
Lecture 18: Reflection and Impedance

Let us look again at the question of what happens when a sound wave in the air runs

into the surface of a body of water (or a wall, or glass, or whatever). How much of the wave

is reflected, and how much becomes a sound wave inside the water?

Recall first that the velocity of the air due to the wave, and the pressure of the air due

to the wave, were related via

P − Patmos = (ρairvsound,air)(vair − v“wind′′)

From now on I will write ∆P as the pressure difference from atmospheric and will ignore

the possibility of wind speed, so vair is the air motion because of the sound wave.

The relation between pressure change and velocity change in a sound wave is true of all

media, it is not special to air. The key is that you have to use the speed of sound and density

of the medium you are thinking about. Because it comes up so often, the product ρvsound (a

characteristic of a material) is called the mechanical impedance Z:

Mechanical impedance Z ≡ ρvsound .

If you compare Z between air and most other materials, you find out both that ρair is small

(typically 500–5000 times smaller than in another material), and that vsound in the air is

small (typically 3–10 times smaller than in another material). Therefore the mechanical

impedance Z of a solid or liquid will be far larger than for air.

Now consider a sound wave in the air hitting the surface of a lake or other body of water.

The sound wave approaching the water contributes a pressure which I will call ∆P→ and an

air velocity v→, which satisfy

∆P→ = Zairv→ .

Note that I am measuring v in terms of the direction the sound wave is moving, that is, from

the air into the water. There will be a sound wave in the water, moving away from the air.

It will have a pressure and water velocity

∆PH2O = ZH2OvH2O .

To relate these, I have to think about what happens right at the surface. The air ends

exactly where the water begins. Therefore, however fast the air is moving right at the surface,

the water must be moving at the same speed. Also, the air pushes on the water exactly as

hard as the water pushes on the air. Therefore,

vair = vH2O and ∆Pair = ∆PH2O .

If you try to put these together with the results for the pressures and velocities, you will find

that the only way to get both things to be true, is either to have the Z’s be equal, or to have
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the ∆P ’s both be zero. The reason is, of course, that I tricked you by leaving out something

important. There will always be a reflected wave going off into the air. It satisfies,

∆P← = −Zairv←

because the wave is going in the opposite direction. The total air motion and pressure are

the sum of those from the two waves:

∆Pair = ∆P→ +∆P← , vair = v← + v→ .

The next part is derivation and you can skip to the end if you don’t want to see it.

[At this point I have 5 equations (3 relations between ∆P and v for each wave, and the

two equalities at the water surface) in 6 unknowns (three pressures and three velocities). I

can use the relations between pressures to express the v’s in terms of ∆P ’s and write both

equalities in terms of pressures:

∆P→ +∆P← = ∆PH2O

∆P→
Zair

−
∆P←
Zair

=
∆PH2O

ZH2O

In the last expression, multiply through by Zair. Then add the top expression:

2∆P→ =
Zair + ZH2O

ZH2O

∆PH2O , (1)

∆PH2O =
2ZH2O

ZH2O + Zair

∆P→ , (2)

and also, ∆P← =
ZH2O − Zair

ZH2O + Zair

∆P→ (3)

This relates the pressure of the incoming sound wave to the pressure of the sound wave in

the water. You see that the sound wave in the water has about twice the pressure of the one

in the air, since ZH2O is much larger than Zair; so the relation is almost ∆PH2O = 2∆P→.

That makes it sound like the wave in the water is not so small after all. But you have to

remember the relation between intensity and pressure, and that what really counts is the

intensity. The intensity of the sound wave in the water is,

IH2O =
∆P 2

H2O

ZH2O

=
4ZH2O

(Zair + ZH2O)2
∆P 2

air =
4ZairZH2O

(Zair + ZH2O)2
Iair .

Similarly, you can take equation (3) and square both sides to find that

Ireflected =
(ZH2O − Zair)

2

(ZH2O + Zair)2
Iair .
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That ends the derivation and you can start reading again.]

Now rewrite that for an incident (incoming) sound wave going from a medium of imped-

ance Z1 to a medium of impedance Z2. There is a transmitted wave (the one which makes

it into the new medium) and a reflected wave, of intensities,

Itransmitted
Iincident

=
4Z1Z2

(Z1+Z2)2
and

Ireflected
Iincident

=
(Z1−Z2)

2

(Z1+Z2)2

When I1 and I2 are very different (as for air and water), these expressions mean that

almost all the energy is reflected and not transmitted: Itransmitted/Iincident ' 4Z1/Z2 if Z1 is

smaller. Note that the result here is for right-angle incidence. It is different at a different

angle, but I will not present that just so as not to confuse matters further.

