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there is an external electric or magnetic field, say in the z-direction. The rotational
symmetry is now manifestly broken; as a result, the (2 + 1)-fold degeneracy is
no longer expected and states characterized by different m-values no longer have
the same energy. We will examine how this splitting arises in Chapter 5.

SO(4) Symmetry in the Coulomb Potential

A fine example of continuous symmetry in quantum mechanics is afforded by the
hydrogen atom problem and the solution for the Coulomb potential. We carried
out the solution to this problem in Section 3.7, where we discovered that the en-
ergy eigenvalues in (3.7.53) show the striking degeneracy summarized in (3.7.56).
Tt would be even more striking if this degeneracy were just an accident, but in-
deed, it is the result of an additional symmetry that is particular to the problem of
bound states of 1/ potentials.

The classical problem of orbits in such potentials, the Kepler problem, was of
course well studied long before quantum mechanics. The fact that the solution
leads to elliptical orbits that are closed means that there should be some (vec-
tor) constant of the motion that maintains the orientation of the major axis of the
ellipse. We know that even a small deviation from a 1/ potential leads to preces-
sion of this axis, so we expect that the constant of the motion we seek is in fact
particular to 1/r potentials.

Classically, this new constant of the motion is

(4.1.19)

where we refer to the notation used in Section 3.7. This quantity is generally
known as the Lenz vector or at times as the Runge-Lenz vector. Rather than be-
labor the classical treatment here, we will move on to the quantum-mechanical
treatment in terms of the symmetry responsible for this constant of the motion.

This new symmetry, which is called SO(4), is completely analogous to the
symmetry SO(3) studied in Section 3.3. That is, SO(4) is the group of fotation
operators in four spatial dimensions. Equivalently, it is the group of orthogonal
4 x 4 matrices with unit determinant. Let us build up the properties of the sym-
metry that leads to the Lenz vector as a constant of the motion, and then we will
see that these properties are those we expect from SO(4).

Our approach closely follows that given by Schiff (1968), pp. 235-39. We first
need to modify (4.1.19) to construct a Hermitian operator. For two Hermitian
vector opei*‘;itors A and B, it is easy to show that (A x B)' = —B x A. Therefore,
a Hermitian version of the Lenz vector is

1 Ze?
M= —(pxL-Lxp)—-—r. (4.1.20)
2m r

It can be shown that M commutes with the Hamiltonian

p2 Zez.

2m r

H 4.1.21)
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that is,
M,H}=0, (4.1.22)

so indeed M is a (quantum—mechanical) constant of the motion. Other useful re-
lations can be proved, namely
L-M=0=M-L (4.1.23)
0 2
and  MP=H(L2+ n)+2%" (4.124)

m

In order to identify the symmetry responsible for this constant of the motion, it
is instructive to review the algebra of the generators of this symmetry. We already
know part of this algebra:

[Li,L;)=iheijkLi, (4.1.25)

which we wrote earlier as (3.6.2) in a notation where repeated indices (k in this
case) are automatically summed over components. One can also show that

[Mi,Lj]:ihS,'jkMk, (4.126

which in fact establish M as a vector operator in the sense of (3.11.8). Finally, i
is possible to derive

2 ,
[M;, M} = —iheije—HLi. (4.1.27)
’ m

To be sure, (4.1.25), (4.1.26), and (4.1.27) do not form a closed algebra, due to.
the presence of H in (4.1 27), and that makes it difficult to identity these operators
as generators of a continuous symmetry. However, we can consider the problen
of specific bound states. In this case, the vector space is truncated only to those
that are eigenstates of H, with eigenvalue E < 0.In that case, we replace H with
E in (4.1.27), and the algebra is closed. Tt is instructive to replace M with the

scaled vector operator
m\1/2
N= (—— ———) M
2F

In this case we have the closed algebra
[Li,L;] = iheijile
[Ni,L;] = iheijeNe,
[Ni,N;] = iheijiLi.

So what is the symmetry operation generated by the operators L and N i
(4.1.29)? Although it is far from obvious, the answer is “rotation in four spatid
dimensions.” The first clue is in the number of generators, namely six, each of th
should correspond to rotation about some axis. Think of a rotation as an operation
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that mixes two orthogonal axes. Then, the number of generators for rotations in n
spatial dimensions should be the number of combinations of n things taken two
at a time, namely n(n — 1)/2. Consequently, rotations in two dimensions require
one generator—that is, L,. Rotations in three dimensions require three generators,
namely L, and four-dimensional rotations require six generators.

