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CHAPTER 1

INTRODUCTION

These notes are intended to help music students
understand physical acoustics.  The material assembled
here was done so at the request of the Faculty of Music
of McGill University for students intending to enter a
graduate program in music recording.  While this
means that the subject matter is approached from a
definite point of view, it is hoped that it does not mean
with a limited perspective.  An attempt is made to
emphasize the broad fundamentals of physical
acoustics, particularly in their importance to
understanding the acoustic environment of a human
listener.

Why is an understanding of the fundamentals of
physical acoustics so important to music recording?  A
simple analysis would indicate that music recording is
straight-forward.  The perception of live sound involves
a source, a medium to propagate the sound from the
source to the listener, and the receiver (the human ear-
brain system).

SOURCE
WAVE TRANSMISSION
SYSTEM (ROOM)

 LISTENER
(RECEIVER)

Fig. 1.1  System analysis of a live sound
experience.

Recording the sound for future playback could be done
by replacing the human listener with a dummy head of
the same physical consistency as a real head and in
which the human ears are replaced by sensitive
microphones, the electric output of which are led to an
electronic recorder.

SOURCE
WAVE TRANSMISSION
SYSTEM (ROOM)  DUMMY HEAD RECORDER

Fig. 1.2  System analysis of  sound recording.

The original acoustic experience can then be duplicated
by a playback system which recreates the original
sound pressure patterns using headphones attached to
a real persons head.

PLAYBACK UNIT
LISTENER

HEADSETS

Fig. 1.3  System analysis of  listening to
recorded music.

By careful engineering of the dummy head, the
microphones, the recorder and the playback system it
would seen that we should be able to exactly recreate
the sound pressure sequences in the original music, at
least to within the human ability to detect any
difference.

From the systems point of view the process can be
represented by a simple diagram.

SOURCE LISTENER
ROOM

Fig. 1.4  "Black Box" representation of live
musical experience.

SOURCE LISTENER

RECORDER PLAYBACK

ROOM

MICROPHONES
IN DUMMY HEAD

Fig. 1.4  "Black Box" representation of live
musical experience.

A lot of engineering effort has indeed been directed at
constructing the necessary devices and very faithful
reproduction of sound signals is now possible.
Therefore it would seem that there is no need for the
typical recording engineer activity of placing a myriad
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of microphones and a tangle of wires in a symphony
hall and of tampering with the various recorded signals
with complex electronics until a satisfactory result is
obtained.

In my opinion, there are similarities between music
recording and the recording of a visual experience,
such as by movie or video cameras.  We accept very
easily that the human eye cannot be substituted by a
television camera. There is much more to a live visual
experience than there is to looking at a television replay
or even a good cinematic reproduction. This is not to
say that television or movies are bad; they are just not
the real thing.  For certain purposes, such as close up
viewing and the removal of extraneous and distracting
visual material, the reproductions may be even better
than the "real thing" and certainly good television and
movie producers use this fact to great advantage.  (The
movie can be "larger than life".)  To try to exactly
duplicate the original visual experience would be a
misdirection of effort.

However, it is not important in recording engineering to
rate the live visual experience against the reproduced
one.  Indeed sometimes the reproductions become
more "real" to people that a real-life experience. I once
tried to explain the stroboscopic effect by pointing out
that the apparent backwards rotation of wagon wheels
often seen in movie western scenes was a stroboscopic
effect due to the intermittent nature of the image on the
screen.  It surprized me to find that most of the
audience were convinced that this was not just a movie
illusion but that real wagon wheels in bright sunlight
would appear to do the same thing!   Some  were
convinced that indeed they had seen this effect
themselves.   Obviously they had never seen a real
wagon wheel on a moving cart in bright sunlight, or if
they did, had not seen it often enough to notice what it
was really like.  For many of us, the recorded and
reproduced image is more "real" than the live visual
experience.  At the cost of modern symphony tickets,
the reproduced experience will be all that many people
will experience.

What is important  in recording engineering is that
both live music and reproduced recorded music each
can be a pleasurable experience on its own merits.
Because of the difficulties which should soon become
apparent, it is as forlorn a hope to exactly duplicate a
live musical experience as it is to duplicate a live visual
experience.  What remains then, is to try to create via
the recording medium, an experience which is in itself
delightful, intriguing and stimulating, as any music
should be.

Of course, this will involve  subjective feelings about
music and, as with any subjective feelings, there is a
wide variety of tastes.  While a considerable number of
people might agree that a particular music record is
delightful, intriguing and stimulating, there would likely
be many more who do not consider it so.  For example
a good recording of Gregorian chant is not likely to
appeal to a "rock" music fan. However, to a large extent
the subjective feelings are related to the type of music
rather than the quality of the recording.  Given a
particular type of music there will be a great deal of
agreement among those who favour that type of music
as to whether the record is a good one or not.

Of course a good record requires a good original
performance; a bad performance can never yield a good
record.  However a good performance, as many
performers know, does not always mean a good record.
A lot of skill is required of the recording engineer in
order to make a good record of a typical live concert.
Just as in any good movie the camera is often used to
give an enhanced view of something of interest, in a
good music recording the balance of sounds and the
"presence" of the instruments can often be better than
in a typical seat in the recording hall.  To make a good
recording we must therefore know something about
creating a good musical experience.

A musical experience is a multifaceted thing.  At a
fundamental level, it is a pattern recognition problem
involving decoding the changing pitches, timbres and
volumes of the sounds produced by musical sources.
However, in identifying the music with the sources,
there is another important aspect of a musical
experience that is often overlooked; that of the role of
the room in which the music is heard.  Musical
instruments when played in an anechoic chamber (a
room designed to have no sound reflections from its
walls) produce very boring sounds, even when played
by very accomplished musicians.  In fact the musicians
themselves find it difficult to play the instruments
properly in such a room.  A great deal of the quality of
a musical experience therefore comes from the sound
reflected from the walls of the room in which the music
is performed.

The science of psychology has not firmly established
why this should be but for purposes of visualizing its
importance we can imagine that auditory clues from
reflected sounds have some very primitive functions in
survival and in the sense of well being that comes from
being surrounded by protective walls.  For example it
has recently been established that the preferred musical
halls of the world have walls which are closer to the
listeners than the ceiling.  Apparently this has to do
with the listener preferring the first reflected sounds to
come horizontally as from a source such as another
person at the listeners level, rather than from above
such as would come from a clap of thunder or from
someone or something higher than you.  Why this
preference occurs is not clear but what is clear is that
the ear-brain system has the capability to exercise this
preference.  This means that it is capable of extremely
fine discrimination of time of arrival and direction of
arrival of complicated sound patterns.

The recording engineer thus has a problem; how to get
some of the interest and quality of the reflected sounds
onto the record without destroying the balance of
pitches, timbres and volumes of the direct sounds from
the instruments.

Again one is tempted to turn to the dummy head
solution.  Certainly, when played on a good stereo
headset, this would give the same audio input as
experienced by a listener seated at the dummy head
location.  However there are several serious drawbacks
to such an approach.  The most obvious is that many
listeners do not like to wear headsets.   Another that is
fairly obvious is that listening to music in such a way is
very solitary.  This may be preferred by some people,
particularly those that have had a great deal of recent
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stress from dealing with other people,  but it is not the
most generally preferred way to listen to music.

There is another reason, however, which is more
fundamental and not so obvious.  One of the ways a
person perceives the direction of a source of sound is
by an almost unconscious movement of the head.
With such a movement, the relative phase of the sounds
that arrive at the two ears changes and the brain seems
to be capable of perceiving this phase change.  With
headsets, movement of the head gives no such effect.
In essence, when you move your head, the whole room
of sound seems to turn with you.

Thus, for a variety of reasons many people do not like
to listen to music over headsets.  There will always be a
large number of listeners who will want to play the
music over loudspeakers in a typical room of a home.
For listening to a record playback in a room, care must
be taken with the recording of reflected sounds in the
auditorium since in listening to a record in a room, the
reflected sounds within the living room itself add to the
overall sound.  Many good records and even many
good stereo systems have their performance severely
degraded by living room acoustics.

To understand the problems is not necessarily to have a
solution.  There is no handy set of prescriptions for
how to get a record that will satisfy the greatest number
of listeners.  However, the more you know of the basic
principles of acoustics, the better your chances of
achieving the best solution.

Also, as a general interest, knowing how sound
propagates, reflects and absorbs is basic to
understanding the phenomenon of music itself and
should increase your appreciation of music as well as
help you as a performer.

Exercises and Discussion Points

1. What are some of the inherent differences
between listening to "live" music compared to
listening to recorded music?  Discuss this from
the point of view of what can be perceived in the
live performance and what can be perceived in
the recording.  In what aspects is the live
performance superior and in what aspects can
the recorded music playback be superior?  Use
the analogy of a good movie compared to
experiencing the "real thing".

2. Why is the production of a good music
recording as much a matter of art as it is a matter
of recording engineering?

3.  What are possible reasons why the "dummy
head" recording technique is not the universal
solution to sound recording problems?
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CHAPTER 2

THE PERCEPTION OF SOUND SOURCES IN A ROOM

2.1  The Distinguishing of Direct from
Reflected Sound

One of the amazing subtleties of the live sound
experience is the perception of sound coming directly
from a source as distinct from sound that arrives at the
ears by reflection from nearby surfaces. This can be
demonstrated by setting up two speakers, one to an
extreme left and the other to an extreme right, and
putting separate sharp pulses of equal power into each
speaker (see fig. 2.1). When the pulses are fed to the
speakers in synchronism, observers to the right of the
center line between the speakers will perceive a sharp
click coming from the right speaker with the other
speaker providing a sort of "stereo" effect telling the
observer that there is sound also arriving from the
direction that speaker.  Observers to the left of this
center line will experience the role of the speakers as
reversed.

SPEAKER 1 SPEAKER 2

Fig.  2.1 Two observers listening to two
speakers both emitting sharp sound clicks at
exactly the same time.  The observer on the left
perceives the click as coming from speaker 1 and
the observer on the right observes the click as
coming from speaker 2.

This is not surprising.  The speaker closer to the
observer is the one which delivers the most sound and
should therefore appear to be the source.  However,
when the power pulse to one of the speakers is delayed
relative to the other with no change whatever in the
power pulse levels, a surprizing effect occurs; the
observer closer to the delayed speaker will observe the
far speaker to be the apparent source of the sound!

This phenomenon is illustrated in fig. 2.2 where  the
pulse going to the speaker on the right is delayed
relative to the pulse to the speaker on the left.
Observers on the right of the room will  discern the
source of sound to be the speaker on the left.  The
more the pulse is delayed, the farther from the center
line will be the observers who discern this apparent
switch in sound source.

The same phenomenon would occur in reverse if the
pulse to the left speaker is delayed relative to the pulse
to the right speaker  (fig. 2.3). Clearly the aural
perception system is picking out the first sound to
arrive at the ears and is using that to determine the
direction of the source.  A distant source with a weak
sound at the observer will be perceived even in the
presence of a stronger nearby source if the sound from
the nearby source arrives later than that from the distant
source. Furthermore, the perception system can discern
time differences in the millisecond range. On an
ordinary human scale this is an incredibly short time;  a
blink of an eye is about 100 ms.  What is happening
on such a short time scale?

SPEAKER 1 SPEAKER 2

8 m

1.5 m

CENTER LINE

Observers on this side
of line perceive the source 
to be the left speaker

Observers on this side of line
perceive the source to be the
right speaker

Line moves this way
as delay of speaker 2 is increased

Observer dividing line

Fig. 2.2 The separation of observers into
those perceiving different speakers to be the
source of a click sound when one speaker is
delayed relative to the other.  In the case shown,
speaker 2 is delayed by about 10 millisecond (ms)
relative to speaker 1.

SPEAKER 1 SPEAKER 2

8 m

1.5 m

CENTER LINE

Observers on this side
of line perceive the source 
to be the left speaker

Observers on this side of line
perceive the source to be the
right speaker

Line moves this way
as delay of speaker 1 is increased

Observer dividing line

Fig. 2.3  The separation of observers into
those perceiving different speakers to be the
source of a click sound when the left speaker is
delayed relative to the right.  In the case shown,
speaker 1 is delayed by about 10 ms relative to
speaker 2.
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The physics of sound propagation gives a clue as to
what is happening.  The velocity of sound in normal
room air is about 340 meters per second corresponding
to about 3 milliseconds for travelling 1 meter.  When
one source is delayed by 10 ms relative to the other,
you would have to be 3.4 m closer to the delayed
source than the to the other for the delayed source to be
the apparent source.  In the demonstration cited above,
an observer who is 2 meters closer to one speaker than
the other will therefore observe the closer speaker to be
the source of the sound until that speaker is delayed by
more than 6 ms relative to the farther speaker.

SPEAKER 1 SPEAKER 2

8 m

6 m 4 m

Fig. 2.4   The observer will discern speaker  2 as
the source of a click sound when two identical
pulses are fed into the speakers, until the delay of
speaker 2 relative to speaker 1 is greater than about
6 ms.

In the branch of psychology called psychoacoustics,
this perception phenomenon is called the "precedence
phenomenon".  Just how powerful it is can be
demonstrated by having an observer about 5 times
closer to one speaker than the other (see figure 2.5).

SPEAKER 1 SPEAKER 2

8 m

7.5 m 1.5 m

Fig. 2.5 The observer will discern speaker  2
as the source of a click sound when two identical
pulses are fed into the speakers, until the delay of
speaker 2 relative to speaker 1 is greater than about
18 ms.  With delays of speaker 2 of more than 18
ms, speaker 1 will be discerned to be the source of
the sound even though the sound intensity from
speaker 1 is about 25 times weaker at the observer
than the sound from speaker 2.