For air and water, since

Zair = ρairvsound,air = 1.2 kg/m
3 × 344 m/s = 400

kg

m2 s

Zwater = ρH2Ovsound,H2O = 1000 kg/m
3 × 1400 m/s = 1400000

kg

m2 s
Zair

Zwater

'
1

3500

which is indeed tiny. This means, using the formulas above, that when sound reflects off

water, only 4/3500 of the intensity makes it through. That is a reduction of almost 30 dB

in the intensity of the sound. Note that sound, moving through the water, reflects just as

efficiently to stay in the water and let only a tiny amount into the air.

One other thing about the reflection problem just considered. The pressure of the incident

wave and of the transmitted wave were of the same sign. What about the reflected wave?

This turns out to depend on whether Z1 < Z2 (as for air to water), or Z1 > Z2 (as for water

to air). For Z1 < Z2, the reflected wave has the same sign of ∆P and opposite sign of v. For

the other case, Z1 > Z2, the reflected wave has the same sign of v and opposite sign of ∆P .

You can see this in equation (3) above. This proves important in many problems, and so it

is worth thinking about a little more.

The way to think about it is, that when Z is small, the medium is easy to move around

(like the air–you don’t have to push on it hard to make it move). If the other medium is

hard to move around, then the velocities of the incoming and outgoing waves will need to

cancel, which happens (since they are waves going in opposite directions) when the pressures

are the same. When it is the high Z medium (water) which the sound wave is coming from,

then the medium is hard to move. It only takes a tiny pressure to get the other medium to

move, so the incoming and outgoing waves must have opposite pressure from each other.

Now think about a pane of glass. Instead of three waves–incoming, transmitted, and

reflected–there are five:
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- - -
¾ ¾
incident

reflected

forward

backward

transmitted

air airglass

This problem is more complicated. The problem is that the time when the incoming

wave has its peak pressure need not be the time when the forward and backward waves have

their peak pressures. I will not drag you through a derivation of what happens in this case,

but I will quote two limits for the answer.

First, think about a very thin panel of glass. The forward wave has the same sign of

pressure as the incident wave. The backward wave, though, has the opposite sign of pressure,

because of the remarks about reflected waves we made above. That means that the forward

wave can have a bigger pressure, and still satisfy the matching condition where the air and

glass meet. That means that much more sound will get through. The only reason the

sound does not all go through, is that the short time the wave is moving in the glass gets

the pressure peak of the forward and backward moving waves to occur at slightly different

times. This depends on the wavelength of the sound and thickness of the glass. The answer,

after much work, turns out to be,

Itransmitted
Iincident

'

[

Zair

Zglass

]2 [

vsound,glass

πfdglass

]2

, (4)

where dglass is the thickness of the glass. This formula shows that glass lets through more low

frequency sound than high frequency sound, something you have probably all experienced or

can easily check at home. The sounds from outside when you close the window are muffled;

not just quieter, but different in timbre, specifically, losing 6 dB of loudness per octave

frequency compared to the original sound.

Now, what about a very thick piece of stuff? In this case, essentially you can forget about

the backward wave in considering the transmission from air into the glass. Then you just

get the product of the amount of transmission from air to glass, times the transmission from

glass back to air.

If we put typical numbers for the walls of a musical instrument into equation (4), we

find something like 30 to 40 dB of attenuation. That is, the walls of the instrument hold

in essentially all of the sound bouncing around inside of the instrument. Therefore, we can

think of the sound inside an instrument as being perfectly contained by the walls of the

instrument. This leads us to think about sound traveling in a tube.
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Consider sound traveling in a tube, where the walls of the tube hold the sound in perfectly.

What happens if the tube widens abruptly, say, from diameter D1 to diameter D2, both much

smaller than the wavelength of the sound?

6
?

6

?

D1 D2

Consider the sound wave traveling down the narrow part of the tube, reaching this

widening. Instead of talking about the air pressure and the air velocity, talk about the air

pressure and the air flow rate. Surely, the rate the air is flowing has to be the same just

before the widening as just after, since air cannot go anywhere else. The pressure must also

be the same. But the air flow rate is just,

flow = Avair =
πD2

4
vair

We have to have A1v1 = A2v2 and ∆P1 = ∆P2. If we simply define a quantity called

Acoustic Impedance,

ZA ≡
ρvsound

A

then the relation between pressure and air flow is,

∆P = ZA flow .

In computing how much air reflects from the juncture of the two pipes and how much is

transmitted, we can re-use all our previous work, just using ZA instead of Z. The transmitted

and reflected powers are,

Powertransmitted
Powerincident

=
4ZA1ZA2

(ZA1 + ZA2)2
and

Powerreflected
Powerincident

=
(ZA1 − ZA2)

2

(ZA1 + ZA2)2

What about the sign of the pressure for the reflected wave? A wide pipe has a low ZA

(it is easy for the air to move), a narrow pipe has a high ZA (the air moves very little).

Therefore, we can repeat the arguments we made about high and low Z material. When a

narrow pipe opens out, the large pipe will take an airflow easily. The reflected wave therefore

has the same sign of airflow and opposite sign of pressure. When a wide pipe narrows, the

pressure of the reflected wave is the same as the incident wave.
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