
Teilchenphysik:
Lecture 6: Feynman Rules

So what is it that we want to calculate?
I What does 1 particle do? Decay rates / widths and partial widths
I What do 2 particles do? Scattering cross-sections (total, differential)
I What else can 2+ particles do? Bound states (skip for now)

How do we calculate them?
I Amplitudes and matrix elements
I Fermi’s Golden Rule
I Feynman calculus to find matrix elements

Today we talk about defining the things we want, and the kinematics of production



2: Decay rates

Imagine that I have an unstable particle A. What does that mean?

At time t = 0: |ψ〉 = |A〉 but at time t1: e−iHt1 |ψ〉 = e−imAt1 c1|A〉 + c2|B, C〉

where |B, C〉 is a state with no A particle, but with some other stuff instead.
Probability to still be an A particle: c∗1 c1.
Probability to be something else: c∗2 c2 = 1− c∗1 c1

Suppose A is relatively long-lived : after time t1 � 1/mA, we still have c∗2 c2 � 1,
c∗1 c1 ' 1. Then B, C particles tend to fly away and escape



3: Decay rate as exponential process

If |B, C〉 flies away, it never evolves back into |A〉:

e−iHt1 |A〉 = e−imAtc1|A〉 + c2|B, C〉
e−2iHt1 |A〉 = e−2imAtc2

1 |A〉 + e−imAtc1c2|B, C〉 + c2e−iHt |B, C〉
e−3iHt1 |A〉 = e−3imAtc3

1 |A〉 + e−2imAtc2
1c2|B, C〉 + e−imAtc1c2e−iHt1 |B, C〉 + c2e−2iHt1 |B, C〉 ...

The probability to still be particle-type A goes, at times (0, t1, 2t1, 3t1, ...), as
(1, |c1|2, |c1|4, |c1|6, ...) which is a geometric series

Probability to still be A decays exponentially:
Prob(A at time t)= e−Γt = e−t/τ

We call Γ the decay width and τ the decay time

Strategy will be based on computing c∗2 c2, not c1.



4: Multiple final states

There are almost always multiple possible final states.

e−iHt |K +〉 = e−imK tc1|K +〉 + c2|µ+νµ〉 + c3|π+π0〉 + c4|π+π+π−〉 + ...

Decay depends on c∗2 c2

t = Γµ+νµ , c∗3 c3

t = Γπ+π0 , c∗4 c4

t = Γπ+π+π− , ....
We call these partial widths for each decay process.
The sum is the total width Γ = Γ1 + Γ2 + ...

We also introduce the branching ratio

Bri =
Γi

Γ
= probability that final state will be i



5: Next topic: Cross-section

Question: I shoot something (electron? arrow?) at a target (proton? bull’s eye?).
How likely am I to hit?
Depends on three things:
I How “big” is the target? Cross section
I How many times do I shoot?
I How good is my aim?

Product of (times I shoot)×(aim) = Luminosity (particles / cm2 s)

Number of “hits” per second is Luminosity × Cross section.

Luminosity: how good an accelerator engineer do you have?

Cross-section: something for theorists to compute.



6: Classical example: hard sphere

Shoot small rubber balls at a hard sphere of radius R

Distance b from axis
(impact parameter):
scattering occurs if b < R.
Total cross-section σ = πR2

Units of area

Angle scattered:
θ = 2 arccos(b/R)
(and φout = φin)

b = 0: θ = π. b → R: θ → 0



7: Hard Sphere: differental cross-section

We have more info than total cross-section σ = πR2.
We can say how many balls get scattered into each angle θ, or really each
solid-angle sin(θ)dθdφ

Area of incident beam with b ∈ [b0, b0 + db] and φ ∈ [φ0,φ0 + dφ] is b db dφ.

differential cross-section (note, dΩ = sin(θ) dθ dφ)

σ =
∫

dσ
dΩ

dΩ Hard sphere:
dσ
dΩ

=
b db dφ

sin(θ)dθdφ
=

b
sin(θ)

db
dθ

We already found b = R cos(θ/2), |db/dθ| = −R sin(θ/2)/2

dσ
dΩ

=
b

sin(θ)
db
dθ

=
R cos(θ/2)

sin(θ)
R sin(θ/2)

2
=

R2

4
isotropic!



8: Cross sections in Quantum Mechanics

It is important to understand that the strict geometrical picture from the
hard-spheres example is deceptive.
For large objects (nuclei) and high enough energies, b is well defined and a
geometrical picture is OK. But note:

~b × ~p = ~L angular momentum classical if bp � ~

Nuclear size b ∼∼ 5 fm, classical for p > 40 MeV. Proton is 10× smaller, need 400
MeV to see its physical size (p < 400MeV sees proton as point particle)

Otherwise, scattering really a quantum process.
fundamental particles have no geometrical size – always essentially quantum.