To show that timing effects are more important than
loudness, one speaker can be put at about 25 times
lower intensity than the other.  Observers near the
center line between the two speakers when the speakers
are in synchronism will sense the sound as coming

from the louder speaker.  The intensity information is
then being used to determine the direction of the sound
source.  However, as soon as the louder speaker is
delayed relative to the weaker one,  the sound is
perceived as coming from the weaker speaker showing
that the brain regards this information as being more
important in determining the direction of a sound
source than is the loudness information.

This does not mean that the loudness information is
ignored.  As in all perception activity, the brain appears
to integrate all the information it gets.  In an activity so
important to survival as determining the direction of a
sudden source of sound, the brain could not afford to
do otherwise. Therefore even such clues as changes in
visual patterns and general foreknowledge of the nature
of the surroundings will be used in estimating the
direction of the source.  However, timing information
about the first sound to arrive at the ears is regarded by
the brain as perhaps the most important information of
all. That this should be so is easily understood from
simple physics.  Curved reflecting surfaces can
concentrate and focus sound power from a single
source so that a reflected wave can deliver more power
that the direct wave.  What is always true however, is
that the reflected wave arrives later than the direct wave;
it will always have farther to travel because a straight
line is the shortest distance between two points.

It is therefore very important for the brain to divide the
perceived sound into two parts; direct sound coming
from the source and indirect sound which arrives later
and which is therefore deduced as coming from a
reflecting surface.  That is what the brain is doing in
perceiving the click sounds from the two speakers; the
sound from the speaker which is delayed is perceived
as a reflected sound wave from a nearby surface. This
can be seen by turning off the delayed speaker and
noting the distinct change in the stereo image of the
perceived sound.  This comes about because the brain
uses the direction of the delayed sound to perceive an
imaginary wall which is delivering this delayed sound
by reflection.  That this "reflected" sound is different
from an echo effect can be shown by increasing the
delay of the second speaker to about 40 milliseconds
whereupon there would clearly be an echo effect.

A very important point for recording engineers now
arises.  The typical environment in which recorded
music is played through speakers does not have the
reflecting surfaces to produce the "liveliness" caused
by the reflecting surfaces that will be in the typical live
performance hall.  A satisfactory stereo image can
therefore not usually be produced by simply putting
different sources of sound into each speaker such as,
say a voice in one and an accompanying piano in the
other.  Rather it involves putting both sound sources
into each speaker but with different relative timings.
Thus, for example, if the singer is to be perceived as
being on the right and the piano on the left than the
right speaker should receive the singers voice first and
the left speaker should receive the piano sound first.
The relative timing and amplitude of the two sources in
each speaker can be manipulated to give a pleasing
"stereo" effect.
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2.2  The Perception of Sound Direction

The "precedence phenomenon" show that the brain
picks off the first millisecond of sound from a new
source to determine the direction of that source.  But
now consider what it does with this short segment of
sound.  What information can the brain have that will
tell it the direction from which that sound is coming?

Here, just as it is very important for stereo vision that
we have two eyes, it is very important for stereo aural
images that we have two ears.  It is the differences in
the sound perceived by the two ears which seems to
give the most important information for creating a
stereo image in the brain.

Again there are two important pieces of information;
the relative loudness and the relative timing in the two
ears.  The importance of the relative loudness
information is obvious; sound which appears louder in
the left ear will be coming from the left and sound
which appears louder in the right ear will be coming
from the right.  Furthermore, the shape of the outer ear
itself seems to be such that relative perceived loudness
in the two ears and changes in perceived loudness due
to head movements is can be used to perceive the
direction of a sound.

However, recent experiments in psychoacoustics have
shown that the brain also uses the relative time of
arrival of a sound at the two ears as an important clue
to the direction of that sound.

To understand this phenomenon, first consider a
simple case of a sound pulse arriving at a listener from
the right (fig. 2.6). The only timing information
presented to the brain by the direct sound source itself
is the time difference of the sound arriving at the two
ears.  Given the average distance between the two ears
of a human being to be about 15 cm, the time interval
between the arrival of the direct sound at the right ear
and it arrival at the left ear is about 0.45 milliseconds
(450 μs).  If the sound source was directly to the left of
the observer, the sound would of course arrive at the
left ear 450 μs before it arrived at the right ear.  The
possible relative timings of the sound in the two ears
therefore range over 900 μs or about 1 ms.

15 CM

SOUND
WAVE

Fig. 2.6   Sound wavefronts falling on a listeners
head from directly to the right.

This is a very short time range for the very simplest of
tasks; that of determining whether the sound comes
directly from the left or directly from the right. For the
more demanding job of locating a direction somewhere
in between even shorter time intervals are involved. For
example, a sound at 45o to the right of straight ahead
(fig. 2.7) would travel about an extra 10 cm to get to
the left ear,  corresponding to a time delay of only 0.3
milliseconds for that ear.

10 CM

15 CM

4 5
o

Fig. 2.7   Sound wavefronts falling on a listeners
head from 45o to the right of directly in front.

The accuracy of determination of the direction of a
sound source by timing has been rather thoroughly
tested by varying the timing of sharp pulses applied
separately to stereo headsets.  It appears to be about
±30o for sound sources directly facing the observer.
This means that the accuracy of the mechanism used
by the brain for this timing is about ±200 μs.

Again, these timing intervals are incredibly short by
normal human standards. To get an idea of the scale, a
professional baseball player can direct a ball to a
selected part of the outfield by timing his swing relative
to the pitch; an incredible feat but one that only
involves timing accuracies of about ±10 ms.  In 200
μs, the tip of the bat of a major league hitter will move
less than a centimeter.

The mechanism that achieves this timing is not very
well known.  About all that has been firmly established
is that the aural nerves from the two ears are connected
together where they meet and that the neural pulses
generated by the "hair cells" of the cochlea and set
along the aural nerves are timed to the arrival of a
particular phase of a sound wave at the ears (see
Roederer).  The brain therefore has the basic tools it
needs to make a comparison of the time of arrival of
the sound at the two ears.  It perhaps does this by
having a set a "timing" neurons in which the neurons
for testing a particular time interval have the appropriate
synaptic connections for testing this time interval.

As a very simplified view of how this could be carried
out, imagine that there was a neuron with an excitory
synaptic connection from the right ear placed at the end
of a dendrite of the axon (fig. 2.8).  Suppose that as
well it had an inhibitory synaptic connection from the
left ear on a dendrite that was shorter.  A pulse that
arrived at this connection later than that at the excitory
connection would still result in killing the action of the



Physical Acoustics of Music Perception8

excitory synapse.  In fact the pulse must arrive later to
carry out this function.

.

AXON

DENDRITES

SYNAPTIC CONNECTION  TO RIGHT EAR
           (EXCITORY TYPE)

SYNAPTIC CONNECTION TO LEFT EAR
          (INHIBITORY TYPE)

Fig. 2.8   Sound wavefronts falling on a listeners
head from 45o the the right of directly in front.

The typical velocity of neural pulses is about 100
meters per second.  For a delay of 200 μs the length of
neural material involved would therefore be about 2 cm.
It is easy to visualize that such a network of neural
connections of various lengths could have evolved.

The actual mechanism that is used by the brain to
discern sound direction by timing is not of importance
for this course.  What is important is that this
mechanism exists and is an important mechanism in
perceiving an acoustic environment.  This means that it
must be taken into account in any recording of the
sound for future playback.  Simply placing a
microphone on the left side of the room to pick up the
sound sources on the left side and another microphone
on the right side to pick up the sound sources on the
right side will not be enough to give a good "stereo"
quality to the sound when it is replayed in a typical
living room.   One may have to pay more careful
attention to the balance of sound from both sides
falling on each of the microphones in order to get the
speakers to give a pleasing sense of sound reflections
within the living room listening area.

2.3 The Perception of Reverberant Sound

2.3.1  The Importance of Reverberant Sound

The brain perceives two important types of sound in a
room; the direct sound which it uses to determine the
direction of a sound source, and reflected sound which
it perceives as coming later and giving clues as to the
size and geometry of the room.  However, there is one
more important perceived type of sound in a room;
reverberant sound.  The importance of this type of
sound in recording is easily shown by making two
simple monaural recordings of a person speaking in a
room; one with a microphone close to a speakers lips
and the other with the microphone as far away from the
speaker as possible. Playing back these recordings,
except for perhaps a slightly different balance in the
high to low frequency levels, the sound from the first
recording is not very different in quality from the

original sound from the person who is speaking.
However the second recording produces a sound as if
you were listening to the person from inside a barrel.

This is perhaps very familiar.  Anyone who has tried to
record the sounds of a party by placing a microphone
in the middle of a room filled with people will have
noticed the hollow sound of the recording; a sound
which is distinctly different from the sound a person
would hear if the persons ears were exactly at the
position of the microphone used for the recording.

What is causing this effect?  The microphone must be
receiving the same sound as a human ear at the same
location. Why is the microphone apparently hearing
the sound differently than a human being?  What is the
cause of the resonant background sounds which make
it difficult to hear individual voices on the recording?

 This phenomenon occurs because a monaural
recording cannot retain any directional information.
The recording is nothing more than a record of the
sound levels that fell on the microphone as the person
is talking. When this recording is played back, all the
sounds that fell on the microphone are played back
through the loudspeaker.  Directional information in
the original sound is now completely distorted or even
missing; all of the sound is coming from the
loudspeaker.  In the original sound there was direct
sound from the speaker's mouth and reflected sound
coming from the walls of the room.  The brain could
separate these sounds by their directional features.   In
the sound played from the record, this directional
information is lost and the two sounds are muddled
together.

There is also another compounding effect.  The sound
from the speaker also produces reflections from the
walls of the room.  The brain now perceives these
sounds as the genuine room reflections, further adding
to the perception that all the sounds heard as coming
from the loudspeaker are in fact direct sounds.  Thus,
in the playback, the room reflections onto the
microphone are perceived as direct sounds. It is these
reflections that give the booming hollow sound.  When
the microphone is held close to the mouth, the direct
sound on the microphone is much more powerful than
the reverberant sound.  The booming, hollow sound
due to room reflections become imperceptible.

While the power of the reverberant sound is not so
obvious in "live" listening, it is obvious from the
recording of sound with a distant microphone that there
is in fact quite a lot of power in this sound.  How
powerful is this typical reverberant sound compared to
the direct sound from a source?

Again, this can be shown in a simple demonstration
using an electronic  noise generator, an audio amplifier
with a single speaker and a sound level meter (fig. 2.6).
The speaker should be placed somewhere in a room
not too close to any of the walls.

The sound level produced with the noise generator on
should be turned up so that the level at a point in the
room as far from the speaker as possible without being
very close to a wall, is about 60 dB. (This would be
appropriate for a room in which the normal
background sound level is 45 dB or less.)  The point of
this is that everywhere in the room the noise from the
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speaker should swamp any other background noise in
the room.

The sound level is then measured at various points
throughout the room. In a typical lecture room
designed for 50 students, it will be found that the
sound intensity at 3 meters or more from the speaker
will be uniformly about 60 dB.

SPEAKERNOISE
GENERATOR

AUDIO
AMPLIFIER

SOUND-LEVEL
METER

Fig. 2.6 Demonstration set-up for observing
the relative importance of reverberant sound and
direct sound.

This might already seem a little strange since one
would expect that the sound level should continue to
drop the farther you are from the speaker, even if you
are more than 3 meters from the speaker.  In the typical
room being considered, the sound level at a half a meter
from the speaker will be about 75 dB.  From
elementary physics, the sound intensity from a single
radiating source will fall off by the inverse square law,
meaning that a doubling of the distance from a source
will cause the intensity to fall to one quarter.  On the
decibel scale a fall to one half is very near to a fall of
3 dB.  A fall to one quarter is therefore  a fall of 6 dB.
(One quarter is one-half times one-half and decibels
being logarithms add for multiplications.)  The noise
level at 1 meter from the speaker should therefore be
about 69 dB which will be the case in the room will are
considering.

Continuing away from the speaker, the noise level at 2
meters should be about 63 dB, at 4 meters should be
about 57 dB and at 8 meters (which is as far away from
the speaker as it would be possible to get in the type of
room we are considering) the noise level should be
about 50 dB.

What is observed however, is that the noise at the
farthest distance from the speaker is actually 60 dB.
This means that the observed noise intensity is 10
times greater than what would be expected from a
simple inverse square fall off of the sound from the
speaker!

The direct sound from the speaker will indeed fall off
with the inverse square law and therefore have a level of
about 50 dB at the farthest distances from the speaker.
The noise which is amounting to 60 dB must therefore
be sound which comes from reflections from the room
walls.  This strong sound from room reflections is

called "reverberant sound".  That this sound is ten
times as strong as the direct sound is the reason for the
booming "resonance" in the simple monaural recording
made at the distant point.

Again, a human ear  at the distant point also
experiences the same relative strength of direct sound
to reverberant sound.  However, normally it does not
seem that the reverberant sound is that much stronger
than the direct sound, particularly for people with two
good ears. The ability of the brain to use directional
information to pick out the relatively feeble direct
sound from the preponderance of reverberant sound is
truly amazing.

2.3.2   Room Radius

The relative strength of the reverberant sound in a room
to the direct sound is often expressed in terms of the
"room radius".  This is defined to be the distance from
a source at which the direct sound and the reverberant
sound are equal.  For the case of the room that has
been under consideration here, the reverberant sound
level is 60 dB while the direct sound level is 63 dB at
1 meter and 57 dB at 2 meters.  The direct sound level
should be about 60 dB at a distance which is the square
root of 2 or about 1.4 meters.  In other words, you have
to be as close as 1.4 meters to the speaker for the direct
sound to be as strong as the reverberant sound.

