
Lecture 7: Superposition and Fourier Theorem

Sound is linear. What that means is, if several things are producing sounds at once,

then the pressure of the air, due to the several things, will be

Pair = Patmospheric + Psource 1 + Psource 2 + Psource 3 + . . .

and the air velocity will be

vair = vwind + vsource 1 + vsource 2 + vsource 3 + . . .

How each sound wave propagates, is independent of what all the other ones do. Therefore it

is fully legitimate to solve for the behavior of the sound wave for each source, one at a time,

and add them up. Further, if there is a sensible way of “breaking up” the sound wave from

one source into pieces, you can treat each piece separately and then add them back together.

These statements are true so long as

vair ¿ vsound = 340 m/s

and

Pair − Patmospheric ¿ Patmospheric

that is, so long as the velocity and pressure being caused by the sound wave are small

compared to the speed of sound and ambient pressure. Even for a sound at the threshold

of pain, these conditions hold by a cool factor of 10 000. [They break down at about 200

decibels.] Only violent explosions would violate these conditions, so we will always assume

they are true in this class.

What linearity means is that a complex sound–say, an orchestra–can be described as the

sum of simple sounds–say, each instrument. Sometimes, your ear can make the separation

between these sounds (though not always, as we discuss when we talk about masking).

We have already seen that musical sounds, at least the ones of definite pitch, are periodic.

But they are not generally sinusoidal. This matters because everything we said last lecture,

about how a sound causes vibration on the cochlea, is true of sine wave sounds. The purpose

of this lecture is to start seeing why that understanding is still good enough to describe

complicated sounds, and what goes on when a complicated sound enters your ear.

The sound files accompanying the lecture (in the HTML version) play a sine wave, triangle

wave, square wave, and sawtooth wave, as well as a voice “singing” (quotes, because it was

me) “ooo” and “eee”. The wave forms of “ooo” and “eee” are shown in Figure 4 at the end

of these notes. The computer generated waves have the same frequency, 440 Hertz, and the

sung notes have the same frequency, 256 Hertz. They sound very different, that is, they have

different timbre.
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Figure 1: Four periods of a wave with a certain frequency, and a wave with exactly 3 times

the frequency. Both waves certainly repeat at each point where the red line is drawn.

• Pitch: determined by a periodic sound’s frequency.

• Timbre: determined by the “shape” of one period of the wave.

Can we describe timbre more precisely? Yes. That is because of a powerful piece of math-

ematics, called Fourier analysis, which says that any periodic function–say, the pressure

pattern from an instrument–can be viewed as the sum of many sine waves.

We saw last time that a sine wave which repeats with frequency f is generally of form,

P − Patmos = ∆P sin(2πtf + φ)

Here the 2π is needed because a “standard” sine wave repeats every 2π. The φ in there just

tells whether the sine wave starts at zero right at time zero, or a little sooner or later. This

wave repeats with period T = 1/f because sin(2πTf) = sin(2π) is the same as sin(0).

A sine wave with exactly twice the frequency of the first one, repeats every T/2. But

that incidentally means that it also repeats every T ; where it is at a time t is the same as

where it is at time t+ T because it repeats exactly twice in between. The same is true of a

wave with 3 times the frequency, 4 times, and so on. This is illustrated in Figure 1.

If we add together one sine wave which repeats with period T , and another which repeats

twice or three times as often, the resulting sum will repeat with period T . It will not repeat

with period T/2 or T/3, since one of the waves which built it does not. However, all of them

repeat with period T , so the sum will too.

To understand how to add together two waves, look at Figure 2, which illustrates the

summation of two waves, one with 3 times the period of the other. You see how much the
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Figure 2: Addition of two sine waves, of period T and T/3, which form a wave of period T

which is not a sine wave.

smaller wave moves up and down with respect to the axis, and you move up and down the

same amount with respect to the larger wave.

Now for Fourier analysis:

• Any function of form sin(2πnft+ φ), with n = 1, 2, 3, . . ., has period T = 1/f .

• Any periodic function with period T = 1/f can be expressed as a sum of such sine

waves!