9: Fermi Golden Rule: Decays

Decays happen because of interaction Hamiltonian and time-dependent
perturbation theory. Consider Hamiltonian:

H = “∂µA∂µA + m2A2 + same for B, C” + “ABC”

There are parts of H which “tell” particles to propagate, and what masses they
have, and a part which describes interactions:

〈A|HABC |BC〉 6= 0

If I have a state containing particle A, it constantly produces an amplitude to have
BC instead.

Produces all possible BC combinations consistent with momentum conservation.



10: Possible decay final states

Consider an A particle at rest. What B, C are possible?

Any final momenta so long as they add up to pA (0 in rest frame)



11: Which final state gets made?

All of them! It’s QM, they each have an amplitude

〈BC|H|A〉 6= 0 if HABC 6= 0

H|A〉 = c1|Bp1 C−p1〉 + c2|Bp2 C−p2〉 + ...

Decay into QM superposition of all B, C states.
BUT each B, C state still evolves with time!
Tiny bit of time-evolution: (lots of 1/~ left out!!)

e−iHdt |A〉 = e−iEAdt |A〉 + c1 dt |BC1〉 + ...

e−iHdte−iHdt |A〉 = e−2iEAdt |A〉 + c1 dt e−iEAdt |BC1〉 + c1 dt e−iEBC1 dt |BC1〉 + ...

First BC term: generated from |A〉.
Second BC term: time evolution from first time.
Longer time t1: BC generated at every time, each picks up a different phase:

At time t1:
∫ t1

0
dt c1e−iEAte−iEBC1 (t1−t) |BC1〉



12: Energy selection

What if EBC1 6= EA? Call ∆E = EBC1 − EA.

Amplitude at time t :
∫ t1

0
dt c1e−iEAte−iEBC1 (t1−t) = c1e−iEAt

∫ t

0
dt ′e−it′ ∆E dt ′

Squared amplitude:
∣∣∣∣∫ t

0
dt ′e−it′ ∆E dt ′

∣∣∣∣2 =
4 sin2(∆E t/2)

∆E2

As t increases, function becomes
more peaked. Total area under curve
= πt linear in time.
Late times: EBC = EA or probability
→ 0



13: Decay rate

Taking t “large” (mc2t/~� 1 so ∆E � mc2)
Decay rate is phase space × pµ conservation × “Matrix Element”

ΓA→BC =
1

2mA

∫
d3pB d3pC

(2π)32EB (2π)32EC
× (2π)4δ4(pµA − pµB − pµC)× |MA→BC |2

ΓA→BCD =
1

2mA

∫
d3pB d3pC d3pD

(2π)32EB (2π)32EC (2π)32ED

× (2π)4δ4(pµA − pµB − pµC − pµD)× |MA→BCD|2

I Meaning of |MA→BC |2: squared amplitude for microphysics to turn A into BC.
Roughly |〈BC|H|A〉|2, all info about theory is here

I Factor 1/2mA → 1/2EA if particle not at rest.
Accounts for time dilation

I Combination d3p/2Ep is the same in all rest frames.



14: And scattering?

When A and B scatter into C and D, the expression is similar.
Cross section is:

σAB→CD =
1

2EA 2EB |~vA − ~vB|

∫
d3pC d3pD

(2π)32EC (2π)32ED

× (2π)4δ4(pµA + pµB − pµC − pµD)× |MAB→CD|2

Each extra final particle has the same integration factor.

Why this leading factor? Dimensional grounds: σ, an area, should scale with E−2.
And this combination is frame independent.

Intuition: 1/(vA − vB) “flux factor” means slow-moving particles,
with more time to interact, have larger cross-section.



15: Three-body scattering?

This is almost impossible to make happen in a particle physics experiment. Hard
enough to get 2 bodies to come together!

But in a region with a phase-space density of particle type A of fA(p, x) (number of
particles per d3x per d3p), the number of ABC → DEF scatterings is:

NABC→DEF =
∫

d4x
∫

d3pAd3pBd3pC

(2π)92EA2EB2EC
fA(x , pA)fB(x , pB)fC(x , pC)

×
∫

d3pDd3pE d3pF

(2π)92ED2EE 2EF
(1± fD(x , pD))(1± fE (x , pE ))(1± fF (x , pF ))

× (2π)4δ4(pA + pB + pC − pD − pE − pF )|MABC→DEF |2

Here (1± fD,E ,F ) are Bose stimulation (+) or Pauli blocking (−) factors.



16: Summary

Unstable particles decay. If they live long compared to ~/mc2 then there is a
well-defined decay rate Γ.

The final state particles must match the energy and momentum of the initial
particle. With this constraint, we must integrate over all possible final state
momenta.

Two or more particles can scatter. They scatter more often if you have good aim:
rate of scatterings is “cross-section” (physics) times “luminosity” (accelerator
design)

The total cross-section involves an integral over all final state momenta, subject to
energy-momentum conservation. “Physics” is incorporated in the matrix element
M.


