Teilchenphysik: Lecture 5: Internal symmetries

We will discuss two types of internal symmetries:

- Continuous internal symmetries. Specifically, baryon number, lepton number, and much more interesting, isospin
- discrete symmetries:
 - parity P (actually a spacetime symmetry, but ...)
 - charge conjugation C
 - time reversal T (also a spacetime symmetry)

and their combination, CPT, which is always valid

2: Electric charge

You already know this one. Every particle carries an electric charge:

- ▶ the electron-type particles e^- , μ^- , τ^- carry charge q = -1
- The up-type quarks u, c, t carry charge $q = +\frac{2}{3}$
- The down-type quarks d, s, b carry charge $q = -\frac{1}{3}$
- The weak boson W⁺ carries a charge q = +1
- Antiparticles carry the opposite charge: e^+ , μ^+ , τ^+ are q = +1, \bar{u} , \bar{c} , \bar{t} are $q = -\frac{2}{3}$, \bar{d} , \bar{s} , \bar{b} are $q = +\frac{1}{3}$, W^- is q = -1
- ► The remaining particles γ , g, Z, $\nu_{e,\mu,\tau}$, $\bar{\nu}_{e,\mu,\tau}$ are neutral, q = 0

Symmetry transformation: rotate state $|\psi\rangle$ of charge q ($\hat{Q}|\psi\rangle = q|\psi\rangle$) by a phase $e^{iq\theta}$ changes no physics.

State of mixed charge $|\psi\rangle = c_1 |\psi_1\rangle + c_2 |\psi_2\rangle$, $Q|\psi\rangle = q_1 c_1 |\psi_1\rangle + q_2 c_2 |\psi_2\rangle$

 $|\psi_1\rangle$ and $|\psi_2\rangle$ must be orthogonal and must always stay that way. *q* must be conserved by time evolution.

3: Electric charge: consequences

When particles interact or decay, initial q must equal final q.

- Reaction $\pi^+ p \to \pi^0 n$ forbidden, but $\pi^0 p \to \pi^+ n$ allowed
- Decay $n \rightarrow p^+ e^- \bar{\nu}_e$ allowed, but $n \rightarrow p^+ \gamma$ forbidden
- Lightest charged particle e⁻ has no energetically allowed decay, and must be absolutely stable
- ▶ Its heavier cousins need not be stable: $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$ and $\tau^- \rightarrow \nu_\tau \pi^-$ are allowed and in fact occur

Not only at beginning vs end of process: also *everywhere within a Feynman diagram* (We will see what this means before long ...)

4: Similar conserved charges: B and L

Baryon number:

- every quark *uctdsb* has baryon number $B = +\frac{1}{3}$, antiquarks have $B = -\frac{1}{3}$
- all others have baryon number B = 0.

Lepton number:

- ► every lepton e^- , μ^- , τ^- , ν_e , ν_μ , ν_τ has lepton number L = +1, their antiparticles have L = -1
- All others have L = 0

All observations are consistent with each being conserved.¹

- ► Decay $n_{udd} \rightarrow p^+_{uud} e^- \bar{\nu}_e$ allowed but $p^+_{uud} \rightarrow e^+ \pi^+_{u\bar{d}} \pi^-_{d\bar{u}}$ forbidden. Searched for, not observed: lifetime $\tau > 10^{32}$ years.
- Decay $\tau^- \rightarrow \mu^- \nu_\tau \bar{\nu}_\mu$ allowed but $\tau^- \rightarrow \bar{p}^- \pi^0$ forbidden

¹We know that *B* and *L* are *anomalous* but this has no practical consequences. Neutrino oscillations *may* imply *L* violation but this remains unproven.

5: More fun example: Isospin

Consider up quark *u*, down quark *d*.

- Strong interactions treat them identically.
- ► Not quite same mass, m_d ≃ 5MeV, m_u ≃ 2MeV, but both are small so difference is small effect
- Different electric charge but E&M has \(\alpha_{EM} = 1/137\) small effect vs. strong force

Good approximate (not exact) symmetry:

$$\left[\begin{array}{c} u \\ d \end{array}\right] \rightarrow \left[\begin{array}{c} U_{11} & U_{12} \\ U_{21} & U_{22} \end{array}\right] \left[\begin{array}{c} u \\ d \end{array}\right]$$

with $U = e^{i\theta_i \tau_i/2} \in SU(2)$, eg,² like rotations on spin-up, spin-down Rotation $e^{i\theta_3 \tau_3/2}$ almost exact (broken by weak force)

Rotations which mix u, d ($e^{i\theta_1\tau_1/2}, e^{i\theta_2\tau_2/2}$) less-exact

²The τ_i are the Pauli matrices. Write σ_i when using Paulis for true spin, τ_i for isospin

6: Isospin multiplets

The pair of quarks (u, d) are a *doublet* (like spin- $\frac{1}{2}$) Antiparticles (\bar{d}, \bar{u}) also doublet.

