
Lecture 19: Resonance and Cavities

A key idea–perhaps the key idea–in musical instruments is the idea of resonance. Reso-

nance is what you call it when some system can store energy two different ways, and energy

goes back and forth from one form to the other, generally in a sine wave pattern. The exam-

ple you are probably most familiar with is a mass suspended from a spring. You might be

even more familiar, from your childhood, with someone swinging on a swing. In this case,

the two ways energy can be stored are, motion of the person on the swing, and the person

being raised up into the air (energy stored in gravitational potential). Starting when the

person is at the top of the swinging motion, gravity pulls them down and therefore forward.

As they gather speed, the energy is moving from gravitational potential into their motion.

At the bottom of the swinging motion, all the energy is in motion. But once in motion, you

remain so until something stops you, so you keep right on going forward and upward. The

energy is then getting taken out of motion into height (gravitational potential) again. At

the top of the swing pattern, the whole thing repeats but with backward motion. If it were

not for air resistance, losses in the swing chains, and so on, you would swing back and forth

forever.

The same idea of resonance comes up in virtually every musical instrument. Since we have

been studying sound, air pressure, and air motion, let us look at a nice example involving

these ideas. Consider a wine bottle, or any other bottle with a big wide part and a long thin

neck. [In physics we call something like this a Helmholtz resonator, after the physicist who

first studied one carefully.] Suppose for some reason that the air inside the bottle is initially

compressed. What happens to the air in the neck of the bottle?

High pressure

* * * * *

* * * * *

The air in the neck is pushed down by the pressure of the air outside. It is pushed up

by the pressure of the air inside. Since that air is compressed, it pushes harder than the air

outside. Therefore the air in the neck is pushed upwards. It accelerates upwards. If initially

at rest, it will start to move, gathering speed with time. Therefore, an instant later, the

situation will be like this:

High pressure -

* * * *

* * * *
Airflow
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When the air in the neck is rising like this, there is a net flow of air, from the body of the

bottle into the air outside the bottle. As air flows out of the body of the the bottle, the

pressure inside will drop. After a moment, the pressure inside the bottle has fallen to be the

same as the air pressure outside, atmospheric pressure:

- Airflow

However, once in motion, the air in the neck will remain in motion. Nothing needs to

push it. Something has to push it the other way to get it to stop. This means that the

air in the neck will keep flowing upwards, emptying out air from the bottle and bringing its

pressure below atmospheric:

Low pressure -

- - - -

- - - -
Airflow

At this point, the air outside the bottle is pushing the neck air downwards more strongly

than the air in the bottle is pushing it up. The air in the neck therefore slows down. After

another moment, it has come to a stop:

Low pressure

- - - - -

- - - - -

At this point the situation is exactly the opposite of what it was at the beginning.

Now the air in the neck will continue to be pushed downwards, and will start flowing

into the bottle. After two moments, it will have put the pressure in the bottle back up to

normal:

Low pressure ¾

- - - -

- - - -
Airflow ¾ Airflow

Again the air keeps moving into the bottle until something actually stops it. Therefore

it will re-pressurize the air inside the bottle. As the air pressure inside the bottle becomes
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more than outside, the air in the neck is again being pushed upwards, and will slow down

and stop:

High pressure ¾

* * * *

* * * *
Airflow High pressure

* * * * *

* * * * *

At this point, the situation is exactly as it was at the beginning. Therefore, the whole

process will now repeat. This produces periodic changes in the pressure and air motion.

Outside the bottle, the alternate outward and inward flows of air from the bottle will become

a sound wave, with a period equal to how long it takes the process to repeat. In other words,

the bottle goes round and round through the 4 stages of the resonance:

High pressure

* * * * *

* * * * *
- Airflow

Low pressure

- - - - -

- - - - -
¾ Airflow

⇒

⇓

⇐

⇑

Let us try to figure out how long it takes for this resonance to go through one full cycle.

This is going to depend on three parameters describing the bottle:

• V , the volume of the bottle;

• A, the cross-sectional area of the tube;

• l, the length of the tube.

Further, I will define ∆P to be the peak overpressure in the bottle, and v to be the peak

air velocity in the neck. The period of the resonance won’t depend on these, but they are

useful in writing down the equations. Also, as usual I have to know the density of air, ρair,

and atmospheric pressure, Patmos.
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I will not do a true derivation, but I will just make an estimate. A real derivation would

not be much harder if I were willing to use calculus. Let us start by estimating how long it

takes, to go from the bottle being pressurized without air flow, to it being all airflow. We

begin by seeing how fast the airflow picks up. The force on the air in the neck is,

F = PbottleA− PoutsideA = ∆P A

which causes an acceleration:

F = ma → a =
F

m
, and m = ρAl → a =

∆P

ρl
.

Note that the area A canceled out.

That means that, if the pressure on the air stayed the same at all times, the velocity of

the air would become,

v =
∆P

ρl
t .

