ, φ† → φ†U† , φ†φ→ φ†U†Uφ , ∂µφ
†∂µφ→ ∂µφ

†U†U∂µφ

Essential that U be space-independent so I could move U past ∂µ.

But can I expand symmetry so that U → U(xµ)???



11: Gauge theory: the Problem

No you cannot!

φ→ Uφ ⇒ ∂µφ→ ∂µUφ = U∂µφ +
(
∂µU

)
φ

Intuitively clear:

(Note, sufficient to consider U = 1 + iλaτa/2 with λa infinitesimal.
∂µφ→ (1 + iλaτa/2)φ + iτa/2φ∂µλa



12: Gauge theory: the Solution

Derivative is a comparator between nearby points.
Add an SU(2) rotation to that comparison!

∂µφ→
(
∂µ − i

τa

2
W a
µ

)
φ ≡ Dµφ

∂µφ
∗ →

(
∂µ + i

τ∗a
2

W a
µ

)
φ

∂µφ
† → φ†

(←−
∂ µ + i

τa

2
W a
µ

)
≡ Dµφ† = (Dµφ)†

W a
µ are instructions to rotate a little while you are comparing between nearby

points.
Rotate φ at one point and not another: change how I rotate as I am comparing
those points, and I can “undo the damage” of φ-rotation



13: Let’s see if it works!

I will apply a transformation:

φ(x)→
(

1 + i
τa

2
λa(x)

)
φ(x) ≡ U(x)φ(x) , and Wµ

a (x)→ Wµ
a (x) + δWµ

a (x)

What I need is to ensure that Dµφ→ UDµφ.
That way, (Dµφ)†Dµφ→ (Dµφ)†U†UDµφ is unchanged.
Let’s see if there is any δWµ

a for which this works!

Dµ
φ =

(
∂
µ − i

τa

2
Wµ

a

)
φ→

(
∂
µ − i

τa

2
Wµ

a −
τa

2
δWµ

a

)(
1 + i

τb

2
λb

)
φ

= (original) + (Terms with λb) + (−iδWµ
a τa/2)φ +���

�:O(λδW )

Terms with λb = i
τb

2
λbDµ

φ +
(

i
τb

2
∂
µ
λb +

[τa , τb ]

4
Wµ

a λb

)
φ

= i
τb

2
λbDµ

φ + i
τc

2

(
∂
µ
λc + εabcWµ

a λb
)
φ

original + With λb =
(

1 + i
τb

2
λb

)
Dµ
φ + i

τc

2

(
∂
µ
λc + εabcWµ

a λb
)
φ

Therefore, to cancel,
τc

2
δWµ

c =
τc

2

(
∂
µ
λc + εabcWµ

a λb
)

= Dµ
λc



14: Gauge transformation

Physics stays the same, including (covariant) derivatives, under transform

φ(x)→
(

1 + i
τa

2
λa

)
φ , Wµ

a → Wµ
a + ∂µλa + εabcWµ

b λc ≡ Wµ
a + Dµλa

But Lagrangian can also contain terms with only W , no φ.
What are allowed terms?

Wµ
a W a

µ → Wµ
a W a

µ + 2W a
µDµλa is not invariant!

Fµνa ≡ ∂µW ν
a − ∂νWµ

a + εabcWµ
b W ν

c → Fµνa + εabcFµνb λc At least covariant

Fµνa F a
µν → Fµνa F a

µν + εabcFµνb F a
µνλc + εabcFµνa F b

µνλc Is invariant, and a scalar!

Most general Lagrangian:

L = Dµφ†Dµφ− V (φ†φ)− 1
4g2 F a

µνFµνa



15: Physical interpretation of Fµν
a



16: Canonical normalization

We originally said Lagrangian could be ZDµφDµφ + ...
But then we stopped writing Z . Why?

√
Zφold = φnew

We can get rid of 1/g2 factor by doing the same with Wµ
a : 1

g Wµ
a,old = Wµ

a,new

L =
1

4g2 Fµνa,oldFµνa,old =
1
4

Fµνa,newFµνa,new

Fµνa,new = ∂µW ν
a,new − ∂νWµ

a,new + gεabcWµ
b,newW ν

c,new

Dµφ =
(
∂µ − i

τa

2
Wµ

a,old

)
φ =

(
∂µ − ig

τa

2
Wµ

a,new

)
φ

This is called canonical normalization.
A factor of g appears wherever W gives rise to nonlinearity.



17: What are W couplings doing?

Look at the terms linear in W :

φ†Wµ
a τaφ =

[
φ∗1 φ∗2

] [
Wµ

3 Wµ
1 − iWµ

2
Wµ

1 + iWµ
2 −Wµ

3

] [
φ1

φ2

]
= 2Wµ

+ φ
∗
2φ1 + 2Wµ

−φ
∗
1φ2 + Wµ

3 (φ∗1φ1 − φ∗2φ2)

The W± mix upper and lower components.
The W3 couples to upper and lower with opposite strengths.
Just like the left-handed part of W± and Z couplings!



18: What have we learned so far?

I Physics is determined by action.
I Field theory: Action is spacetime integral of Lagrange density
I Lagrange density must be scalar function of fields
I Scalar fields are a real possibility
I Scalar fields can have strange spontaneous symmetry breaking effect
I Gauge theory expands notion of symmetry to allow spacetime-dependent

transformations. Cost: introduction of a comparator Wµ
a

I For nonabelian symmetry like SU(2), W have more complex transformation
law.

I W enter action through squared field-strength. Nonlinear
I A mass term for gauge fields is not allowed! Massless!

But what happens when Spontaneous symmetry breaking
meets Nonabelian gauge theory? Find out on Friday!