Thus to enhance the direct sound over the reverberant
sound in a recording, the microphone must be placed
inside the "room radius" of the speaker.  By placing
the microphone at half the room radius, the direct
sound will be 6 dB stronger than the reverberant sound
and by placing it at 1/4 the room radius (35 cm) it will
be 12 dB stronger.

This will be easy if there is only one source of sound
to be recorded, such as a persons voice.  However, in
music recording there are often many performers of
equal importance.  To get a proper sound recording
from each performer requires, in principle, a
microphone well inside the room radius of each
performer and a separate recording made of the sound
picked up.  For large orchestras, this is clearly not
feasible and so compromises have to be made.  The
placing of the microphones and the use of the
recording channels available in recording a full
symphony orchestra concert is clearly an art which
requires a high degree of experience as well as
knowledge of the music and the instruments with
which one is dealing.

At first it might appear that  reverberant sound is a
nuisance.  After all, the information you want to hear is
all in the direct sound.  The problem is that the direct
sound from a persons mouth, unless that person is an
opera singer or a hog-caller, is insufficient for easy
discernment beyond about 2 meters from the person.
To follow what a person is saying in a room even as
small as a typical living room, you need the extra sound
power coming from the reverberant sound.  This sound
power, while lacking the directional clues as to the
location of the speaker provided by the sharp attack
components of sound, still contains important
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information as to the vowel sounds that are uttered and
to some other components of human speech such as
the hisses and burring sounds that often modify these
vowel sounds.  Similarly, the reverberant sound
provides information about the tonality and harmony in
musical sounds.  The reverberant sound is therefore
important.

However, there should not be too much reverberant
sound.  If there is, then it will smother the direct sound
entirely and it will be very difficult to follow speech or
quick music passages.  (You really will start to get the
booming resonant quality of the tape recording in the
live perception of the sound.)

Achieving the correct balance of reverberant sound to
direct sound in a room is a matter of acoustic
engineering.  This correct balance will depend on the
type of acoustic use intended for the room.  If there is
to be fast speech or complicated music then the
reverberant sound should be reduced.  If on the other
hand there are to be performances of slow choir music
such as Gregorian chant, then the reverberant sound
should be increased.  In fact, it is largely the balance of
the reverberant sound to direct sound that determines
the desirability of the acoustics of a music performance
hall.

Exercises and Discussion Topics

1.  Discuss the importance of sharp transients in a
sound for the brain to be able to locate the
direction of the source of that sound.  What
physical information in the sound wave is
apparently being used by the brain as the
overriding factor in determining its source?  Why
do the transients (such as the "fricatives" in
speech) provide this information more than does
the usually following sustained sound (such as the
vowels) which contain much more sound power
than do the transients?

2.  Why is the perception of a changing direction of a
sound source best when the face is pointing
toward the source?

3.  What is the "precedence phenomenon"?  What
conceivable mechanism can be in the ear-brain
system which can achieve this perception effect?

4.  Discuss the problem of recording sounds in a
"live" room such as a living room compared to a
"dead" recording studio.  What are the problems
of recording in a "dead" studio?

5.  What are the three types of sound in a room
relating to the perception of a sound source and
the reflecting surfaces in a room?  Explain the
perceptual role of these three types of sounds with
some explanation as to how these separate
perceptions are important to the human organism.

6.  A "pink" noise generator is used to drive a
loudspeaker near the center of a room.  ("Pink"
noise is noise which contains equal noise power
within all octave intervals.  It is the type of noise
which appears capable of masking all frequencies
of sound with equal capability and is used for
purposes such as masking the telephone
conversations of other people on other lines that
sometimes sneak through by electronic "cross-
talk" onto your line.  The following measurements
were taken with a sound level meter at various
distances in a particular direction from the
speaker.

Distance Sound Level

(meters) (dB)

0.5 102

1.0 96

2.0 92

3.0 91

4.0 90

5.0 90

6.0 89

By drawing graphs of this data, estimate from the
graphs;

a) the sound level of the reverberant sound in
the room (Watts per square meter and
decibels)

b) the "room radius" for pink noise in this
particular direction from the speaker

c) the ratio of direct sound to reverberant sound
intensity (db and actual fraction) at the back
of the room

d) If the loudspeaker radiates uniformly in all
directions estimate the total sound power it
radiates.

To deal with this problem, you need to know the
connections between sound level in dB and actual
intensities I in Watt/m2;

dB  =  10 Log10 
 ⎝
⎜
⎛

 ⎠
⎟
⎞I

10−12

I   =  10( )dB
10   ×  10−12

(See notes for Physics 224 or any good elementary
physics textbook.)
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CHAPTER 3

AN INTRODUCTION TO CONCERT HALL ACOUSTICS

Ever since people began congregating in enclosures it
must have been realized that the enclosure itself
considerably changes the sound from a source.  As
music developed, it was also realized that music in a
room sounded very different from the same music in
open air and that different rooms made the music
sound differently.  Rooms for listening to music
evolved much the same as musical instruments; the
features of rooms that had a good effect on the sound
were copied and those of rooms that did not were not
copied.  Music, musical instruments and the rooms in
which these instruments were played to make the
music, evolved together.

It is not surprizing then, that the terms used to describe
the musical effects of a room are similar to those used
to describe music and musical instruments.  As in
describing any art, the words are often meant to evoke
an emotional response in the reader similar to the
emotional response felt by the writer.  Schroederer
gives a list of 56 words commonly used in Germany to
describe the musical properties of various concert halls.
Rather unfairly to North American readers, he does not
give any English translation of these words, merely
mentioning that they are as meaningless in a rational
sense in German as they are in their English
translations.  To show the type of words they are, they
are given here with as close a translation into English
as possible.

auf dringlich intrusive as in people or perfumes
auf richtig sincere, upright as a person
ausgewogen well-balanced as in a persons 

opinions
begeisternd inspiring, thrilling as in a speech or

artistic performance
betäubend deadening as in a drug
bezaubernd charming, enchanting as in a 

woman or story
brillant brilliant as in human intelligence
deutlich clear, distinct as in a view
empfindlich sensitive, touchy (handle with care) 

as in a person
erhebend elevating, uplifting
erheiternd amusing as in anecdote
erschreckend frightening, startling
erstaunlich amazing
glasclar clear as glass
glorios glorious
hallig like a large hall
hart hard
heikel difficult, delicate as of a subject or 

person
herrlich marvelous, splendid
hinreissend enrapturing, thrilling
intim intimate
jämmerlich miserable, wretched
kalt cold
kranfhaft morbid
lebendig lively, vivacious

lieblich charming, sweet as in a maiden
prächtig magnificent
reich rich
ruinös ruinous as in business
schmal narrow, small as in person
schillernd iridescent
schön beautiful
schrecklich dreadful
schrill shrill
temperamentvoll vivacious
trocken dry
überwältigend overwhelming
unbarmherzig pitiless, unmerciful
undeutlich inarticulate
undurchsichtig opaque
unerbitlich inexorable, merciless
unheimlich terrifying
verschmiert smeared
verschmitzt sly as in grin
verschmolzen blended, merged
verworren confused, muddled
vollkommen perfect
volltönig full-sounding
vorzüglich outstanding
wahrhaftig sincere
warm warm
widerhallend echoing
wohltönend melodious
wohltuend pleasant, producing a sense of well-

being
wunderbar miraculous

What these words clearly indicate is that people can get
very emotional about room acoustics.  People who have
heard a favorite piece of music in a hall which to them
gave a very favorable impression can get very upset
when they hear the same music in not so favorable
circumstances.
There is, of course, a great deal of subjectivity in such
descriptions and, just as in art, there will be a wide
spectrum of likes and dislikes.  However, for a given
type of music in a given hall there will be a fair degree
of agreement among people who like that music, as to
whether or not the hall is a good place for the music.
Since these people will be the ones that will be
expected to pay for the tickets, it is important that they
be satisfied with the hall acoustics.
Just as people over the years have established the art of
making good musical instruments, it would be expected
that people would have established the art of building
good music halls.  However, the problems are not at all
similar.  Musical instruments can be made by copying
proven designs and techniques.  A modern violin does
not differ significantly from those made three hundred
years ago.  On the other hand, no one would seriously
consider building a modern music hall by copying one
from three hundred years ago.  Building codes, safety
considerations, availability of materials, costs and
required seating capacity have all changed drastically in
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three hundred years.  Modern halls have to be built to
achieve satisfactory acoustics using materials and
building designs that have not had the centuries of
development that have been applied to musical
instruments.
One approach to the problem of using new materials
and techniques is the empirical; build something
according to some general ideas and then modify it on
the basis of the actual performance achieved.  This is
how many new musical instruments originate.
However, the cost and time involved would seem to
prohibit such an approach in building a new concert
hall.  Nonetheless, it would seem that that is the
approach actually taken in the building of many
modern concert halls.  Perhaps the most infamous case
is the Avery Fischer Hall in New York, but, just to
show that even the Germans can make disastrous
design errors, there is also the case of the Rheingold
Hall in Mainz.  Both halls needed extensive
restructuring after their official openings before the
acoustics were judged as acceptable. What is clearly
needed is an engineering approach based on scientific
principles that would allow the prediction of the
acoustic properties of a concert hall while it is still just
a design on the drawing board.

The science of acoustics is well established and so is
the engineering of buildings.  It is therefore possible to
design and build a concert hall with specified acoustics.
Why then are mistakes made?  Certainly a large part of
the fault is not enough careful engineering or the
acoustic engineers not having the final say in the
interior design.  However, there is also a large
component of not knowing exactly what the desired
acoustics of a hall are in scientific and hence
engineering terms.  Words meant to convey emotions
felt about a hall are practically useless when trying to
design better acoustics.  The problem then becomes;
what are the desired acoustic properties of a concert
hall?  To what physical properties of a hall are people
responding when they use words such as "well-
balanced", "charming" or "intimate"?

3.1 Desired Properties of Concert Halls

3.1.1  Reverberation Times

Sabine, at the start of the 20th century, was the first to
establish a connection between a physical property of a
hall and its acoustic impression.  He proved that the
acoustics of the auditorium in the newly opened Fogg
Art Museum in Boston, which would probably
described as inarticulate, or even dreadful,  and which
made speech practically unintelligible, was due to an
excessively long exponential decay time constant for
the sound in the room.  To bring such an abstract
concept to a more concrete, understandable level, he
translated this decay time into a "Reverberation Time"
which is 13.86 times the decay time and which turns
out to be the time for the sound in the room to fall by
60 dB when a source is turned off.  60 dB is about the
short-term range of hearing level for the average person
and so the Reverberation Time is about the time it
would take for a human being to perceive the sound to
disappear.  In a commonly used very rough test, the

ringing sound following a sharp hand-clap will appear
to last for about the reverberation time. By measuring
halls with good acoustics, Sabine established that good
auditoria for speech had reverberation times of one
second or less whereas Fogg Auditorium had a
reverberation time that was much longer.

From the physics of sound wave propagation, Sabine
could relate the reverberation time of the room to the
simple ratio of the volume of the room and the effective
sound absorbing area of all the surfaces in the room.
He showed that the relationship could be expressed by
the simple formula (see Chap. 4);

T  =  0.165 × 
V

Aeff

where T is the reverberation time in seconds, V is the
volume of the room in cubic meters and Aeff is the
effective absorbing area of all the surfaces of the room
in square meters.  By measuring the sound absorbing
properties of various building materials, he could
predict their contribution to the absorbing area of the
room and hence their effect on the reverberation time.
He then recommended how Fogg Auditorium could be
refurnished to get the desired reverberation time.

Sabine's success on Fogg Auditorium was impressive
and when Boston planned a new symphony hall he was
hired as its acoustic engineer.  Boston Symphony Hall,
from its very opening, has been regarded as one of the
outstanding concert halls of the world and so concert
hall acoustics began to be regarded as a science.

Following Sabine's work, there has been a great deal of
data gathered on the reverberation times of various
halls.  The results indicate a wide spread of desired
reverberation times, depending on the size of the hall
and the type of music being played.  The general
consensus is shown in Fig. 3.1
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Figure 3.1  Desired Reverberation times for various
uses of halls of different sizes.
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Fortunately, there is a relationship between the size of a
hall and the type of music that will normally be played
in it.  Chamber music is meant to be played in smaller
halls than symphonic works. However, there are some
modest sized halls of around 3000 m3, (roughly 22 ×
16 × 8.5 m) meant for about 1000 people, where all
types of music and theater are likely to be performed.
Such auditoria will then be most acceptable on the
average when they have reverberation times which are a
compromise of the best for the various uses (perhaps
about 1.3 seconds).  By increasing the reverberation
time to 1.5 seconds, such a hall could become an
excellent hall for classical music and by increasing it to
2.1 seconds it could be excellent for symphonic music.
However the hall would then be practically useless for
theater or the music of smaller groups.

In modern society, a hall seating only 1000 people
could not support a symphonic orchestra and so small
halls will generally be used for purposes requiring a
shorter reverberation time.  Small halls will therefore be
judged harshly if they have a long reverberation time.
However, such halls can usually have their acoustics
easily modified if they are judged unsatisfactory.