The pressure inside the bottle falls because air is leaving the bottle. The volume of air which

leaves the bottle is the width of the neck times how far the air in the neck moves. How far

the air moves, is its velocity times time. This gives, roughly,

∆V = Avt =
A∆P

ρl
t2 .

Now, how much air needs to leave the bottle for the pressure to fall down to atmospheric?

That will tell me what t has to be, for the pressure to go from maximum to atmospheric.

The pressure loss inside the bottle is atmospheric pressure times the fraction of the air I take

out. That is, if I take out 1/10 of the air in the bottle, the pressure will fall by 1/10 of an

atmosphere, since it is the number of air molecules in the bottle which determines how high

the pressure is. Therefore, to get rid of the overpressure, I need,

∆V

V
=
∆P

Patmos

,

which gives,
A∆P t2

ρlV
=
∆P

Patmos

⇒ t2 =
ρlV

A∆P

∆P

Patmos

=
ρlV

APatmos

.

Recall from long ago, that Patmos/ρ = v2
sound, the square of the speed of sound.

1 Therefore,

I can re-write this all as,

t2 =
lV

Av2
sound

.

1Actually this is not quite right; there was a tiny correction
√

cp/cv. However, the exact same correction

actually should have come up here. For the physicists, what is important in both cases is actually dP/dV

the change in pressure with volume. Since this is the right quantity in both cases, the derivation I made

above is actually wrong until the moment I make this substitution, and then it becomes correct!
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This is the time for one quarter of the resonance phenomenon to go by. Therefore, my rough

estimate is that the whole resonance phenomenon will have a period which is 4 times this

long,

T = 4

√

lV

Av2
sound

.

However, this is an under-estimate. The reason is, that I assumed that the full pressure was

acting on the air in the neck the whole time; really, once the air starts to move, the pressure

is falling. Also, I assumed that the whole velocity was present from the start; really, at first

the velocity is zero, and it only builds up with time. Therefore, the real answer will be a

little longer than this. You should not be surprised to learn that the right answer is actually,

T =
2π

vsound

√

lV

A
or f =

vsound

2π

√

A

lV
.

Now think about this logically. Does each term in the expression belong there?

• Dependence on A: if the neck is wider, the air can empty out of the bottle faster. That

means the pressure falls faster, and the whole process does not take as long. Larger A

gives smaller T , or larger f . That is correct.

• Dependence on l: if the neck is longer, the air in the bottle is pressing on a bigger

mass of air. It takes longer for this larger amount of air to get moving. That means

the whole thing occurs more slowly. Larger l then gives larger T and smaller f . That

is correct.

• Dependence on V : if the volume is bigger, more air has to leave the bottle before the

pressure falls. That takes longer, meaning a larger T or smaller f . That is correct.

• Dependence on vsound: faster sound speed means air responds faster to its environ-

ment, meaning smaller T and larger f . Again, that is the behavior we found in our

“derivation.”

The bottle we considered is one of the simplest systems one can consider, to find a

resonant frequency. For something more complicated, such as the air cavity in the mouth or

hands when you whistle or hand-whistle, it is not so easy to do the calculation. There are a

few other cavities simple enough that the resonant frequency can be found in closed form,

and it turns out that the standard wind musical instruments are each quite close in shape

to one of those other cavitites. For instance, a clarinet’s bore (the hollow space inside the
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wood of the instrument) is almost of constant diameter and is almost completely closed at

the reed and open at the opening: so it is pretty similar to,

a cylindrical tube. We can make a feeble attempt to use the same formula we found above to

describe this tube. The problem is that the whole volume is inside the neck. Still, throwing

caution to the winds and admitting that we do not expect the right answer, I can identify the

volume of the bottle with the volume of the clarinet and the length of the bottle neck with

the length of the clarinet; so V = Al. In this case, the formula is f = (vsound/2π)
√

A/l × Al,

or f = vsound/2π l. The right answer turns out to be, that you should replace 2π in this

expression with 4:

fcylinder =
vsound

4 l
.

This explains why your 2.5 cm meatus enhances sounds with a frequency of 3500 Hertz:

f = vsound/4 l ' 3400 Hz.

Non-science people can definitely skip reading the following.

[There is actually a general procedure for finding the resonant frequencies of any cavity

with a narrow opening, but it requires differential equations. One assumes that the pressure

is changing sinusoidally. The relations between pressure and air velocity are,

d~v

dt
=

1

ρ
~∇P ,

dP

dt
=

cpPatmos

cv

~∇ · ~v ,

from which it follows that,

d2P

dt2
=

cpPatmos

cvρ
∇2P = v2

sound∇
2P .

Look for solutions which are sinusoidal,

∇2P = −
ω2

v2
sound

P ,

with boundary conditions of P = 0 at the openings. Typically solutions will exist for several

discrete choices of ω, which give the resonant frequencies. The reason for the boundary

conditions is, that air can escape efficiently from the opening, so it only requires a tiny

pressure to allow an airflow at this point. Beyond the narrow opening approximation, life

becomes difficult because the resonances are damped and do not have precisely defined

frequencies. ]
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