It is harder to see that (4.1.29) is the appropriate algebra for this kind of rota-
tion, but we proceed as follows. In three spatial dimensions, the orbital angular-
momentum operator (3.6.1) generates rotations. We saw this clearly in (3.6.6),
where an infinitesimal z-axis rotation on a state |«) is represented in a rotated
version of the |x,y,z) basis. This was just a consequence of the momentum op-
erator being the generator of translations in space. In fact, a combination like
L, = xpy — ypx indeed mixes the x-axis and y-axis, just as one would expect
from the generator of rotations about the z-axis.

To generalize this to four spatial dimensions, we first associate (x,y,z) and
(Px,> Py» P7) With (x1,x2,x3) and (p1, p2, p3). We are led to rewrite the generators
as Lz =Ly =x1p2 —x2p1, L1 = L3, and Ly = L3;. If we then invent a new
spatial dimension x4 and its conjugate momentum p4 (with the usual commutation
relations), we can define

Lia=x1ps—x4p1 =Ny, (4.1.30a)
Los = X2pa—Xap2 = Na, (4.1.30b)
Ly = X3p4 —X4p3 = N3. (4.1.30c)
It is easy to show that these operators N; obey the algebra (4.1.29). For example,

[Ni,La] = [x1pa—Xxap1,Xx3p1 — X1 P3]}
= palxy, prlxes +x4lpr.x1lps

= ih(x3pg—xq4p3) =ihN3. (4.1.31)

In other words, this is the algebra of four spatial dimensions. We will return to

this notion in a moment, but for now we will press on with the degeneracies in the

Coulomb potential that are implied by (4.1.14).
Defining the operators

I=(L+N)/2, (4.1.32)
K=(L-N)/2, ' (4.1.33)

we easily can prove the following algebra:

[]i,[j]:ihgijklk, (4.1.342)
[Ki K] = ihegiKe, (4.1.34b)
[£i,K;]=0. (4.1.34¢)

Therefore, these operators obey independent angular-momentum algebras. It
is also evident that [I, H] = {K, H] = 0. Thus, these “angular momenta” are
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conserved quantities, and we denote the eigenvalues of the operators I? and
by i(i + 1)h? and k(k + 1)1, respectively, with i .k =0,3,1,3,....

Because I2 — K2 = L-N = 0 by (4.1.23) and (4.1.28), we must have i =k.On
the other hand, the operator

P+K= % (L2 + }v2) = % (L2 M (4.135)

leads, with (4.1.24), to the numerical relation

1 m
2k + D% = = (—h% — —
(k+1) 2( 2F

Solving for E, we find

mZ%e*t 1 ~
| S —— 4.137)
2h2 (2k+1)? ( )

This is the same as (3.7.53) with the principal quantum number n replaced by
2k + 1. We now see that the degeneracy in the Coulomb problem arises from the:
two “rotational” symmetries represented by the operators I and K. The degree of
degeneracy, in fact, is (2i + 1)(2k + 1) = (2k 4 1)> = n%. This is exactly what we
arrived at in (3.7.56), except it is now clear that the degeneracy is no accident.

It is worth noting that we have just solved for the eigenvalues of the hydrogen
atom without ever resorting to solving the Schrodinger equation. Instead, we ex-
ploited the inherent symmetries to arrive at the same answer. This solution was
apparently first carried out by Pauli.

In the language of the theory of continuous groups, which we started to develop
in Section 3.3, we see that the algebra (4.1.29) corresponds to the group SO(4).
Furthermore, rewriting this algebra as (4.1.34) shows that this can also be thought
of as two independent groups SU(2)—that is, SU(2) x SU(2). Although it is not
the purpose of this book to include an introduction to group theory, we will carty
this a little further to show how one formally carries out rotations in n spatial
dimensions—that is, the group SO(n).

Generalizing the discussion in Section 3.3, consider the group of n x n orthogo-
nal matrices R that carry out rotations in # dimensions. They can be parameterized
as

n(n—1)/2
R=expli Y ¢977], (4.1.38)
g=1

where the t9 are purely imaginary, antisymmetrical n x n matrices—that is,
(r9)T = —r9—and the ¢7 are generalized rotation angles. The antisymmetry
condition ensures that R is orthogonal. The overall factor of i implies that the
imaginary matrices t¢ are also Hermitian.

The 79 are obviously related to the generators of the rotation operator. In fact,
it is their commutation relations that should be parroted by the commutation re-
lations of these generators. Following along as in Section 3.1, we compare the