Symphonic works on the other hand, are usually
performed in larger halls built specifically for such
music.  Such halls are expensive undertakings,
generally meant to be showpieces of major cities.
Having the acoustics of such halls judged as excellent
is of great consequence and there are rancorous
debates between music critics, orchestra leaders and
building architects when the acoustics are judged
unsatisfactory.  One othe most cited examples is that of
Avery Fischer Hall in New York, opened with much
fan-fare as The New York Philharmonic Hall in 1962
and immediately panned by the music critics.  After
many modifications to as late as 1975, the hall was
judged as unsatisfactory and a total reconstruction of
the interior was undertaken.  Finally it appears that the
acoustics are judged as acceptable.

The New York Philharmonic Hall is cited in practically
every modern text on concert hall acoustics and
severely damaged the reputation of the acoustic
consultants involved in the original design.  This is
somewhat unfair since these acoustic consultants were
not, it seems, responsible for the final decisions on the
architectural features important to the acoustics of the
hall.  This is unfortunately a common situation in large
buildings where the architectural features necessary for
good acoustics add greatly to the already seemingly
excessive cost.  However, more important in the long
run has been the loss of public esteem for the science
of acoustics itself.  There were many snickers when the
recent ill-fated proposal for a Montreal Concert Hall at
Berri-DeMontigny Metro station was promised to be
"An Acoustic Gem".

Again, this is unfair to the science of acoustics.
Modern acoustics is capable of predicting quite
accurately how sounds will propagate throughout a
concert hall.  How then do such disasters as the New
York Philharmonic Hall come about?  How did Sabine
succeed with very crude measuring tools and a slide-
rule when later workers with the benefit of much more
data, much more precise tools such as oscilloscopes
and sound level meters and  powerful computers, fail?

It was realized very early that Sabine's formula was not
a complete prescription for the acoustics of a concert
hall.  In fact it gave wrong results if the hall was very
large or if the absorbers were not uniformly scattered
throughout the hall.  More accurate formulae were
developed but did not seem to provide, in themselves, a
solution to good concert hall acoustics.  The solution to
good concert hall acoustics was not as simple as having
a formula for the right average reverberation time.

3.1.2 Variation of Reverberation Time with Frequency

One of the factors realized very early was that good
concert halls should have different reverberation times
for different frequencies of sound; the preferred halls
having longer reverberation times for low frequencies.
As an example, the variation of reverberation time with
frequency for the Musikvereinssaal is shown in
Fig. 3.2.
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Figure 3.2  Variation of Reverberation times
with frequency for the  Musikvereinssaal
(occupied).

The reverberation time at 100 Hz is 1.2 times that at
1000 Hz and twice that at 6000 Hz. The need for
longer reverberation times at the low frequencies is
explained by the human ear having a much smaller
loudness range for low frequencies around 100 Hz
than for frequencies around 1000 Hz.  Whereas a 1000
Hz note will seem to disappear when it has dropped by
60 dB, a 100 Hz note of 100 dB will seem to disappear
when it has dropped by only 40 dB.  For a balanced
timbre in the reverberant sound (i.e for the tone not to
get harsher or brighter as it fades, the 100 Hz note
should appear to last as long as the 1000 Hz note.  For
this to be, it must actually last longer!  It was found that
one of the greatest problems with the New York
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Philharmonic Hall was the absence of bass
reverberation due to absorption in the spaces between
the ceiling reflectors.

However, while the correct reverberation time for all
frequencies appears to be a necessary condition for
excellent concert hall acoustics, meeting just that
condition still does not seem to guarantee excellent
acoustics.  Human beings must be responding to
something other than just the reverberation times of the
sounds in the room.

One of the aspects of Sabine's work that is often
overlooked is that he analyzed such renowned halls of
the time as Carnegie Hall in New York, the Academy of
Music in Philadelphia and the Gewandhaus in Liepzig,
since destroyed but still regarded by many as the all-
time greatest hall for classical music acoustics.  He also
toured with the Boston Symphony to judge the concert
halls in which it played.  It was this experience,
probably much more than his simple formula, that led
to his success with the Boston Symphony Hall.  He
seems to have copied features from the halls which had
good acoustics.  It is also perhaps significant that he
seems to have had control over the interior design.  The
hall may be acoustically excellent but offends the eye
of many modern viewers and would probably not have
been allowed if an interior decorator or architect had
veto power over the design.

What did Sabine achieve in his design, other than the
correct reverberation times for the hall?

3.1.3  The Importance of Early Sounds

The question returns; what are the physical properties
of the sound in a concert hall that make  good acoustics
for music performances?

Winckel, a renowned German professor of the physics
of music undertook an inquiry in 1950 to 1955 with
internationally renowned orchestra leaders to identify
and study the best regarded concert halls of the world.
The results for the top five at the time are listed below,
in order or merit.

Concert Date of Volume Number Mean Rever-
Halls Construction   m3 of Seats eration Time

1. GMV 1870 14,600 1680 2.05

2. TCBA 1908 20,550 2487 1.8

3. CA 1887 18,700 2206 2.0

4. SHB 1900 18,700 2631 1.8

5. KG 1935 11,900 1371 1.7

GMV -  Grösser Musikvereinssaal Vienna
TCBA -  Theatro Colon Buenos Aires
CA -   Concertgebouw Amsterdam
SHB -   Symphony Hall Boston
KG -   Konzerthus Gothenburg

These figures show that there can be a large variation in
reverberation times for excellent acoustics and that this
variation is not correlated with room volume as
indicated by the simple graph in Fig. 3.1.  The
Musikvereinshaal Of Vienna, one of the smaller halls

has the longest reverberation time and is rated number
one while Theatro Colon of Buenos Aires, the largest,
is rated number two yet has a reverberation time 1/4 of
a second shorter.  This is even more puzzling when it is
realized that tests have shown that a good music critic
can detect the effects of a change of 1/20th of a second
in the reverberation time of a hall. Furthermore, the
Musik-vereinshaal, which is especially favored for
romantic music (probably because of its longer
reverberation time) is also claimed to be excellent for
classical music which is normally regarded as being
better in a hall with a shorter reverberation time. Also
puzzling is that the Concertgebouw in Amsterdam is
not regarded as being as resonant as the Theatro Colon
even though it has 1/5th of a second longer
reverberation time. Finally, the no longer existing Old
Gewandhaus hall in Leipzig with a volume of 2100 m3,
has been calculated to have had a reverberation time of
only 1.2 seconds in the occupied condition, yet is
regarded as the best hall that ever existed for classical
music. Reverberation times are therefore not the only
factors in determining the quality of concert hall
acoustics.

One fact not explained by the reverberation times of
halls is that the most satisfactory acoustics for a
rectangular hall seem to occur when the hall is about
3/4 as wide as it is deep and a little more than half as
high as it is wide (ratios of length to width to height of
4:3:1.6).  Also, this rule itself breaks down for halls
larger than about 15,000 m3 when they should be
narrower than 3/4 of the depth.  Winckel also thought
it was noteworthy that the preferred halls of the world
were mostly rectangular but decorated in the neo-
classic style with columns, sculpture, coffered ceilings
etc., copies of which would not be allowed to be built
by any modern taxpaying public.  It appears that the
detailed geometry of a hall is as important in
determining acoustic quality as are the overall
reverberation times.

From the physics of sound propagation, it is easily
seen that the detailed geometry of a room affects
mostly the patterns of the first reflections that arrive at
the listeners. Multiple reflections over many surfaces
average out these detailed effects.  Even in large halls,
sound arriving after 1/2 a second, will have undergone
5 to 10 reflections. Modern concert hall acoustics has
therefore concentrated on the early sound, often
defined as the sound which arrives in the first 50 ms or
1/20th of a second which, in a typical concert hall,
contains only the direct sound and one or two
reflections.

What seems to be important is that there be a proper
balance in sound arriving in the first 50 ms compared
to what arrives later. This, of course, is closely related
to the ratio of direct sound to reverberant sound, a
concept which is in turn closely related to the
reverberation time of a hall.  However, the demands on
the sound arriving in the first 50 ms are not just that it
have a certain intensity compared to what follows.  The
details of how this first 50 ms of sound arrives at the
listener seem to be very important.

The first sound to arrive is, of course, the direct sound.
The importance of this sound has been discussed in
Chapter 2.  How the direct sound arrives has been
discussed in Chapter 3.  It is roughly independent of
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the geometry of the hall, providing there are no
obstructions or very near surfaces; the sound radiates
straight to the listener with an intensity which falls off
by 6 dB for each doubling of the distance of the
listener from the source. There is some enhancement of
the direct sound by diffraction around the seats and
peoples' heads in the foreground of the listener; an
effect that was very important in ancient Greek
ampitheaters. (There was only direct sound and no
reverberant sound in these open air theaters.)  The
floors of the seating areas in halls should take this into
account.  Fortunately, the requirement of good line of
sight of the performers generally means that this
acoustic requirement is also met.

However, the sound that arrives at the listener in the
next 50 ms following the direct sound seems to be also
very important. First of all, some reflected sound
should arrive in this first 50 ms or there will be a
pronounced echo.  It is also important that none of the
subsequent reflections stand out from the others so as
to give an echo effect.

It is thus clear why smaller halls, or halls with lots of
columns, sculptures and other clutter, would be
preferred.  In a cluttered hall, there are many surfaces
nearby that can give an early reflection to anyone in the
hall and this early reflection will be followed by many
small reflections from more distant objects.  The direct
sound is followed by an early reflected sound
indicating intimate surroundings followed in turn by a
multitude of small reflections building up to a
reverberation which allows easy observation of the
tonality and timbre of the music.

Why then are rectangular halls preferred with relatively
high ceilings?

Firstly, it is not true that perfectly rectangular halls are
preferred when the clutter is removed.  It appears rather
that the side walls should diverge a little.  For example,
the Theatro Colon  in Buenos Aires is not rectangular
and not decorated in the neo-classic style.  This
indicates that the side wall reflections must be of
importance.  The importance of the side wall reflections
can also be related to the requirement of a hall height to
width ratio of 1.6:3.  When this condition is met, the
ceiling is always father away from a listener than a
wall.  This means that the first reflection will then
always come from one of the walls.

The desired acoustics of a concert hall from the point
of view of a listener in the audience appears then to be
that the direct sound should come cleanly through the
hall, followed by the first reflected sound which comes
from some vertical surface such as a side wall, followed
by a host of smaller reflections which build up into a
reverberant "bath" of sound coming from all directions
in the room and appearing to last for an appropriate
time without a significant change in its timbre as it
decays away.

3.1.4 Stage Geometry Considerations

It has recently been established that the acoustic
properties of the hall as observed by the performers is
also of great importance in the average quality of the

music that will be played in the hall and that these
acoustic properties are somewhat different than those
demanded by the listener.  Generally, music performers
need the immediate reflections from nearby walls to
sense the presence and the music of the other
performers and to keep the music together.  However,
they do not need as long a reverberation time as the
audience.  Jordan has shown that in preferred halls,
performers hear a higher fraction of the sound in the
first 50 ms then does the audience.

This means that not all of the sound of the orchestra
should be radiated out to the audience but that some of
it should be reflected immediately back to the
performers themselves by appropriately placed
reflecting surfaces or walls.  However, after one or two
of these reflections, the sound should have radiated out
into the rest of the hall.

The detailed placement of these reflecting surfaces will
depend on the actual seating arrangement of the
performers and their styles of play as well as the tastes
of the orchestra leader.  For large halls and symphonic
orchestras, the reflecting surfaces will generally be
permanent fixtures or walls in the stage area.

3.2 Achieving Good Hall Acoustics

Achieving good concert hall acoustics in modest sized
halls with adequate ceiling height is generally not a
problem.  However, the economics of staging music
performances require large halls for symphonic
orchestras.  Furthermore, the ceiling of these halls
cannot generally by high enough to allow the first
reflection to be from a side wall for all members of the
audience.  The problem then becomes, how to deal with
the sound reflections from the ceiling?

One solution would be to make the ceiling of sound
absorbing material.  This is the approach taken in
typical modest sized lecture halls.  However, the effect
of covering the ceiling with sound absorbing material
which completely eliminates ceiling reflections is to
shorten the reverberation time.  The larger the hall, the
shorter will be the reverberation time for a completely
sound absorbing ceiling.  To obtain a sufficient
reverberation time, large halls need the ceiling
reflections.

3.2.1  Diffuse Reflector Ceilings

A new development in concert hall acoustics is the use
of computers  to find complex ceiling designs that
break up the sound reflections over a broad frequency
range and scatter the components in all directions
rather than in the one direction that comes from sharp
mirror image.  The optical analogy would be that the
ceiling looks like a white sheet of paper rather than a
mirror.  A sheet of good white paper and a mirror will
reflect about the same fraction of light, but the mirror
will produce an image source from its reflections
(specular reflection) while the sheet of paper will not
(difuse reflection).  The sheet of paper is much easier
to look at under a bright light than a looking glass
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mirror in which one sees the mirror image of the light.
Similarly, a diffuse reflector for sound would produce
a "softer" reflection than a broad flat surface giving
specular reflection.

The general principle of a diffuse reflector is that the
reflecting surface must have randomly spaced
depressions of random depth, the spacings of the
depressions and their depths covering the wavelengths
of the waves to be dispersed.  For light, this means
only about 1 micron or a thousandth of a millimeter.
Such a surface would appear flat unless looked at
under a powerful microscope.  For sound however, the
spacing have to cover a range up to 3 or 4 meters to
disperse all the important frequency components of a
symphony orchestra.

A typical array of staggered blocks that achieves
specular reflection of sound from a ceiling is shown in
Fig. 3.3  (see Schroederer).

Figure 3.3  A Typical diffuse reflector ceiling,
cross-sectional view.  The pattern can have a
repetition interval as shown.

