
Teilchenphysik:
Lecture 22: Higgs mechanism

Let’s finish constructing the

Standard Model of Particle Physics
by investigating the Higgs Mechanism
I We saw what a gauge theory is
I We saw how a symmetry could be spontaneously broken
I What if both things happen at once? Higgs mechanism
I Gauge fields become massive, W 3, B mix into Z , A
I Fermions also become massive, L, R handed copies pair up

Weinberg 1967 (Nobel prize 1979)



2: Reminder: SU(2) Gauge theory

Modify derivative of 2-component object:

φ =
[
φ1

φ2

]
, Dµφ =

(
∂µ − ig

τa

2
Wµ

a

)
φ

where τa are Pauli matrices and g the gauge coupling.
The W “rotate φ as you translate it in space”

Under symmetry transformation:

φ(x)→
(

1 + ig
τa

2
λa(x)

)
φ(x) , Wµ

a (x)→ Wµ
a (x) + ∂µλa(x) + gεabcWµ

b λc

If φ is rotated, the W must also be rotated (Wλ term)
If φ rotation is space-varying, must add something to W to counteract this rotation
when performing differentiation (∂µλ term)



3: Spontaneous symmetry breaking

Now suppose that the field φ has the following Lagrangian density:1

L = Dµφ†Dµφ− V , V = λ(φ†φ− v2/2)2

The “vacuum” then has |φ2| = 2φ†φ = v2 6= 0. This is spontaneous symmetry
breaking.

Question: Which direction
should this vacuum value point?

1In my conventions, φ1 = (φ1r + iφ1i )/
√

2 which is the standard conventions in the literature for
(good) formal reasons. The squared length of φ is φ2

1r +φ2
1i +φ2

2r +φ2
2i = 2φ†φ which is a little confusing.



4: Direction of the vacuum value

The vacuum value of φ has |φ2| = 2φ†φ = v2.
This has to point in some direction. Which direction?

It could point in different
directions at different points
in space. In the presence of
gauge fields, it’s not even
clear that this is the wrong
solution.

But I have a (gauge) symmetry to rotate independently at different points in space!



5: Unitary gauge

Let’s use up our gauge symmetry by rotating φ→ exp
(
igλaτa/2

)
φ so that it

always points in φ2r direction:

φ =
[
φ1

φ2

]
=
[

0
v+h√

2

]
,

Here v is the (expected) vacuum value and h are any remaining fluctuations.
Both v and h are real.
We used up all 3 gauge freedoms to force φ2i and both components of φ1 to be
zero.2 Each zero component corresponds to one λa choice:

√
2φ =

[
0
v

]
,

(
1 + ig

τa

2
λa

)√
2φ =

[
1 + igλ3

2
g(λ2+iλ1)

2
g(−λ2+iλ1)

2 1− igλ3
2

] [
0
v

]
=
[ gv (λ2+iλ1)

2
v − igvλ3

2

]

2Warning: This works great until you start doing loop-level calculations and dealing with UV
fluctuations. Then you have to do something more sophisticated. But it’s fine at the level of this course.



6: Why a W field would normally be massless

What is a mass?

L =
1
2
∂µφ∂

µφ− m2

2
φ2 + ...

It’s an energy when φ takes the wrong value (here, 6= 0), when it’s not varying in
space and/or time.
This forces field to oscillate (∂0φ 6= 0) even when ∂iφ = 0.

What about gauge fields: does a uniform gauge field cost energy?
Consider Wµ

a constant, without scalar field.

L =
1
4

(∂µW a
ν − ∂νW a

µ)(∂µW ν
a − ∂νWµ

a )

vanishes if Wµ
a is uniform (up to terms of order W 4)

This is why Wµ is massless: only derivatives cost energy,
constant values cost no energy / action / whatever.



7: Constant W and φ vacuum value

Now consider Wµ
a nonzero when a scalar φ has a vacuum value! FµνFµν is still 0,

but:

Dµφ =
(
∂µ − ig

τa

2
Wµ

a

)
φ

=
[

∂µ − igWµ
3 /2 g(−Wµ

2 − iWµ
1 )/2

g(Wµ
2 − iWµ

1 )/2 ∂µ + igWµ
3 /2

] [
0

v+h√
2

]

=

[ g(−Wµ
2 −iWµ

1 )(v+h)
2
√

2
∂µh√

2
+ i gWµ

3 (v+h)
2
√

2

]

Dµφ†Dµφ =
1
2
∂µh∂µh +

1
2

g2(v + h)2

4

(
(Wµ

1 )2 + (Wµ
2 )2 + (Wµ

3 )2)
Nonvanishing v gives rise to masses: M2

W = g2v2/4 or MW = gv/2.
(Also gives rise to couplings to h, in proportion to mass.)



