Teilchenphysik: Lecture 23: Neutrinos are massive!

TECHNISCHE UNIVERSITÄT DARMSTADT

Neutrinos turn out NOT to be massless,

as they "should" be in the most minimal Standard Model.

- How do you look for masses "directly"?
- How do you look indirectly? Neutrino oscillations
- How neutrino oscillation works
- Dirac or Majorana?
- Sources and detectors for neutrinos
- What we know to date (2021)
- Open questions and How we will Answer them

2: Neutrino mass? Kurie plot

When $n \to e^- p^+ \overline{\nu}_e$, the $e^-, \overline{\nu}_e$ share the energy.

3: Katrin experiment

Katrin experiment studies this using tritium. Precision requires very large apparatus (Seen here during delivery to the lab) Challenges: atomic + Condensed Matter effects Tritium adsorbed onto surfaces ...

Current limit: $m_{\nu_e} < 1 \text{ eV}$

4: Cosmology?

- Early Universe produced about 2/3 as many $\nu_{e,\mu,\tau}$ as γ
- If m_ν = 0, now carry energy ∼ 1 meV each, and contain 10⁻⁵ of current energy of Universe
- ► If mass m = 1 eV, represent > 1% of total energy budget!
- Move too fast to stick in galaxies and clusters
- ► $m \neq 0$ would leave "imprint" in microwaves + galaxy distribution Analysis of galaxy distribution + (mostly) Microwave Sky bounds $m_{\nu_e} + m_{\nu_{\mu}} + m_{\nu_{\tau}} < 0.12 \text{ eV}.$

5: What if neutrinos are massive?

There is no reason that the mass basis and "flavor basis" (what e, μ, τ couple to) should be the same. They are *not* the same in quark sector: CKM matrix! Expect the same thing:

- Flavor basis: $|\nu_e\rangle$, $|\nu_{\mu}\rangle$, $|\nu_{\tau}\rangle$
- Mass basis: $|
 u_1
 angle$, $u_2
 angle$, $u_3
 angle$, masses $m_1 < m_2 < m_3$
- Matrix relation between them! Pontecorvo Maki Nakagawa Sakata matrix

$$\begin{bmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{bmatrix} \begin{bmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{bmatrix}$$

 $\nu_{e,\mu,\tau}$ couple to definite leptons (eigenstates of flavor). $\nu_{1,2,3}$ have definite masses (eigenstates of Hamiltonian) U_{ai} converts from mass to flavor basis.

6: Neutrino oscillations

For simplicity imagine $U_{e3} = 0$. Then:

$$|\nu_e\rangle = U_{e1}|\nu_1\rangle + U_{e2}|\nu_2\rangle$$

When $p \rightarrow ne^+\nu_e$, the neutrino is in this exact state.

What state is it in a time t later?

Observe a distance x = ct away, so evolves with phase $e^{i(px-Et)/\hbar} = e^{-i(E-cp)t}$. What is that?

$$\begin{split} E_1 &= \sqrt{c^2 p^2 + m_1^2 c^4} \simeq pc + \frac{m_1^2 c^4}{2pc} , \\ E_2 &= \sqrt{c^2 p^2 + m_2^2 c^4} \simeq pc + \frac{m_2^2 c^4}{2pc} = E_1 + \frac{(m_2^2 - m_1^2)c^4}{2pc} \end{split}$$

A relative phase $e^{i\Delta m^2 c^3 t/2\hbar \rho}$ develops between neutrino mass-states

7: Neutrino oscillations

State after propagating a distance L:

$$|\nu(x=L)\rangle = e^{-im_1^2 c^2 L/2\hbar\rho} \left(U_{e1}|\nu_1\rangle + e^{-i\Delta m^2 c^2 L/2\hbar\rho} U_{e2}|\nu_2\rangle \right)$$

If I try to detect an electron neutrino, will I find it?

$$\begin{split} A &\equiv \rangle \nu_{e} | | \nu(x = L) \rangle \\ &= \left(U_{e1}^{*} \langle \nu_{1} | + U_{e2}^{*} \langle \nu_{2} | \right) e^{-im_{1}^{2}c^{2}L/2\hbar p} \left(U_{e1} | \nu_{1} \rangle + e^{-i\Delta m^{2}c^{2}L/2\hbar p} U_{e2} | \nu_{2} \rangle \right) \\ A |^{2} &= |U_{e1}^{*} U_{e1} + e^{-i\Delta m^{2}c^{2}L/2\hbar p} U_{e2}^{*} U_{e2} |^{2} \end{split}$$