It is this last point which makes the subject useful. It’s a pretty tall claim, so I should try

to “prove it to you with examples.”

First, let me explain the claim. Suppose you have the pressure pattern for an instrument

or something, which is periodic with period T = 1/f . The claim is that there are coefficients

P1, P2, P3, etc, and phases φ1, φ2, φ3 etc, such that

P − Patmospheric = P1 sin(1× 2πft+ φ1)

+P2 sin(2× 2πft+ φ2)

+P3 sin(3× 2πft+ φ3)

+P4 sin(4× 2πft+ φ4)

+P5 sin(5× 2πft+ φ5)

+P6 sin(6× 2πft+ φ6) + . . .
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This certainly builds a function which is periodic with period T , since each sine wave repeats

every T . That any curve can be built in this way is illustrated in Figure 3, which shows the

construction of a triangle wave as the sum of sine waves.

The individual sine waves which build up the complex tone are called the harmonics of

the tone. Everyone agrees that the sine wave with the same frequency as the tone is called

the fundamental of the tone. There are two nomenclatures for the higher multiples. Either

they are called:

• 2× the frequency: 2’nd harmonic

• 3× the frequency: 3’rd harmonic

• 4× the frequency: 4’th harmonic

or sometimes,

• 2× the frequency: 1’st harmonic

• 3× the frequency: 2’nd harmonic

• 4× the frequency: 3’rd harmonic

I think calling them the latter way is confusing, so in this class I will use the former–so the

7’th harmonic has 7 times the frequency of the fundamental. Be aware that some people

will use the second nomenclature.

You will also hear people referring to the fundamental and the overtones (with the

same confusiong about nomenclature). For a periodic sound, “overtone” and “harmonic”

are synonymous. The difference is that some non-periodic sounds (many percussion sounds,

for instance) are composed as the sum of sine waves, but with the frequencies of the higher

components not integer (counting number) multiples of the fundamental. In such case we

call the other things overtones, and reserve the word “harmonic” for the case where they are

integer (counting number, 1, 2, 3, 4, 5 . . .) multiples of the fundamental.

A more nontrivial example is shown in Figure 4, which shows how successive Fourier

components build even a very peculiar and complicated wave form, the sounds “ooo” or

“eee” of the voice.

I should also show what it sounds like as you add one after another Fourier component

to produce a complex wave. This is done in the sound files found in the HTML version of

this lecture.

What happens when a complex tone arrives at your ear? The answer is that you can use

linearity to think about what each harmonic does, separately. The behavior of the cochlea is

almost linear. We will see later that it is not perfectly linear, but don’t worry about that now.

Therefore, for a complex tone, the excitation of the cochlea will be the excitations of the
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Figure 3: How a triangle wave can be built by adding up a series of sine waves. Each color

shows a sine wave and the total wave after that sine has been added.

points corresponding to each harmonic, with sizes corresponding to how loud each harmonic

is. This is illustrated in Figure 5. Your ear automatically recognizes this tower of spots of

excitations as arising from a single complex tone. Your brain extracts the fundamental and

gives this to you as “the” frequency, and you sense or feel the extra information about the

relative loudnesses of the harmonics as the sound’s timbre.

Note that the harmonics get closer and closer together in terms of their pitch. This is

because what is important to perception is the log of the ratio of frequency. The ratio of the

2’nd to 1’st harmonic is 2/1=2; of 3’rd to 2’nd is 3/2=1.5; of 4’th to 3’rd is 4/3=1.33, and

so on. [Musically, the separations are: 2/1=octave, 3/2=perfect fifth, 4/3=perfect fourth,

5/4=major 3’rd, 6/5=minor 3/rd, but the thirds are not tempered by more than the JND,

as we will discuss in future.]
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Figure 4: Top row: the sound “eee” fitted using different numbers of Fourier components.

Bottom row: the same for “ooo.”
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Figure 5: How the harmonic series of a complex note causes vibration in a series of points

on your cochlea, at definite separations which your brain can interpret as a harmonic series.
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