Combine quark+antiquark:
$$\frac{1}{2} \otimes \frac{1}{2} = 1 \oplus 0$$

Triplet is $\pi^+ = u\bar{d}$, $\pi^0 = \frac{u\bar{u}-d\bar{d}}{\sqrt{2}}$, $\pi^- = d\bar{u}$. Singlet is η^0 (heavier...)

Combine three quarks:
$$\frac{1}{2} \otimes \frac{1}{2} \times \frac{1}{2} = (1 \oplus 0) \otimes \frac{1}{2} = \frac{3}{2} \oplus \frac{1}{2} \oplus \frac{1}{2}$$

One of the $\frac{1}{2}$ is (*p*, *n*) proton+neutron. (The others come later)

Prediction: $m_{\pi^+} \simeq m_{\pi^0} \simeq m_{\pi^-}$ (139.57, 134.98, 139.57 MeV) and $m_p \simeq m_n$ (938.27, 939.56 MeV)

7: More predictions of Isospin

Scatter "a" pion from "a" neutron/proton: 1 $\otimes \frac{1}{2} = \frac{3}{2} \oplus \frac{1}{2}$:

$$\begin{array}{ll} \text{Consider} & p^{+} + \pi^{+} \to p^{+} + \pi^{+} \\ & \left| \frac{1}{2}, \frac{1}{2} \right\rangle |1, 1 \rangle \to \left| \frac{1}{2}, \frac{1}{2} \right\rangle |1, 1 \rangle \\ & \left| \frac{3}{2}, \frac{3}{2} \right\rangle \to \left| \frac{3}{2}, \frac{3}{2} \right\rangle = \mathcal{M}_{3/2} \\ \text{Whereas:} & p^{+} + \pi^{0} \to p^{+} + \pi^{0} \\ & \left| \frac{1}{2}, \frac{1}{2} \right\rangle |1, 0 \rangle \to \left| \frac{1}{2}, \frac{1}{2} \right\rangle |1, 0 \rangle \\ \frac{1}{\sqrt{3}} \left| \frac{3}{2}, \frac{1}{2} \right\rangle + \sqrt{\frac{2}{3}} \left| \frac{1}{2}, \frac{1}{2} \right\rangle \to \frac{1}{\sqrt{3}} \left| \frac{3}{2}, \frac{1}{2} \right\rangle + \sqrt{\frac{2}{3}} \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{1}{3} \mathcal{M}_{3/2} + \frac{2}{3} \mathcal{M}_{1/2} \\ \text{Also possible:} & p^{+} + \pi^{0} \to n + \pi^{+} \\ & \left| \frac{1}{2}, \frac{1}{2} \right\rangle |1, 0 \rangle \to \left| \frac{1}{2}, -\frac{1}{2} \right\rangle |1, 1 \rangle \\ & \frac{1}{\sqrt{3}} \left| \frac{3}{2}, \frac{1}{2} \right\rangle + \sqrt{\frac{2}{3}} \left| \frac{1}{2}, \frac{1}{2} \right\rangle \to \frac{2}{\sqrt{3}} \left| \frac{3}{2}, \frac{1}{2} \right\rangle - \sqrt{\frac{1}{3}} \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{\sqrt{2}}{3} \mathcal{M}_{3/2} - \frac{\sqrt{2}}{3} \mathcal{M}_{1/2} \end{array}$$

8: Isospin scattering

Scattering theory: $\mathcal{M}_{3/2}$, $\mathcal{M}_{1/2}$ are functions of angle and CM energy. QCD predicts them but QCD is really hard. Treat as unknown functions. How does this help???

Eight independent processes: $(p, n) + (\pi^{+,0,-})$ including $p^+\pi^0 \leftrightarrow n\pi^+$ and $p^+\pi^- \leftrightarrow n\pi^0$. But all expressible in terms of two "scattering amplitudes" $\mathcal{M}_{3/2}, \mathcal{M}_{1/2}$. 8 processes determined by only 2 (complex) functions! Several predictions!

Inter-relations are not exact but are good to a few %.