8: A little history

What we just described is called the Higgs mechanism.
Or, the London Nambu Anderson Braut Englert Higgs Guralnik Hagen Kibble
mechanism
I Founding idea for E&M in nonrelativistic systems from Fritz London and

Yoichiro Nambu (Nobel 2008) circia 1960
I Field theory formulation for E&M (U(1)) in nonrelativistic setting by Philip

Anderson (Nobel 1977) in 1962
I Relativistic case, still U(1): Braut Englert (Nobel 2013) and Higgs (Nobel

2013), who pointed out particle associated with h fluctuations in 1964
I SU(2) case: Guralnik Hagen and Kibble 1964 or 1965.
I Application to Standard Model: Weinberg (Nobel 1979) 1967.

Somehow the “Higgs” name stuck, perhaps because he predicted the boson.



9: Degrees of freedom?

How doe the counting of Degrees of Freedom work here?

Consider first the case where φ has no vacuum value.
I φ has 4 independent components φ1r ,φ1i ,φ2r ,φ2i

I Each W field is massless, with 2 polarization states: 2× 3 = 6 states

What if φ develops a vacuum value and I use unitary gauge?
I The φ field has 1 independent component h
I Each W field is massive, with 3 polarization states: 3× 3 = 9 states

Either way there are a total of 10 physical states.
The 3 components of the scalar get “eaten” to turn into longitudinal polarization
states of the W bosons



10: Electromagnetism

We’re mostly there! But we haven’t included Electromagnetism or fermions.
Let’s start with electromagnetism. A U(1) gauge field Bµ, with φ having charge 1/2:

Dµφ =
(
∂µ − igw

τa

2
Wµ

a − i
g′

2
Bµ
)
φ

=

[
∂µ − i gw Wµ

3 +g′Bµ

2 gw (−Wµ
2 − iWµ

1 )/2

gw (Wµ
2 − iWµ

1 )/2 ∂µ − i −gw Wµ
3 +g′Bµ

2

] [
φ1

φ2

]

Again writing φ1 = 0 and
√

2φ2 = v we find:

Dµφ†Dµφ =
1
2

(
g2

w v2

4
((Wµ

1 )2 + (Wµ
2 )2) +

v2

4
(g′Bµ − gw Wµ

3 )2
)

Here W1 and W2 get masses MW = gv/2 as before.
But a linear combination of W3 and B become massive...



11: Electroweak mixing

I have two fields, B and W3. The Lagrangian is

−L =
1
4

(∂µBν − ∂νBµ)(∂µBν − ∂νBµ) +
1
4

(∂µW ν
3 − ∂νWµ

3 )(∂µW 3
ν − ∂νW 3

µ)

+
1
2

v2

4
(g′Bµ − gw Wµ

3 )(g′Bµ − gw W 3
µ)

What to do? Pick new linear combinations of the fields!
Let’s apply a rotation, angle θW , between B, W3:[

Zµ

Aµ

]
=
[

cos θW − sin θW

sin θW cos θW

] [
Wµ

3
Bµ

]
We want Zµ ∝ g′Bµ − gw Wµ

3 . Therefore choose

cos θW =
gw√

g2
w + g′2

, sin θW =
g′√

g2
w + g′2

, cos2 θW + sin2 θW = 1



12: Electroweak Mixing II

Zµ =
gw√

g2
w + g′2

Wµ
3 −

g′√
g2

w + g′2
Bµ Wµ

3 =
gw√

g2
w + g′2

Zµ +
g′√

g2
w + g′2

Aµ

Aµ =
g′√

g2
w + g′2

Wµ
3 +

gw√
g2

w + g′2
Bµ Bµ − g′√

g2
w + g′2

Zµ +
gw√

g2
w + g′2

Aµ

Massive combination:
v2

4
(−gw Wµ

3 + g′Bµ)2 =
v2

4
(g2

w + g′2)ZµZµ

What is my Lagrangian after this transformation?

−L =
1
4

(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

+
1
4

(∂µZ ν − ∂νZµ)(∂µZν − ∂νZµ) +
M2

Z

2
ZµZµ ,

M2
Z =

(g2
w + g′2)v2

4
=
(

1 +
g′2

g2
w

)
M2

W , MZ =
MW

cos θW



13: What about fermions?

