
Lecture 5: Frequency and the Ear

The last lecture ended by showing that our perception of pitch is determined by the

frequency of the sound. The two natural questions this leaves are, why and how?

The answer to “why” must be evolutionary. We encounter a wide range of frequencies in

our lives. There is important sound information throughout that frequency range. Telling

apart a 150 Hertz tone from a 200 Hertz tone can tell you if someone is nervous or scared.

Much of the information in speech is in the 3000 Hertz range. We need good sensitivity and

need to make perceptual distinctions through this range.

The answer to “how” lies in the cochlea. Sine wave pressure variations excite different

spots in the cochlea depending on the frequency of the sine wave. (Sine waves are one special

periodic function, which turn out to play a special role. We will talk about why and how

in future lectures.) The unwound cochlea is about 34 millimeters long. Every factor of 2

in frequency moves the spot that gets vibrated by 3.4 millimeters along the cochlea. Thus,

our sense of frequency difference corresponds to how far along the cochlea a sound appears.

A cartoon form is presented in Figure 1. The highest frequencies cause fluctuations at the

beginning of the cochlea near the oval and round windows, the lowest frequencies cause

fluctuations near the end.

Musicians might prefer Figure 2, which is the same idea but with the frequencies presented

as pitches in musical notation. [Technically these are where the fundamentals of the pictured

notes are perceived, but that is a future lecture.]

A sound of a definite frequency does not actually vibrate the membranes in the cochlea

at one point. Rather, there is one point where the vibration is biggest, and a range around

that value where the vibration is big enough to be important. This range on the cochlea is

called the critical band excited by a sound. It covers frequencies about 10% to 15% higher

and lower than the note which is played. The flexing of the cochlea falls away as you move

from the center of the band. The picture to have in your mind is something like that shown

in Figure 3. Note that the critical band does not have clear edges. There is a little vibration

some distance away on the cochlea, even where the nominal frequency is almost a factor of

2 different. The spread is higher on the high frequency side than on the low frequency side.

The size of this region turns out to be smaller in living than in dead cochleas. (Don’t ask

how they did the measurements.) This has to do with the outer hair cells. Apparently, they

respond to stimulus, not by sending a nerve signal, but by flexing or moving their stereocilia

in a way which changes the tension and motion of the cochlear membranes. This enhances

the motion at the center of the critical band and narrows the size of the band.

Although a region covering about a 10% change in frequency makes a nervous response,

you are able to distinguish a much smaller change in frequency than this. That is because

your brain can determine the center of the excited region much more accurately than the

width of that region.
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Figure 1: Cartoon of where on the unwound cochlea different frequencies are perceived.

Figure 2: (Rotated) cartoon of how the previous figure corresponds to notes in standard

musical notation.
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Figure 3: Cartoon of how the amount of excitation on the cochlear membranes varies along

the membrane. There is a spot where the vibration is largest, but there is a range around

it, called the critical band, where the excitation is also substantial.
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The size of a change in frequency which you can just barely distinguish as different, is

called the Just Noticable Difference (because you can just barely notice the difference).

Listen to the MP3 file in the HTML version of the lecture to see how sensitive your ear is to

a small change in frequency. It plays ten tones. Each one starts out at 600 Hertz, but shifts

in the middle of the tone. For the first two, this shift is by 4%, that is, by 24 Hertz; in one

it shifts up, in one it shifts down. The next pair, the shift is 2%, or 12 Hertz; then 1% or 6

Hertz, then 0.5% or 3 Hertz, then 0.25% or 1.5 Hertz.

The challenge is to tell which of each pair has the “up” shift and which has the “down”

shift. For the 4% and 2% changes, you will find it very easy. For the 1% it is not hard.

For the 0.5% you can probably just barely tell, and for the 0.25% you probably cannot tell.

Therefore, your JND at 600 Hertz is around 0.5%.

The JND (Just Noticable Difference) is frequency dependent. Your ear is less accurate at

low frequencies, especially below about 200 Hertz. It is also somewhat individual dependent.

However, the percent change you can sense is about the same 0.5% across most of the range

of hearing.

We saw above that two pairs of notes sound the same distance apart if they are in the

same ratio of frequencies; so your ear considers frequencies which are 1,2,4,8,16,32,64 times

some starting frequency to be evenly spaced. A mathematician would say that your sense

of frequency is logarithmic, that your sensation of pitch depends on the logarithm of the

frequency.

People who know and understand logarithms should skip the rest of this lecture.

Since a factor of 2 in frequency has a deep musical meaning (in fact, if two notes differ

by a factor of 2 musicians write them using the same letter), it makes the most sense to use

logarithms base 2 to describe frequencies.

I will write log base two of a number x as log2(x). What log2(x) means is, “how many

2’s must I multiply to get the number x?” For instance,

• log2(16) = 4 because 16 is 2× 2× 2× 2 and that is 4 2’s

• log2(4) = 2 because 4 is 2× 2 and that is 2 2’s.

• log2(1/8) = −3 because 1/8 is 1/(2 × 2 × 2). dividing by 2’s is the opposite of

multiplying by them, so it lowers the log by one.

• log2(2) = 1 because 2 is 2, that is, you need 1 2 to make 2.

• log2(1) = 0. Careful. It doesn’t take any factors of 2 to get 1.

The most important property of logs is that the log of a product is the sum of the

logs

log2(x × y) = log2(x) + log2(y)
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To see that this makes sense, look at some examples:

• log2(4) = log2(2× 2) = 2, since you can see that it took 2 2’s.

Using the rule, log2(2× 2) = log2(2) + log2(2) = 1 + 1 = 2. It works.

• log2(4 × 8) = log2(32) which is 5, since 32 = 2 × 2 × 2 × 2 × 2 has 5 2’s in it. But

log2(4× 8) = log2(4) + log2(8) = 2 + 3, which is indeed 5.

• log2(2 × (1/2)) = log2(2) + log2(1/2) = 1 − 1 = 0. log2(2 × (1/2)) = log2(2/2) =

log2(1) = 0. It works again.

Also, if you are presented with an exponential, like 2 to the power n (2n), its log is,

log2(2
n) = n and log2(x

n) = n × log2(x)

These actually follow from the first one.

You can also take logs of numbers which are not some power of 2. In fact, insisting that

log2(x × y) = log2(x) + log2(y) is enough to tell uniquely what log2(x) should be for any

(positive) x.

Fractional powers follow the rule I showed. For instance, log2(
√
2) = 0.5. [This will

be important, especially when we learn that a half-step represents a 1/12 power of 2 in

frequency, and therefore 12 × log2(f1/f2) tells how many half steps there are between the

notes corresponding to frequencies f1 and f2.

You can also define log1 0(x) as the number of factors of 10 it takes to get x, so log1 0(1000) =

3 because 1000 = 10× 10× 10, which took 3 10’s. We will use this more when we do inten-

sitites.

If your calculator will only do log10 and not log2, you should know that

log2(a) =
log10(a)

log10(2)

which is exactly true. Also, very close but not exactly true are,

log10(2) = 0.3

and

log2(10) = 31/3 = 3.33

These are ”good enough for homeworks”.
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