9: Isospin, Deuteron, Dineutron

A neutron and proton can stick together into D^+ . Why no bound *nn* or *pp* states? They are both unstable.

$$pp = \left|\frac{1}{2}, \frac{1}{2}\right\rangle \left|\frac{1}{2}, \frac{1}{2}\right\rangle = \left|1, 1\right\rangle$$
 but $pn = \left|\frac{1}{2}, \frac{1}{2}\right\rangle \left|\frac{1}{2}, -\frac{1}{2}\right\rangle = \frac{1}{\sqrt{2}} \left|1, 0\right\rangle + \frac{1}{\sqrt{2}} \left|0, 0\right\rangle$

So *pp* is always isospin-0 but *pn* can be isospin-1 or isospin-0. Isospin-0 is deeper bound. (Why? That's tricky QCD.)

prediction: p, n are fermions. Total wave function must be odd. Isospin-0 is odd $\frac{|pn\rangle - |np\rangle}{\sqrt{2}}$, so spin state must be even: spin-1. \checkmark

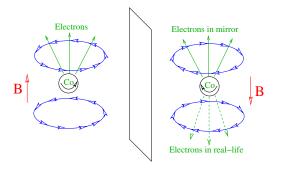
10: Discrete symmetry: parity

When you look in the mirror, are the laws of physics you see correct?

11: Explicit parity violation

No they are not!

12: Explicit parity violation



⁶⁰₂₇Co is unstable,

$$^{60}_{27}\mathrm{Co}
ightarrow ^{60}_{28}\mathrm{Ni}$$
 + e^- + $ar{
u}_e$

and has large spin. Align spin with *B* field. e^- comes out preferentially in spin direction, which violates parity

13: So why talk about parity at all?

The *weak force* violates parity. But it's *weak. Strong, Electromagnetic, gravitational* forces respect parity. They are 99.9% of the physics we deal with daily.

Standard to define parity not as mirror-reflection, but as reflection of *all three* axes. (Mirror reflection = parity + rotation). Apply twice: get back where you started.

Parity operator $\hat{P} \quad \hat{P}\hat{x} = -\hat{x}\hat{P}$. Double operation $\hat{P}\hat{P} = \mathbf{1}$

Scalar: $\hat{P}s = s\hat{P}$ Pseudoscalar: $\hat{P}p = -p\hat{P}$ Vector: $\hat{P}\vec{v} = -\vec{v}\hat{P}$ Pseudovector: $\hat{P}\vec{a} = \vec{a}\hat{P}$

Odd-parity states only mix with odd-parity states, and even with even. Two odd-parity particles are net even-parity, just as $(-1)^2 = 1$.

14: Charge conjugation

Turn all matter into antimatter and vice versa.

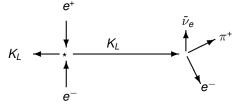
$$\hat{C}n = \bar{n}\hat{C}$$
 $\hat{C}\pi^{+} = \pi^{-}\hat{C}$ $\hat{C}\pi^{0} = (\pm 1)\pi^{0}\hat{C}$

For a particle which is its own antiparticle, *C* takes the particle to itself – up to an overall phase. But since $\hat{C}\hat{C} = 1$, phase must be +1 or -1. If phase is +1, particle is *C*-even. If -1, it's *C*-odd. We will see that the π^0 is *C*-even but *P*-odd.

Weak interactions break C, but strong, EM, gravity respect it.

15: Combining C with P

The combined transformation is *almost* a symmetry of weak interactions. But not quite: imagine colliding e^+e^- at > 1 GeV energy:



Can create a pair of K_L particles, mass 497 MeV. K_L is unstable: 40% of decays are to $\pi^+ e^- \bar{\nu}_e$ or $\pi^- e^+ \nu_e$. But $\pi^- e^+ \nu_e$ occurst 0.3% more often than $\pi^+ e^- \bar{\nu}_e$.

Initial state is *C* and *P* symmetric. But I end up with more π^- than π^+ . That Violates C and CP! But the violation is tiny and only occurs in special reactions

16: Time reversal symmetry Run a movie backwards: is the *microphysics* right? The Experiment Time Reversed: В B

Neutron in *B*-field aligns spin. Look for *electric* dipole.

If it exists – same physical law would give *opposite* dipole if the movie runs backward. So far: no dipole observed, *T* respected (dipole $< 10^{-13} e \text{ fm}$)

17: CPT theorem

Deep theoretical result (theorem): the combined symmetry transformations C, P, T together (CPT = CTP = PTC = ...) are *always* a symmetry.

Counterexamples searched/tested for but never found.

Implies that T is not a valid symmetry, by the same tiny effects which break CP.

18: Summary

- Electric charge arises from a U(1) symmetry and gives charge conservation
- Similar charges B and L exist in particle physics
- Isospin is a more interesting example.
 - Not exact but approximate SU(2) symmetry
 - Organizes particles into "multiplets"
 - Gives precise relations for masses and interactions
- Parity mirror reflection violated only by weak interactions
- ► Charge conjugation matter ↔ antimatter also broken weakly
- CP and T nearly valid (tiny weak-interaction violations), and CPT is exact