First, leptons. Fields are:

L =
[
ν
eL

]
, eR

Their covariant derivatives are:

DµL =
(
∂µ − igw

τa

2
Wµ

a +
ig′

2
Bµ
)

L , DµeR =
(
∂µ + ig′Bµ

)
eR

The factors on Bµ mean the charges are −1/2 and −1 respectively.
I can respect all gauge symmetries by putting in a coupling:

Ye,ijeR,iφ
†Lj + h.c.

The B-charges add up to +1− 1
2 −

1
2 = 0 and the W -transformations of φ† and L

cancel.
Ye,ij is a 3× 3 matrix over the (e,µ, τ ) index.



14: Electron mass etc

What’s this combination?

YeeRφ
†L = eR

[
0 v+h√

2

][
νe

eL

]
=

Ye(v + h)√
2

eReL

is a mass for electrons with mass value Yev/
√

2, and a coupling to Higgs bosons
which is proportional to mass.

So eR and eL are right, left components of electron.
What are couplings to gauge fields? Only eL couples to W±, and

ig′Bµ
1 + γ5

2
e + i

gw Wµ
3 + g′Bµ

2
1− γ5

2
e = i

g′gw√
g2

w + g′2
Aµe + (...)Zµe

Coupling to Aµ is P, C respecting with coupling ge = g′gw/
√

g2
w + g′2 = g′ cos θW

Coupling to Zµ is ... what we presented previously.



15: Quark sector

Same thing works for quarks, but with one extra trick.

fields Q =
[

uL

dL

]
, dR , uR

Derivs DµQ =
(
∂µ − igw

τa

2
Wµ

a − igs
λα
2

Gµ
α − i

g′

6
Bµ
)

Q ,

DµdR =
(
∂µ − igs

λα
2

Gµ
α + i

g′

3
Bµ
)

dR ...

Higgs-couplings − L ⊃ YdijdRiφ
†Qj + YuijuRiφ

>(iσ2)Qj + h.c.

Up quark couples differently to get the right total (hyper)charge.
iσ2 flips top, bottom entries so φ couples to up, not down.

Again, electric charges are right and couplings to Z are what we saw before....



16: But Yij are matrices!

The Higgs induces a matrix mass between flavors:

vYeij√
2

eRieLj =

[
eR µR τR

]  m11 m12 m13

m21 m22 m23

m31 m32 m33

  eL

µL

τL


9 complex numbers = 18 free real entries.
BUT I can change basis by a U(3) rotation on eL and a U(3) rotation on eR :
9× 2 = 18 freedoms. The magnitudes of eigenvalues unchanged, but matrix made
real positive and diagonal.

Almost same story in quark sector: two matrices Yuij , Ydij have 36 freedoms. U(3)
rotation on Q, uR , dR removes 27 freedoms leaving 9 – actually3 10. Of these, 6 are
eigenvalues – masses mu , mc , mt , md , ms, mb and 4 are angles – the CKM matrix.

3One of our unitary transformations is to rotate everyone by the same phase. That doesn’t do
anything so it doesn’t help.



17: Standard Model: What is predicted

Parameters I need:
I Gauge couplings gs, gw and g′ and vacuum value v (4)
I each fermion mass value, as well as Higgs mass value (3+3+3+1=10)
I Four CKM angles (4). 18 total parameters!

What that predicts:
I With three numbers: gw , g′, v , we get predictions for MW , MZ , ge, gw , gZ , and

couplings between (W , Z ) and Higgs, as well as values and pattern of
Z -coupling strengths

I The fermion masses also tell the strength of their Higgs couplings
I Higgs mass predicts strength of Higgs self-interactions

The only unmeasured couplings as of 2021 are Higgs self-couplings and the
smallest of the Higgs-fermion couplings.



18: Summary

Take two pieces of physics from last time:
I Nonabelian gauge theory
I Scalars with spontaneous symmetry breaking

Stick them together and get the Higgs Anderson Braut Englert Guralnik Hagen Kibble mechanism
Add in Electromagnetism-like field Bµ

Higgs effect re-mixes Bµ, Wµ
3 → Aµ, Zµ

Pattern of masses, couplings, mixings match all experimental particle physics.

So wait – has Particle Physics been “finished” since 2012?
Arguably, yes, this is a settled field. But not really.
I In this description, neutrinos are massless. But they aren’t.
I Dark matter exists but it is not explained in the Standard Model.

And maybe there’s some surprises still waiting!



19: Scratch space