Call $U^* U_{e1} = \cos^2 \theta_{1e}$, $U^* U_{e2} = \sin^2 \theta_{1e}$:

$$|A|^{2} = 1 - 2\cos^{2}\theta_{1e}\sin^{2}\theta_{1e}\left(1 - \cos\frac{\Delta m^{2}c^{3}L}{2\hbar E}\right) = 1 - \sin^{2}(2\theta_{1e})\sin^{2}\frac{\Delta m^{2}c^{4}t}{4\hbar E}$$

8: Two-flavor oscillations

$$P_{
u_e
ightarrow
u_e} = 1 - \sin^2(2 heta_{1e})\sin^2rac{\Delta m^2 c^4 t}{4\hbar E}$$

At t = 0, "in-phase," 100% the same particle type as initially. Amplitude of oscillation = $\sin^2(2\theta_{1e}) \max$ for $2\theta = \pi/2$. Half-period (max to min) when $\frac{\Delta m^2 c^4 t}{4\hbar E} = \frac{\pi}{2}$ Sensitive to *smaller* Δm^2 when *t* is *larger* but *E* is *smaller*

9: Typical numbers for oscillations

Setup/situation	Energy	Distance	Δm^2	
Laboratory	1GeV	100m	12 eV ²	
Long-baseline	5GeV	500km	$1.2 \times 10^{-2} eV^2$	
Atmospheric (above)	5 GeV	10 km	0.6 eV ²	
Atmospheric (below)	5 GeV	6000 km	$10^{-3} \mathrm{eV}^2$	
Reactor-neutrino	6 MeV	1 km	$7 imes 10^{-3} eV^2$	
Long-baseline reactor	6 MeV	100 km	$7 imes 10^{-5} eV^2$	
Solar	1 MeV	$1.5 imes10^{11}~{ m km}$	10 ⁻¹¹ eV ²	

We will see that the physically relevant values are $\Delta m^2 = 2.7 \times 10^{-3} \text{ eV}^2$ and $\Delta m^2 = 8 \times 10^{-5} \text{ eV}^2$.

10: Reactor neutrinos

Coulomb energy $E_{\text{coul}} \propto Z^2/A^{1/3}$ makes largest nuclei neutron-rich. When ²³⁶U* or ²⁴⁰Pu* split, daughters are highly *n*-rich. Decays $n \rightarrow pe^-\overline{\nu}_e$ have broad spectrum up to 7 or 8 MeV. Single reactor core produces ~ 300 MW neutrino power!

Detector: Gadolinium doped hydrocarbon liquid scintillator. $\overline{\nu}_e p \rightarrow e^+ n \text{ and } n + \text{Gd} \rightarrow \text{Gd}^* \rightarrow \text{Gd} + \gamma + \gamma \text{ 8MeV } \gamma \text{ energy.}$ Clean: two signals e^+ , γ in space+time coincidence.

100km (KamLAND) to 60km (JUNO) distance from reactors for $\Delta m^2 = 8 \times 10^{-5} \text{ eV}^2$, 1-2km for larger Δm^2 .

Only sensitive to $\nu_e \rightarrow \nu_e$ (disappearance)

11: Beam neutrinos

Create beam of $\pi^+ \rightarrow \mu^+ \nu_\mu$ or $\pi^- \rightarrow \mu^- \overline{\nu}_\mu$ at GeV to several GeV energy. Old days: detector within 1km. Good for *discovery of neutrino* Nowadays: detector 100's of km away. Detector has to be huge, multi-kiloton.

Look for $\nu\mu X \rightarrow \mu X'$ off nuclei. Disappearance experiment. e^- hard (not impossible) to detect. τ harder, but now also done.

Arrange for beam energy + distance go give specific Δm^2 .

12: Solar neutrinos

Sun is powered by nuclear reactions:

$$p + p \rightarrow D_{pn} + e^{+} + \nu_{e} \qquad {}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{7}\text{Be} + \gamma$$

$$D + p \rightarrow {}^{3}\text{He}_{ppn} + \gamma \qquad {}^{7}\text{Be} \rightarrow {}^{7}\text{Li} + \nu_{e} + e^{+}$$

$${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + p + p \qquad {}^{7}\text{Li} + p \rightarrow 2{}^{4}\text{He}$$

$$p + p + e^{-} \rightarrow D + \nu_{e} \qquad {}^{7}\text{Be} + p \rightarrow {}^{8}\text{B} \rightarrow 2{}^{4}\text{He} + e^{+} + \nu_{e}$$

Neutrino energies: pp low < 0.3 MeV, $Be \text{ medium} \sim 1 \text{MeV}$, B high < 17 MeV.