With such a ceiling, there will be no discernible single
reflection from the ceiling.  Rather, the reflected sound
will be dispersed in all directions with a great deal of it
thrown to the side walls of the hall.  The first
discernible reflection will then be that which has had a
single reflection from the side walls, the sound which
scattered off the ceiling coming later from all directions
and enveloping the listener.

Usually a computer is used to find an array of such
depressions in a ceiling that will be adequately random.
Such an approach was taken in the design of the Town
Hall in Wellington, New Zealand which opened in
1983.  Unlike many other new halls, this one was met
with immediate critical acclaim.

The problem still remains though for very large halls;
how to get a horizontal reflection within the first 30 ms
so as to prevent an echo effect. An extreme example
would be a performance of Aida in the Montreal
Olympic Stadium. One could take the purist approach
and say that such halls should never be used for
serious music but people will pay for such
extravaganzas and it is up to the acoustic engineering
profession to provide the service of designing the best
acoustics for the given situation.  The solution to a
problem of this scale will no doubt involve
electroacoustical apparatus.

3.2.2  Electroacoustical Apparatus

One example of the use of electroacoustical apparatus
in a large concert hall is the Royal Festival Hall in
London which opened in 1951 with a volume of 27,000

m3 and a seating capacity of 3000.  This hall had a
severe problem in that it had a short average
reverberation time for such a large hall (1.45 sec).
Also, it had no enhancement of the reverberation time
for the bass.  An electroacoustical system was installed
which created artificial reverberation through speakers
scattered throughout the ceiling.  To create the
impression of reverberant sounds, the speakers were
fed by direct sound picked up from the stage and
electronically processed to get the correct delays.  The
before and after reverberation curves for the hall are
shown in Fig. 3.4.
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Figure 3.4 The reverberation times for different
frequencies in the Royal Festival Hall of
London.  (1) before electroacoustical assistance
(2) after electro-acoustical assistance.

This installation was not announced (the speakers were
hidden in the ceiling) until audiences and critics noticed
a substantial improvement in the hall acoustics.

Unfortunately a similar installation in a very large hall
(Centenary Hall in Hochst, opened in 1963; volume
74,700 m3, reverberation time without electroacoustics
1.2 sec, with electroacoustics 1.9 sec) did not yield
satisfactory acoustics for symphonic performances and
there is a tendency for critics, conductors and serious
performers to deny the possibilities of electronic
enhancement of the acoustics of concert halls.

Perhaps the reason for the failure on Century Hall is
that the hall is too big to give satisfactory results by
just modifying the reverberation times.  What would be
required would be to create some artificial sounds
simulating horizontal reflections from side walls but
arriving early enough not to give the echo effect.  How
this could be done without cluttering up the hall with
suspended speakers is not clear but certainly the
electronics technology now exists to create such
effects.   This is because of the tremendous impact of
the so-called "digital revolution" on music and the
availability of cheap powerful computers that can create
a multitude of acoustical effects in a hall.
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3.3  The Use of Computers in Concert Hall
Acoustics

3.3.1  Diagnosing Concert Hall Acoustic Problems

One of the first uses of a computer to make a serious
impact on the science of acoustics was by Schroederer
in 1963 in analyzing the deficiencies of the New York
Philharmonic Hall.  He and a team from Bell
Laboratories used a computer to generate precisely
tailored tone bursts and to analyze the sound picked up
in various seats in the hall from these tone bursts,
included the seat which was regarded by the ushers (all
students of the Juilliard School of Music in New York)
as the best seat in the hall.  By running comparison
checks on the sound signals received at all these
locations and using time and directional analysis of the
differences, the major cause of the deficiencies was
identified as the cloud reflector in the ceiling which
absorbed far too much of the bass frequencies.

3.3.2 Determining  Listener Preferences in Concert
Hall Acoustics

The work on the New York Philharmonic Hall was
carried out before computers became as cheap and as
powerful as they are today.  In the early 1970's,
Schroederer (then a professor in Germany) again used
the power of electronics and computers to do the first
scientific comparison testing of audience preferences in
concert halls on the level used by advertising agencies
to determine preferences in consumer products.  The
actual techniques used in this work are of interest
because they involve not only the computer but also
technology of relevance to music recording in general.

The essence of scientific comparison testing of
consumer preferences is to bring it down to a simple
comparison of two items at a time, side by side and
keeping score of the results.  By using a mathematical
technique called "multidimensional scaling" it is
possible to find correlations of consumer preference
with physical factors such as color, sweetness or shape
of bottles.

 In making such a comparison for concert halls this is a
major problem; the concerts heard are often months
apart, and the pieces played are not necessarily even
similar. What is needed is the sort of pair comparison
used in audio stores for the selection of loudspeakers,
where the same music can be played with a very short
interval on competing sets of equipment.

The difficulties of making such comparisons of concert
halls are obvious with the distances and time
requirementsof moving between different halls. It
would be desirable to "bring the hall to the listener".

Schroederer realized that with modern technology there
is a way that this can be done with reasonable success.
The steps he used were:

1) Record a symphonic piece being played by
musicians in an anechoic chamber.

2) Play this recording using large powerful
loudspeakers  on the stage of the hall to be

studied. This effectively produces a
"standard" symphony performance.

3) Record the sound produced in the hall using
microphones in the ears of a dummy head.

4) Play the dummy head recording to a listener,
also in an anechoic chamber, in such a way
that the signal which went into an ear of the
dummy goes into the corresponding ear of
the listener.

The anechoic recording and playback ensure that only
reflections in the concert hall are evaluated by the
listener. It might be assumed that stereo headphones
would be a simpler solution than the procedure in step
4 but headphones in general do not give a sense of
realism: the sound seems to come from within the head
of the listener because the stereo image is 'locked' to
the listener's head, rotating with it as the head turns. To
get a realistic stereo image without headphones, a
technique called "holophonic sound projection" was
used.  The essential features of this technique are
shown in Fig. 3.5.

C

+

C

+

Left Ear Sound Right Ear Sound

Figure 4.5  "Holophonic" stereo sound
projection system.  A portion of the signal that is
sent to the left speaker ear and meant for the left
ear is sent through an electronic circuit
b(compensation filter C)) and added to the
sound for the right speaker with an adder circuit
(+) in such a way that it cancels the sound of the
left speaker that arrives at the right ear.  A similar
circuit is used for the sound reaching the left ear
from the right speaker.
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In this arrangement, the playback signal which 'leaks' to
the wrong ear by diffraction around the head is
cancelled by a deliberately added antiphase signal in
that channel. This requires tailoring both the amplitude
and phase of the correcting signal. The result is said to
be startlingly realistic. (Although such a system is now
commercially marketed, it seems unlikely that it will
become popular in home use; the controls are
complicated, and the desired effect extends over only a
very small region in a typical livingroom.)

 With this technique concert halls can be compared in
simple pair comparisons.  The music recorded in one
hall and the music recorded in another hall were both
made available to an observer by a simple switch.  By
operating the switch the observer could judge the two
samples against each other.  Since it was exactly the
same music in both cases, any differences in scoring
was due to preference of the hall acoustics.

In Schroederer's study, 22 European halls were
compared.  The data were analyzed using
multidimensional scaling. Correlation tests are carried
out to see what acoustic parameters seem to be
important in the consensus preference. The results
showed a high correlation of preference with
reverberation time. However, another more surprising
factor appeared; a quantity called 'interaural coherence'
is anticorrelated with consensus preference. Interaural
coherence refers to the similarity  of the sound at the
two ears. In simple terms we prefer the actual
waveforms of the sound arriving our two ears to be
different.

The main factor which provides waveform dissimilarity
at the two ears is the difference in arrival time (and
hence phase) of the direct sound and the
earlyreflections. Since wall and not ceiling reflections
will be mainly responsible for providing binaural
differences, this is another affirmation of the already
mentioned preference for halls with ceilings more than
half as high as the hall width.  The difference now is
that there is a scientific study confirming this fact and
which also gives information about how much
interaural difference is preferred.

3.3.3  Digital Processing of sound

Perhaps the greatest impact on the science and
engineering of hall acoustics in the near future will
come through the so-called "digital revolution" in
music. Certainly it has had an impact on almost every
other aspect of music, particularly music recording.

The basic principle of "digital music" is that the
waveforms of the pressure oscillations making up
sounds are measured and stored as numbers.  More
precisely, the voltage waveforms out of the
microphones and their amplifiers are measured and
stored.  The music can then be restored later by using
these numbers to recreate the original voltage
waveforms as inputs to a stereo amplifier system and
its loudspeakers.

The process of measuring the original waveform is
called Analog to Digital conversion (AD), a standard
technique in electrical engineering.  It is usually done

by a process of successive approximation.  As an
example illustrating the principle, suppose a voltage of
7.248 volts is to measured in a system where the
voltage can be as high as 10 volts (See Fig. 3.6)
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Subsequent checks
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Fig. 3.6 Successive approximation measurement
of a voltage.  In the example shown, the voltage to
be measured by the "digital" circuit is taken to be
7.248 Volts.  The results to 12 bit accuracy is
shown.

The first question asked of the electronic logic circuit is
whether the voltage is greater than 10 volts.  This can
be done by a simple comparitor circuit with a yes-no
answer, creating a 1 for a yes and a 0 for a no. In this
case, if the answer is 1 than the circuit indicates an
"overflow" at the input.

If the answer to the first question is a no, then the
circuit next ask the same question again.  The answer
will now be no (0) and the circuit halves he difference,
now downward, to 6.25 volts and again does a
comparison.  This sequence is repeated until the
desired accuracy is obtained.  In the example of 7.248
volts, the result would be 101110011000 (to an
accuracy of 0.002 volts).

Thus twelve "bits" of information represent the
measurement of the voltage.  This is, of course, the
measurement in "binary" arithmetic or arithmetic in
base 2.  To convert the number to the more familiar
digital arithmetic (in base 10) the values of the bits are
added as their values in base 10 (2048, 1024, 512, 256,
128, 64, 32, 16, 8, 4, 2 and 1 for the first twelve bits).
The result is 2968 meaning that the voltage is
2968/4096 times 10 or 7.246 volts.  (Remember that
the accuracy of the measurement was only to 0.002
Volts).

Because it only involves a simple on-off storage, binary
arithmetic is the form used in computers.  The so-
called "digital revolution" is therefore more of a
"binary" revolution.

The operations involved in obtaining the binary
measurement of a particular voltage in a waveform is
therefore a very simple repetitive process, the sort of
process for which computers are ideal.  Modern logic
circuits can do tens of million such operations a second
and so a measurement to 12 bit accuracy of the type
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shown above can be carried out in a millionth of a
second.

The pressures in a sound involve oscillations that can
be heard by human beings at up to 20,000 per second.
This sound is adequately measured for human hearing
when it is sampled about 50,000 times per second.  The
accuracy required to cover the full dynamic range of
sound that can be heard is about 1 part in 100,000.
This requires about 16 bits in binary arithmetic. This
has become the standard level of accuracy for the
"digitization" of the waveform of audible sounds.

Ten bits in binary arithmetic is roughly a factor of
1000 (actually 1028). Twenty bits therefore represent
about a million (actually 1056784).  16 bits actually
represent a factor of 65536.  This represents a dynamic
range of 96 dB (20 times Log10 65536 - remember it is
pressure, not intensity that is being measured).  Digital
music is often quoted therefore as having a 96 dB
dynamic range.

The operations involved in storing music waveforms as
digital information is easy for modern electronics.
However, the volume of information generated is
enormous.  At 16 bits 50,000 times per second, a
million bits are generated in 1.25 seconds.  A modern
microcomputer holds about 1 million bytes, a byte
being 8 bits, and so could only store about 10 seconds
of music.  The modern laser disk, which encodes the
bits of the digital measurements of the sound as tiny
specks under a transparent plastic covering, must
contain almost 3,000,000,000 such specks for each
hour of music.

The advantages of digital storage of music are obvious.
Once the waveform has been saved as a set of numbers,
there will be no deterioration of the stored waveform as
long as the numbers are kept intact.  Modern systems
of storing numbers twice and checking numbers for
errors due to loss of bits in the storage medium, allow
virtually perfect storage of numbers.  Laser disks store
the music twice on different regions of the disk and the
playback system continually compares the information
with error checks so that even very dirty disks can give
virtually error free return of the numbers encoded.

To recreate the waveform of a sound that has been
digitally encoded, a device called an DA converter is
used.  This device simply adds voltages according to
the binary information and sends the result to an output
circuit as a voltage.

There is some controversy at present as to whether
digital music is as good as many claims that are made
for it.  Many people seem to think that it is brighter or
even more grating on the senses than a good analog
recording while the engineers point out that the digital
process does not add anything to (or take anything
away from) the music that can be detected by human
beings.

Perhaps the source of this conflict is the way the
technique of digital music has been used.  The
tremendous range of power in digital music (up to 96
dB) compared to analog music (to about 65 dB) is
quite often deliberated demonstrated by having a loud
sound come out suddenly from a very quite
background. Unfortunately, people do not seem to like
such sudden intensities in the sounds that they hear.

In real life such a sudden change in sound level is
usually a signal for disaster.  Maybe what is required
in digital music is to make sure that there is some
"floor level"  of background sound, such as audience
noise in the recording hall, that will substitute for the
inherent background hiss of about 40 dB in analog
media that are being used to play 100 dB music.
Perhaps to resolve this conflict, an accurate pair
comparison set of experiments should be carried out of
the sort used by Schroederer to compare concert halls.