Middle-energy: chlorine detector (disappearance) 1960's Low-energy: Gallium detectors 1980's. Disappearance experiments. High-energy: Deuterium detector \sim 2000: disappearance and conversion to ν_{μ}, ν_{τ} .

13: MSW effect (time permitting)

14: What neutrino phenomena do we observe?

- Solar, Long-baseline reactor: $\Delta m_{12}^2 = 7.53(18) \times 10^{-5} \text{ eV}^2$
- Beams, atmosphere: $\Delta m_{13}^2 = 2.44(6) \times 10^{-3} \text{ eV}^2$
- Not known: are close-together masses lighter? or heavier? (normal / inverted hierarchy)

What are the mixing angles?

$$U_{ai} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- $\theta_{12} = 33.4(8)^{\circ}$ measured in solar, reactor experiments
- $\theta_{23} = 49(1)^{\circ}$ measured with beams, cosmic ray/atmosphere
- $\theta_{13} = 8.57(12)^{\circ}$ measured with short-baseline reactor (Daya Bay, Reno)
- \blacktriangleright ont very well constrained

Surprise is how big these angles are!

15: Majorana vs Dirac?

Massless neutrinos: ν_e is *L*-handed, $\overline{\nu}_e$ is *R*-handed. Massive: you can "run and catch up with, then pass" a neutrino. If you catch up with and pass a *L*-handed ν_e , do you see..

- A R-handed neutrino?
- ► A *R*-handed *antineutrino*?

If it's a *R*-handed neutrino (**Dirac neutrinos**), then there are more degrees of freedom (total types of particles)

If it's a *R*-handed antineutrino (**Majorana neutrinos**), then there are no new degrees of freedom. But lepton number is violated!

These possibilities actually have *exactly the same* predictions for all oscillation phenomena, and for cosmology.

16: Why Majorana neutrinos are suspect

Coupling ν to $\overline{\nu}$ with a mass violates SU(2) and $U_B(1)$ symmetry. In the Standard Model, one must instead couple to the Higgs field – twice

$$\mathcal{L} \supset \mathbf{K}_{ij}\overline{L}_i\epsilon\phi^* \ \phi^{\top}\epsilon \mathbf{L}_j$$

The mass is $v^2 K_{ij}$. We need $K_{ij} \sim 1/(10^{14} \text{ GeV})$ to get the right masses.

This is a *nonrenormalizable operator* and we were told not to use those. But theoretically, it's OK *IF* there are new particles with masses less than 10^{14} GeV. That seems possible.

17: Why Dirac neutrinos are suspect

Dirac neutrinos involve adding a new R-handed field N to the SM. This allows a new Higgs coupling

$$\mathcal{L} \supset Y_{nij} \ \overline{N}_i \phi^\top \epsilon L_j$$

analogous to the way the up quark u_R couples to Q. This generates the right masses if the eigenvalues of Y_n are $\sim 10^{-13}$.

Why so much smaller than all other masses? No explanation. Worse, Lagrangian can also contain $M_{ij}\overline{N}_iN_j$. Ruins all predictions unless $M < 10^{-10}$ eV (or smaller?)

18: Dirac or Majorana? Do experiment?

Due to the weirdness of nuclear physics, there are nuclei which cannot undergo β decay, but can undergo *double* beta:

 136 Xe⁵⁴ \rightarrow 136 Ba⁵⁶ + 2 e^- + 2 $\overline{\nu}_e$ But not 136 Xe⁵⁴ \rightarrow 136 Cs⁵⁵ + e^- + $\overline{\nu}_e$

If ν_e is its own antiparticle, process can occur with no ν !

Measurement: look for e^-e^- right at *Q*-threshold. Several ongoing experiments, approaching required sensitivity.

19: Summary

Neutrinos are massive!

- Direct detection of neutrino masses still only provides limits
- If mass, flavor bases are different, neutrinos can oscillate
- Requires MeV and kilometers or Gev and thousand kilometers
- Several oscillation phenomena observed: neutrinos from Sun, reactors, beams, cosmic ray showers.
- Two splittings $\Delta m_{13} = 2.4 \times 10^{-3} \text{ eV}^2$ and $\Delta m_{12} = 7.5 \times 10^{-5} \text{ eV}^2$
- mixing angles are large! Not like CKM at all!
- We don't know if *R*-neutrino is its own species, or antiparticle of *L*-neutrino (Dirac or Majorana?)
- Neutrinoless double beta experiments can resolve this.

Adds 7 parameters to Standard Model. 9 for Majorana. 5 are already measured.