The power of the digital system is not just in the
permanent, safe storage of sounds.  The numbers
played back do not have to be the same numbers as
were originally stored.  The information originally
stored can be "processed" by a computer.  Thus
frequencies can be enhanced or removed.  Computer
methods exist for looking for patterns in numbers and
removing or changing those patterns.  For example, the
characteristic pattern of the sound of a scratch on an
old gramophone recording can be detected and
removed. Furthermore, artificial interaural differences
can be created so that a "stereo" record can be made
form an old monaural recording.  Such techniques are
already highly developed for pictures such as those
sent to earth from distant spacecraft where the
incoming picture information, sent as digital
information to overcome errors in the long-distance
transmission of very weak signals, is processed by a
computer.  On a more mundane level, old movies are
being restored to even better than original quality and
sometimes even artificially colored.  It is possible that
soon there may be simple hardware and computer
programs for personal computers at home to fix up the
sound on old records and resave it in digital form.

This ability to modify the sounds by operating on the
stored numbers leads to the possibilities of electronic
enhancement of concert hall acoustics.  Already there
are systems for digitizing the analog sound from a
home stereo system and processing it to reproduce
sounds which have the characteristics of reverberant
sound (multiple repetitions of the original sound with
constantly changing frequency characteristics) and
playing these sounds through smaller speakers
scattered throughout the room.  The results can quite
significantly enhance the acoustics of an average living
room.  Systems for large concert halls would
necessarily have to be much more complex, involving
no doubt computer operation and control.  However,
the cost of such systems could easily be justified if the
results were significant.  As more and more is learned
about how human beings respond to music in a concert
hall, the engineering of such systems becomes more
feasible.  Schroederer himself, somewhat wistfully it
seems, claims that someday there might even be
intelligible public address systems.

3.3.4 General Uses of Computers in Music

There are, of course, many other areas in which
computers are having an impact on music.  To give a
perspective of this rapidly changing field, some of the
present uses are listed here.
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3.3.4a Computer Generation of Music

The analog signals (actual voltages which vary in a
pattern with time) that produce sounds do not have to
use information that comes from the digitization of
original sound; the number cans be easily generated by
a computer itself.  Thus waveforms that are impossible
to create with an acoustic musical instrument, or even
difficult to create directly with an electronic circuit can
be created by having a computer generate the numbers
corresponding to a desired waveform.  This technique
is used a great deal in research in the hearing processes
of humans and animals and was the basis of the
technique used by Schroederer to diagnose the
problems in the New York Philharmonic Hall.  One
interesting application of this technique is that by the
McGill Recording Studio which has produced a
packaged set of digitizations of the sounds of standard
musical instruments as starting points for people
wishing to use a computer in any way to simulate
sounds.  As with any new musical instrument, how this
technique will be used in the future depends a great
deal on the experience, imagination and creativity of the
artists who pick it up.  There is no doubt, however, that
a whole new set of possibilities have been added to the
creation of music, research into hearing and even the
analysis of the behavior of musical instruments and
music halls.

3.3.4b Computer Operation of Music Systems

One of the possible application of computers in music
is the operation of classical musical instruments and
music hall acoustic adjustments for special effects.  An
example is the instrumentation of the pipe organ in the
Sydney concert hall to record the actual operation of
the keys in a live performance and to then exactly
duplicate this operation on demand.  While the use of
such a system to give an organ "recital" seems to be the
stuff of horror movie films, the possibilities for
analyzing and teaching of organ playing technique are
intriguing.

Another use of computers is in adjusting the moveable
panels which are becoming more and more a feature of
modern multipurpose music halls.  Such a system has
been installed in the new Roy Thompson Hall in
Toronto.  The advantages of computer control is that,
once a pattern for the panels has been developed for a
particular type of performance, this pattern can be
recorded and easily repeated at a later time or even
altered by a simple computer program to produce
effects that might lead to even better acoustics.

3.3.4c Analysis of Sound

Once a sound has been stored in digital form, it is
possible to use a variety of mathematical techniques to
analysis the sound for particular characteristics.
(Again, this was the basis of the technique used by
Schroederer in analyzing the acoustics of the New
York Philharmonic Hall).  Two of the techniques of
particular importance are "Fourier Analysis" and
"Transfer Function Analysis".  Both are highly
mathematical techniques that depend critically on the

availability of the information in digital form and high-
speed computing.

Transfer Function Analysis is the comparison of two
inputs for amplitude and phase relationships (how one
of the inputs could be mathematically transformed so
as be the exact duplicate of the other).  This technique
is of great importance in analyzing the possibilities of
the stereo image that would be created by the two
sounds meant for the two ears.  It was the technique
used by Schroederer in determining that it was
interaural coherence (or lack of significant difference in
the sound of the two inputs) that led to audience lack of
preference of the sound of certain halls.

The technique of Fourier Analysis, which is
mathematically related to Transfer Function Analysis
but a little simpler, presents a detailed spectrum of the
frequencies in a monaural sound.  This spectrum is
related to the timbre of a musical note and is the pattern
that is most easily related to the quality of a sound that
is heard.  When a picture  of the Fourier Analysis of a
sound is presented, it is very easy to relate the picture
to the sound being heard; harsh, high pitched sounds
fill the upper part of a Fourier spectrum, while mellow,
low pitched sounds fill the lower part;
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Figure 3.7  A typical result of the Fourier
Analysis of sounds.  The sound with the
spectrum peaked in the low frequency region
will be more mellow than the sound with the
spectrum peaked in the high frequency region.

With modern computing techniques it is possible to
digitize the output of a microphone and to do a Fourier
Analysis (sometimes called a Fourier Transform) for
500 or more frequencies in less than 1/20th of a
second.  Furthermore, the electronics to do this can be
easily mounted at modest cost on an expansion board
for a personal computer and the personal computer
used to display the results.  This allows a continuous
display of the frequency spectrum of the sounds as
they are being heard by a listener and rapid learning of
the connection between the patterns appearing on the
screen and the sounds being heard.
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This system has great potential in such areas as the
training of deaf children how to speak.  By trying to
mimic the patterns on the screen for sounds correctly
produced by a teacher or even those of a recording, the
child can learn the muscle controls needed of the
tongue, throat and face to produce real speech.  It also
has great potential in the teaching of music
performance.  The frequencies produced in singing, for
example, can be displayed as they are being produced.
Furthermore, the actual pitch of the note produced
could be displayed, making it considerably easier for
the student to learn to sing "in tune" as well as to
produce the right timbre of note by noting the presence
(or absence) of significant frequency components.  As
an example, the "operatic format", a cluster of
frequencies around 4000 Hz that are sounded when a
singer adopts an operatic style, can be clearly seen in a
Fourier analysis of the sound.  Developing the
constriction in the vocal tract that produces this formant
is a very difficult art that could be considerably aided
by evidence on a screen that one has indeed come close
to producing it.

3.3.4d Analyzing Human Auditory Systems

How the human auditory system decodes the
frequency pattern of sounds falling on the ears into a
recognizable pattern and responds to this pattern in
about a tenth of a second, is one of the great mysteries
of psychophysics.  The question is not only of great
importance in the theory of music but also in such
practical questions as the nature and cause of hearing
deficiencies associated with neural damage in children.
Research in this area has begun to use computers
programmed to behave like certain models of what the
central nervous system might be doing to the nerve
pulses from the cochlea.  If the computer makes the
same errors as those of a child with a certain hearing
defect, then one has some indication that the computer
is processing the incoming data in a way similar to that
of the nervous system.

The work in this field is extremely complex, involving
knowledge of biology, psychology, linguistics,
mathematics, artificial intelligence and the physics of
sound.  The research is beset with many problems
associated with the mysteries of how the brain itself is
physically constructed.  However, some overall
principles seem to be emerging.  These generally
follow principles discovered many years ago in
electrical engineering.  There seem to be differential
amplifier set-ups wherever possible; two eyes, two ears,
two vestibular organs etc.  It has been known in
electrical engineering for a long time that such a system
based on the comparison of two similar input devices is
inherently more capable of picking out the desired
signal from noise on the inputs.  In the case of the ears,
the determination of the direction of a sound source
seems to be based on a highly developed mechanism
for comparing the inputs from the two ears.

Another remarkable feature of the human central
nervous system is one that has only recently become
generally accepted in modern computer networks (but
again which has been known as a good general
principle for some time by electrical engineers); that of
so-called "distributed computing".  In such a scheme,

the most effective use of computing power is achieved
by distributing the load appropriately among the
various elements in the system.  Thus small jobs are
best done by small local computers (often disguised as
"smart-terminals") while the big powerful number
crunchers are only called up by these local devices
when the memory capacity, larger programs and sheer
brute force of the larger computers are necessary.  The
central nervous system of humans seems to be
designed along this same principle.  Perhaps the best
established example is color encoding by the eyes.
There appears to be a set of microencoders just behind
the retina  to preprocess the color information
generated by the cones in the fovea before sending this
information to the brain for more sophisticated pattern
recognition.  Another well established example is the
tight neural connection between the eyes and the
vestibular organs.  Most of the time the eyes and the
vestibular organs work together, with no bothering of
the brain, to control the position of the eye during head
movements so that we do not have blurred vision
whenever we move our heads.  It is only when there is
some confusion between the two such as can be
produced by blindfolding a person when on a revolving
chair, that the brain will be called in to clear up the
giddiness and general confusion that has be created.
(For more information on this matter, one of the world
centers of authority in this field is the McGill School in
Aviation and Space Medicine.)

The systems used for aural decoding are not so well
understood.  All that can be said with some certainly is
that they must be based on some incredible local timing
comparison microencoders.  What they are, or even
where they might be in the central nervous system
(how far up the ladder to the central cognitive brain
structure) is not even known.  There is certainly a great
deal of room for research here and computers are being
used more and more as  tools in this research. With the
general invasion of computers into our modern society,
it is perhaps not surprising that they invaded modern
musical acoustics as well.
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Exercises and Discussion Topics

1.  What are the desirable features of concert hall
acoustics and how are they related to the
geometrical properties of the hall?  How do
these features vary with type of music or
performance.  (Discus the relationship for a
least three distinct types of music or
performances)

2. Discuss the acoustic "tools" an architect has
available to adjust and fine tune the acoustics of
a hall.  Explain in as short a statement as
possible what these tools are and what they can
be expected to accomplish.

3.  Outline the steps used by Schroederer for a
scientific evaluation of the preference in concert
hall acoustics.  Explain the reason for the
various other steps taken by Schroederer.

4.  Discuss in very general terms the acoustic
properties of the various types of acoustic
environments in which various types of
performed music may be heard; in particular
concert halls, opera halls, theaters, chamber
music halls, churches and open air
environments.

5. Show that the binary number in the text of this
chapter actually represents the voltage value
given.

6.  Discuss the roles of computers in modern
concert hall acoustics.

7. Discuss the possible roles of computers in
music and acoustic research in general.
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CHAPTER 4 

THE SOUND OF A POINT SOURCE IN A ROOM 

 

Just as sports seem to be the playful use of mental and 
physical skills that have developed to help us survive 
as a species, listening to music seems to be the 
playful use of the aural nervous system that has also 
been extremely important in primitive survival.  
Because of its importance to survival of the species, 
this sensory system has evolved so as to get the 
maximum possible information from sound at the 
ears.  The physics of how sound propagates from a 
single source to the ears can help in understanding 
what this system does and what it is capable of doing. 

One of the most important aspects of a sound is that it 
involves a pressure oscillation in a medium.  The 
medium can be a gas such as air, a liquid such as that 
in the cochlea of the ear, or a solid such as steel or the 
bone matter in the head or, to take an extreme case,  
nuclear matter of the sort that exists in neutron stars.  
All that is required for sound propagation is that the 
medium have its mass somewhat evenly distributed 
and that it be elastic (i.e able to bounce back from a 
temporary distortion).  These conditions exist to a 
high degree in the air in a room. 

The pressure oscillations involved in sound are 
overpressures and underpressures relative to the 
normal (quiet) atmospheric pressure.  The 
overpressures and the underpressures in sound on the 
average cancel to zero, leaving the average pressure 
to be the normal atmospheric pressure of quiet air. 
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Figure 4.1  Example of the type of pressure 
oscillations that occur in sound. 

Listening to sound is responding to these pressure 
oscillations.  Hearing different sounds in different 
positions in a room means that the pattern of pressure 
oscillations is different at these different positions.  In 
particular, a large part of the pleasure of listening to 
music seems to be in responding to the difference in 
the patterns of pressure oscillations at the positions of 
the two ears. 

For normal room sounds, the overpressures and 
underpressures are very small compared to the normal 
atmospheric pressure of about 100kPa.  A sound of 
94 dB, corresponding to about the loudest sound you 
would want to hear from an orchestra, involves a 
pressure oscillation of amplitude about 1 Pa, i.e. 

between 100,001 Pa and 99,999 Pa.  Pressure 
oscillations at the threshold of hearing are miniscule; 
about 20 millionths of a Pascal.  A sensory system 
that can respond to such pressure changes, and at the 
same time look for differences at the two ears, has to 
be very highly developed indeed. 

The aural sensory system, in responding to the pattern 
of pressure oscillations at the two ears,  uses the 
information in these patterns to discern a source for 
the sounds.  In also uses information in these patterns 
to discern things about the geometry of the room.  
This means that the brain must be capable of 
discerning the differences of the sound at the ears due 
to different ways the sound can be propagated from 
the source to the ears.  To understand what the brain 
is doing, it is therefore important to understand how 
sound pressure oscillations propagate from a source 
to various points in a room. 

A thorough coverage of the physics of sound 
propagation would include the mathematical 
description of wave motion in general and the 
derivation of the wave equations in a medium from 
the physical properties of that medium.  Most good 
books on acoustics include this.  However, many do 
not include a good introduction to the subject in 
words and pictures that help in understanding what 
the equations are describing.  As an introduction, 
what will be presented here will be the words and 
pictures without the mathematics; the "how" of sound 
propagation will be presented with the "why" only 
being answered to the extent that is possible in words 
and pictures.  For the benefit of those who may be 
interested in the basic equations of wave motion,  
they are summarized  in the appendix to this chapter. 

To understand anything new it is best to start with the 
simplest possible example.  The simplest possible 
example of sound propagation is that from a flat wall 
which suddenly starts moving against the air in front 
of it.  What will propagate from such a wall is a pulse 
of sound in the form of a pressure "wall" or "plane 
wave", the "plane" being referred to being the plane 
of the edge of the pressure zone and which is parallel 
to the wall but at some distance from it.  This plane 
will be moving directly away from the wall in a 
direction perpendicular to it and the sound pulse 
associated with it will be the "direct" sound from the 
wall. What follows is a description of this direct 
sound and how it propagates. 

4.1  The Direct Sound Wave 

4.1.1   Plane Sound Waves 

Suppose that a wall, which was at rest, suddenly starts 
moving at a uniform speed forward.  Immediately, the 
air in front of the wall resists this motion and 
whatever is pushing the wall will have to apply a 
force to sustain the motion.  In other words, the air 
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will exert an overpressure on the wall, resisting the 
wall's motion. 

W
a
ll

F

v

 

Figure 4.2  Pictorial representation of the air in 
front of a moving wall.  The vertical lines are 
used to indicate position of the air at the instant 
of the picture.  They might be thought of as very 
thin sheets hanging vertically and moving with 
the air as it moves.  At the instant shown, the 
wall has just started to move at velocity v.  At the 
start of the wall motion the air immediately 
resists the motion, requiring a force F to sustain 
it. 

The overpressure of the air immediately in front of 
the wall will also push forward the air further from 
the wall and compress it as well.  If the motion of the 
wall persists, there will soon be a region of 
compressed air extending in front of the wall; 
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Figure 4.3 At the instant shown, the wall has 
moved forward and compressed the three 
region of air in front of it designated by the 
three vertical lines.  This overpressure is shown 
on the pressure graph beneath the pictorial 
representation of the air.  The air ahead of this 
region is still unaffected. 

 

Here is where a very important phenomenon in sound 
propagation arises.  For reasons related to the physics 
of how air moves under compression, the edge of the 
region of compression of the air will propagate 
forward at a very definite speed, independent of the 
speed of the wall motion.  This speed is indicated as c 
in the diagram. 

At a time later corresponding to twice the time for the 
diagram of Fig. 4.3, the region of compression will 
extend twice as far; 
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Figure 4.4 At the instant shown, the wall has 
been moving for twice as long as in fig. 4.3 and 
has compressed a region of air in front of it 
which is twice as thick as in fig, 4.3.  This 
overpressure is shown on the pressure graph 
beneath the pictorial representation of the air.  
The regions ahead of the region of overpressure 
is still unaffected. 

Now suppose the motion of the wall suddenly stops at 
the instant shown in fig. 4.4.  Here arises yet another 
important phenomenon related to the physics of how 
air moves under pressure.  It turns out that the 
momentum of the moving air just in front of the 
moving wall is just sufficient to cause it to move 
forward away from the wall the right amount to 
exactly relieve the overpressure.  In other words, as 
soon as the wall stops, the air stops pushing against 
the wall and a region of normal pressure develops.  
This is shown in fig. 4.5  

p c
 

Figure 4.5 The air distribution and its 
overpressure a short interval after the wall has 
stopped moving.  The overpressure is shown on 
the pressure graph beneath the pictorial 
representation of the air. The region of 
overpressure has the same extent as in fig. 4.4 
but has moved away from the wall.  The region 
between the overpressure region and the wall 
has returned to normal pressure. The region 
ahead of the overpressure region is still 
unaffected. 
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As time progresses, the region of overpressure will 
propagate forward at the speed of sound c; 
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Figure 4.6 At the instant shown, the 
overpressure region has moved further to the 
right.  It will continue to propagate in this 
fashion at a very definite speed; the speed of 
sound. 

Now imagine a person to the extreme right in fig. 4.6.  
Such a person will experience an overpressure as the 
overpressure region passes by.  The time it takes for 
the overpressure region to pass by is exactly the time 
it took to create the overpressure region in the first 
place, that is the time for which the wall was moving. 
In other words, the sound due to this overpressure 
will be perceived as lasting exactly as long as did the 
wall movement. Thus the person hears the movement 
of the wall but delayed by the time it takes for the 
leading edge of the overpressure region to reach the 
ear.  For a distance from the wall of, say, 5 m at c = 
343m/s this will be 5/343 =  14.6 ms. 

If the wall moved originally with twice the speed, 
taking half the time to complete its motion, the force 
required for the wall movement would be twice as 
great, the region of compression would be half as 
wide and have twice the overpressure but the region 
would still propagate forward at the same speed (see 
fig. 4.7) 

The same sort of thing happens when the wall moves 
backward, away from the air in front of it (fig. 4.8).  
Suppose, from its original position, the wall started to 
suddenly move backwards away from the air at a 
velocity v.  This would immediately create a vacuum 
in front of the wall and the air in front of the wall 
would start to move to fill this vacuum. The region of 
underpressure would extend forward an amount that 
depended on how long the wall had been moving 
backward.  When the wall stopped moving, the 
momentum of the thinned out air (now moving 
backward) would cause it to pile up in front of the 
now stationary wall.  Again from the physics of the 
motion of air under pressure, in this case actually a 
vacuum, the air will move just the right amount to 
bring itself to a stationary state at normal pressure. 

Now there will be a vacuum pulse moving away from 
the wall and an observer to the right will hear a 
negative sound pulse as coming from the wall.  Even 
though the motion that caused this pulse was to the 
left, and all air motion involved in the sound pulse is 

to the left, the sound pulse actually travels to the 
right. 

F

v

 

p

F

v

c

 

p
c

 

Figure 4.7 Diagrams of air motion with a wall 
moving at twice the speed for half the time of 
Figures 4.2 to 4.6 
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Figure 4.8 Diagrams of air motion with a wall 
moving backwards, away from the air.  Note 
that the vacuum region still propagates forward 
away from the wall. 
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This is the remarkable thing about sound and is what 
makes it such a valuable aid in determining the 
direction and distance of any disturbance of the air by 
such things as a breaking twig or a falling stone.  All 
disturbances that will cause a local overpressure or 
underpressure will be propagated directly away from 
the source at the same definite speed c. 

In passing, it is perhaps interesting to note that there 
is an obvious limit to the propagation of a disturbance 
in this fashion.  If the wall were to move forward 
faster than the speed of propagation of the 
disturbance, then the region of compression would 
never be able to get away from the wall.  What this 
means is that all the air just masses against the wall, 
soon forming  an insurmountable barrier to the wall 
motion.  This phenomena does occur when objects 
move through air faster than the speed of sound and 
was first experienced by dive-bomber pilots in the 
second word war when, in a steep dive, their planes 
sometimes reached the speed of sound.  The pilots 
described their experience as being similar to running 
into a brick wall, hence the origin of the expression 
"sound barrier" to such motion.   

A related phenomenon occurs with motion away from 
the air.  Such motion can occur in high power 
ultrasonics such as used in ultrasonic cleaning.  Here 
a surface is made to move away from the medium 
(usually a liquid) at a speed greater than that of the 
propagation of the sound wave.  What this means is 
that the medium in front of the surface cannot move 
fast enough to fill in the void created by the surface 
movement and a real cavity (complete vacuum) forms 
in the medium.  This very high vacuum tends to 
explode any dirt off the surface of the moving wall 
and is the principle behind ultrasonic cleaning.   The 
phenomenon is referred to as "cavitation" and it is 
very important in the medical uses of ultrasonics for 
diagnostic purposes that the level of the ultrasound be 
kept well below where this will occur. 

For ordinary sound in air, the velocities of the moving 
surfaces are always very, very small compared to the 
speed of sound. 

3.1.2  Analogy With Water Waves 

Perhaps the most familiar example we have in nature 
of the propagation of a local disturbance is the 
propagation of a water wave such as that formed by a 
falling stone.  A water wave that would be analogous 
to the sound pulse from a moving wall would be one 
generated by a moving vertical wall in water.  If the 
motion of water piled up in front of such a wall was 
similar to the motion of air, the wall would build up 
water in front of it as shown in fig. 4.9. 
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Figure 4.9 Diagram representing a water wave 
creating by a moving vertical wall in water if 
water behaved in a fashion exactly analogous to 
the elastic movement of air. 

When the wall stopped moving, a "wave" would 
propagate away from the wall in a fashion similar to 
that of the sound pulse (fig. 4.10). 
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Figure 4.10 Diagram representing the water 
wave, starting in figure 4.9, after the wall has 
stopped and the wave has moved away from 
the wall.  Again, the movement of water is 
assumed to be exactly analogous to that of the 
elastic movement of air. 

The analogy with the sound pulse is not perfect 
however.  Water in front of the wall does not move 
like air because it cannot be compressed; it has to 
move vertically along the wall.  (Here we are not 
considering sound waves in water but ordinary water 
waves on the surface.)   The shape of the wave that 
would actually be produced is shown in fig. 4.11. 
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Figure 4.11 Diagram representing the actual 
water wave that would be created by a 
movement of a vertical wall in water.  Again, 
the movement of water is assumed to be 
exactly analogous to that of the elastic 
movement of air. 

As the water wave propagates away from the wall, it 
loses even this initial shape by flattening out (fig. 
4.12).   
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Figure 4.12  Diagram representing the water 
wave of fig. 4.11 after it has moved further to 
the right. 

For example the initial steep water wave caused by an 
underwater movement, such as from an earthquake or 
a volcanic explosion, will spread out as it propagates 
and, after crossing an ocean, will appear at the shore 
as just a gradual rising of the water level similar to 
that of a tide.  Such phenomena are therefore referred 
to as "tidal waves". 

The reason for this behavior of water is that the 
physics of water flow from one elevation to another is 
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different from that of the elastic air flow from a 
region of overpressure to a region of underpressure.  
(In technical terms, there is "shear flow" involved). 
This can also occur in air flow from an overpressure 
region if the overpressures are high such as in a 
dynamite blast or a lightning flash.  The sound close 
to a lightning flash is a very sharp loud crack while 
the sound of a single distant flash is the familiar 
rolling thunder.   

For the overpressures that occur at sound levels that 
do not damage the ears, the flow will be the elastic 
flow that leads to preservation of the sharp 
boundaries between the pressure zones and hence the 
preservation of the original sharp nature of the 
pressure disturbance as it passes an observer.  An 
initial sudden movement therefore produces a sharp 
pulse of sound at a distance. The speed of 
propagation of sound through a medium is therefore 
one of the most important properties of sound. 

4.1.3 Speed of Propagation of Sound in Air 

From the physics of gases and their motions, the 
velocity of sound in a gas can be shown to be given 
by the equation 

  c  =  
 po

  

where c is the velocity of sound, g is the ratio of 
specific heat of the gas at constant pressure to the 
specific heat of the gas at constant volume, po is the 
normal (quiet) pressure of the gas and r is its density. 

The factor  po comes  from the compressibility of a 
gas.  The  factor itself comes into the equation 
because sound going through the air is a so-called 
adiabatic process.  By this it is meant that the passage 
of the sound wave through the air is so fast that heat 
produced by the overpressure cannot leave the gas it 
is in and is returned as energy to that same gas when 
the pressure wave has passed.  This essentially raises 
the pressure that is necessary to compress a gas by a 
given amount. The value of  for air is 1.40372.  

The factor po is just the value of normal atmospheric 
pressure (101,325 Pascals).   The factor  s the air 
density which at 20 degrees C is  1.205 kgm per cubic 
meter.   

From the equation it can be seen that the velocity of 
sound increases with pressure or "springiness" but 
decreases with density.  The connection between 
pressure and density in normal air is such that when 
the pressure is increased, the density increases in 
strict proportion; air under twice as much pressure 
being twice as dense.  Thus air under different 
pressures has the same sound velocity.  However, 
helium at the same pressure as air has a sound 
velocity considerably greater because of its lighter 
density. 

 When all of these figures are put into the equation, 
one gets a theoretical sound velocity for air at 20 
degrees C and normal atmospheric pressure of 

   c  =  343.6 m/s 

The actual figure for the velocity of sound in dry air 
at 20 degrees C and normal atmospheric pressure 
(101,325 Pascals) for a 1000 Hz sound wave is; 

   c  =  343.562 m/s 

The agreement between the theoretical and observed 
values for the velocity of sound indicate the high 
degree to which the physics of sound is understood. 
However, like any medium for sound, air is not 
perfectly elastic.  Air viscosity and non-adiabaticity at 
high overpressures can lead to deviations in its sound 
velocity.  For very large waves (such as those near the 
vicinity of an explosion) the velocity can be 
considerably higher but for sound waves in the sound 
power range that do not damage human ears, the 
velocity is constant to within a few parts per million 
for all sound power levels. 

Also the variation of sound velocity with frequency is 
very small.  Over the useful range of frequencies for 
human hearing, the values are given in table 4.1. 

 
 Frequency Deviation of c from 
  value at 1000 Hz 
 (Hz) (parts per million) 
 100 -30 
 200 -10 
 400 -3 
 1250 0 
 4000 +5 
 10,000 +10 

 

Table 4.1  Deviation of the velocity of sound 
from the value at 1000 Hz in normal air at 
various frequencies. 

The physical model of sound passing through air 
being that of a wave passing through a purely elastic 
medium of uniform density is therefore very good.  
The significant variations in the velocity of sound 
come from varying physical properties of the air.  For 
example, the variation with humidity of the air is 
given in table 4.2. 
 Humidity Deviation of c for 
  1000 Hz  Tone 
 (%) (parts per million) 
 
 0 0 
 10 73 
 20 415 
 30 775 
 40 1136 
 50 1500 
 60 1860 
 70 2230 
 80 2590 
 90 2960 
 100 3320  (About 0.3 %) 
 

Table 4.2  Deviation of the velocity of sound 
from the value at 1000 Hz in normal air at 
various frequencies. 
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Taking into account that people with well developed 
musical abilities can detect a 0.1% to 0.2% change in 
frequency and that the frequency of many wind 
instruments depends directly on the velocity of sound 
in the air contained in them, we see that this humidity 
factor is on the verge of being noticeable. 

At first it might seem strange that humidity would 
increase the velocity of sound since humid air is 
slightly heavier than dry air.  However, the   factor 
for humid air is higher than for dry air and this is the 
predominate cause of the velocity change for humid 
air. 

The most significant factor in the variation of sound 
velocity in ordinary acoustic environments is the 
variation with temperature.  This is because for a 
constant pressure the density of a gas decreases as the 
temperature increases. The density of an ideal gas is 
inversely proportional to the absolute temperature of 
the gas.  (To get the absolute temperature of a gas, 
you add 273 to the temperature in degrees C).  Thus 
the velocity of sound in a gas will be proportional to 
the square root of this temperature.  For example, the 
absolute temperature of a gas at 20 degrees C is 
293K.  At 0 degrees C it is 273K.  The ratio of the 
velocity of sound at 0C to that at 20C is therefore; 

 

 
c0o

 c20o
   =  

273
293    =  0.965   

 

corresponding to a 3 1/2 % drop in velocity from 20C 
to 0C.  In a wind instrument this would correspond to 
about a quarter tone drop in frequency, an easily 
detectable change for a musician.  Many musical 
instruments have mechanisms for adjusting for such 
frequency changes but fixed instruments such as pipe 
organs in a church suffer severe tuning problems if 
the room temperature is not correct. 

 

4.1.4 The Connection Between Pressure and Air 
Velocity in a Sound  Wave 

From the diagrams of section 4.1.1 it is clear that 
there is a relationship between the velocity of the 
moving wall and the pressure that builds up in the air 
in front of it. The pressure generated in the air was in 
proportion to the velocity of the wall generating it. 
What was not so clear is that the same relationship 
exists for the air in the sound pressure pulse itself.  So 
show this, diagrams representing three successive 
instants in the pulse propagation are shown together 
in fig. 4.13.  In this diagram it can be seen that the 
only air that is moving is the air in the region of 
overpressure.  The rest of the air is stationary.   

The same phenomenon occurs for the vacuum wave 
shown in fig. 4.14 except that in the region of 
underpressure the air moves backwards towards the 
wall. 

The physics that gives the equation for the speed of 
propagation of sound also gives the relationship 
between sound pressure and air velocity.  The two are 
strictly proportional to each other according to the 
equation 

 pressure  =  
 po
c    x  velocity  =  413 x velocity  

 (for dry air at normal room conditions) 

As an example, consider a wall which moved forward 
at 1 m/s (about a normal walking speed) but only for 
1 ms so that its total movement was 1 mm.  This, of 
course, would create a pressure pulse that lasted 1 ms 
and, travelling at 344 m/s, would cover a region of 
34.4 cm in the air in front of the wall.  From the 
above equation, the overpressure in this pulse would 
be 413 Pa.  A wall moving backwards at the same 
speed would create a vacuum pulse of 413 Pa  

 

4.1.5  Power in a Sound Wave 

The relationship between air velocity and sound 
pressure is another very important property of sound.  
It means that there is real power or transport of 
energy associated with sound propagation.  This is 
because power is the product of a force and a 
velocity.  If a force exerted on an object does not 
move that object, then there is no work done and 
therefore no power involved.  Also, if an object 
moves but requires no force to keep it moving, again 
no work is done and no power is involved.  Only if a 
force is associated with a motion is there work being 
done and the power is then the rate at which this work 
is being done.  This rate is simply the force times the 
velocity of movement being caused by the force. In 
the case of the sound propagation from a moving 
wall, the power involved in the generation of the 
sound is the force required to move the wall 
multiplied by the wall velocity. 

The force required to move the wall is that required to 
overcome the effect of the overpressure (or 
underpressure) of the air on the wall.  If the wall is 
being moved to the right, then a force to the right is 
required to overcome the overpressure.  If the wall is 
being moved toward the left, then a force to the left is 
required to overcome the underpressure of the air. In 
either case, the force is in the direction of the velocity 
and work must be done to sustain the motion. 

The force per square meter of wall is therefore just 
the air overpressure or underpressure.  The power 
involved per square meter of wall is therefore the air 
pressure multiplied by the wall velocity. 

The concept of power per square meter is very 
important in acoustics.  It is defined as Intensity and 
by international agreement has the symbol I reserved 
for it. In the simple example of the moving wall, the 
wall is doing work on the air if front of it with an 
intensity equal to the pressure of the air times the wall 
velocity.   
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Figure 4.13  Diagram representing the movement of air for a pressure pulse moving to the right as a result of 
a wall movement on the far left.  The only air which is actually moving at any instant in time is the air in the 
overpressure region.  In this case, the air movement is in the direction of the wave propagation. 
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Figure 4.14  Diagram representing the movement of air for a vacuum pulse moving to the right as a result of 
a wall movement on the far left.  The only air which is actually moving at any instant in time is the air in the 
underpressure region.  In this case, the air movement is in the direction opposite to that of the wave 
propagation. 
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What happens to the energy that the wall puts into the 
air in front of it? From conservation of energy in an 
elastic medium such as air, the energy must go 
somewhere.  Looking carefully at Figures 4.13 and 
4.14 should show that the air in the pressure pulse is 
in fact moving forward (or backward) at the same 
velocity as the wall which caused  the disturbance in 
the first place.  The air at the leading edge of the 
pressure pulse is therefore doing work on the air in 
front of it in exactly the same fashion as if it were the 
wall itself. The effect of the wall movement is 
therefore being propagated through the air as real 
power or intensity.  If the disturbance ever comes to 
another wall, it is capable of exerting pressure on that 
wall. If that wall moves with the air then work will be 
done on that wall with the same intensity as the 
original moving wall did work on the air.  

This is why the concept of intensity of a sound wave 
is so important.  It represents the amount of power 
that can be extracted from a sound wave per square 
meter of the wave-front surface.  Because of the 
relationship between pressure and air velocity in a 
sound wave there is a simple equation linking sound 
intensity and sound pressure; 

 Intensity   =  Pressure  air velocity   

   = Pressure   
c
 po

   x Pressure 

or in symbolic form 

  I  =   
c
 po

   p2   

For normal air in a room at 20C, in SI units (Watts, 
meters and Pascals) this equation becomes 

  I  =  2.412 x 10-3  p2  

Continuing with the example of a wall moving at 
1mm in 1ms to produce a sound pulse with a pressure 
of 413 Pascals, the intensity of this sound pulse 
would be 411 Watts/meter2. 

   

4.1.6  The Decibel Scale of Sound Intensity 

The human ear intercepts about 1 cm2 of a sound 
wave surface and seems to need only about 1 x 
10 16 Watts to create a detectable motion in its 
cochlea. The sound intensity at the "Threshold of 
Sound" is therefore about 10 12 Watts per square 
meter. This is used then as the reference level from 
which sound intensity is expressed. It is usually 
referred to symbolically as Io.  

The intensity range over which the human ear can 
usefully respond to sound is enormous.  At the point 
where pain and physical damage of the ear sets in the 
intensity is a trillion times that at threshold or about 1 
Watt per square meter.  Because of this large range 

and because of other factors such as the 
approximately logarithmic response of the human 
nervous system (see Roederer in the reference reading 
list), the intensity of a sound is usually expressed in a 
logarithmic scale called the "Decibel Scale".  This 
scale is defined by the equation 

  dB  =  10  log10 
I
Io

  

where dB refers to the decibel level, log10 is the 
logarithm to base 10, Io is the reference level 
specified above and I is the intensity of the sound, 
both in Watts per square meter.  (Io is 10 12 as 
specified above.) 

The translation of a sound intensity level in dB to 
actual watts per square meter is just the inverse of this 
equation or 

  I  =  Io x 10 ( )dB
10   

From the equation relating intensity and sound 
pressure, the sound pressure itself can also be 
determined for a given dB level.  The result is the 
table below linking dB, intensities and sound 
pressures (with some representative sounds). 

 
 dB I p 
  Watt/m2 Pascals  
          

 0 10-12 2.036 x 10-5 Threshold of sound  
    for humans 
 10 10-11 6.438 x 10-5 Falling pin 
   
 20 10-10 2.036 x 10-4 Whisper at 1 m 
  
 30 10-9 6.438 x 10-4 ppp  in music (very 
    quiet hall)  
 40 10-8 2.036 x 10-3 pp (average modern 
     empty hall)  
 50 10-7 6.438 x 10-3 p  (interior of 
     expensive car)  
 60 10-6 2.036 x 10-2 mf (subdued 
     conversation)  
 70 10-5 6.438 x 10-2 f  (City traffic)  
 80 10-4 0.2036  ff  (Limit allowed in 
     factories)  
 90 10-3 0.6438  fff (Steel-railed subway 
     train)  
100 10-2 2.036 Loudest sound that can be   
    tolerated for short periods.  
110 10-1 6.438  Typical rock concert 
  
120 1 20.36  Threshold of pain 
 
140 10 200.36 Jet engine at 30 m 
  

Table 4.3  dB, intensities and sound pressures 
for representative sounds.  Note that Pascals 
increase by 10 for each 20 dB increase and by 

10 for a 10 dB increase. 

In using the decibel scale it is often convenient to use 
the fact that a factor of two in intensity corresponds to 
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about 3 dB.  (The accurate value is of course 10 
Log10 2 or 3.01 dB but for the purposes of acoustics, 
3 dB is an accurate enough figure.)  Thus if sound 
intensity is doubled in intensity the sound level goes 
up by 3 dB; if it is halved, it goes down by 3 dB.  
Another useful fact to remember is that 10 factors of 
2 (210 or 1024) correspond closely to a factor or 1000 
or 30 dB and therefore 20 factors of 2 correspond 
closely to 60 dB. 

The figures in the above table show the scale of the 
sound phenomenon.  Normal atmospheric pressure is 
about 100,000 Pa. Sound at a level that causes human 
beings to experience physical pain in their ears (120 
dB) is only about 20 Pa or 1/5000th of this value.  
Thus sound is indeed a very small perturbation of the 
pressure of the air.  A gentle breeze will put a wind 
pressure of 100 Pa on your face.  A 1 meter climb 
will cause a pressure decrease due to the extra altitude 
of about 10 Pa. 

Perhaps the most impressive figure is that for the wall 
which moved only 1mm at the modest velocity of 1 
meter per second for 1 ms.  The level of the sound 
pulse would be 146 dB or well beyond the threshold 
of pain and into the region where the ear can be 
physically damaged!  The ears are indeed very 
delicate devices.  

 

4.1.7 The RMS Pressure in Sound 

 

In the simple case of the sound pulse created by a 
wall moving at uniform velocity, the pressure in the 
sound pulse was constant.  In general, sound sources 
do not move with anywhere near uniform velocity.  
The sound sources in music have very complex 
motions.  Yet there will be an average rate of transfer 
of energy to the human ear and hence a certain 
average decibel level to the sound.  For intensity, the 
averaging is simple; the total energy delivered per 
square meter is divided by the time it takes to deliver 
that energy and this gives the average power.  The 
average pressure is not so simple.  This is because 
both negative pressures and positive pressures give 
sound intensity and the average sound pressure is in 
fact zero.  (By sound pressure is meant the 
overpressure or underpressure relative to the normal 
air pressure in a quiet room.)  

This problem is gotten around by noting that the 
average effectiveness of the sound pressure is due to 
its square.  If the sound pressure is doubled, the 
intensity is quadrupled.  The square of a sound 
pressure is always positive whether the pressure itself 
is positive or negative.  By taking the squares of all 
the sound pressures and finding the average of these 
squares (mean square) the average effectiveness of 
the pressures is obtained.  Taking the square root of 
this average (root-mean-square) then gives the 
effective average of the sound pressure oscillations.   

This value is the one used to express the acoustic 
pressure of a sound. The above equation should 
therefore be written for the general case as 

   I  =  2.412 x 10-3  p2
rms

  

A special case of importance is the sinusoidal 
pressure variation that occurs for a pure tone.  It can 
be shown by calculus that the rms average of such a 
pressure oscillation is 1/ 2 times the peak value of 
the overpressure (or underpressure).  A pure tone of 
60 dB and therefore having an rms acoustic pressure 
of 2.036  10-2 Pa  would have sound pressure 
oscillations from +2.879  10-2 Pa. to 2.879  10-2 

Pa. 

4.1.8 Energy in a Sound Wave 

The final feature of sound to be considered here is its 
energy.  Sound, in essence, represents the transfer of 
energy through space.  The energy comes from the 
sound source through the air and impinges on the 
human ear to stir up the cochlea so as to send 
messages to the brain.  While the sound wave is 
travelling through the air, the energy of the wave is 
stored in the air.  In our simple moving wall example, 
after the wall stopped moving it put no more energy 
into the system.  It had stopped doing any work.  Yet 
when the wave reached a far wall it was capable of 
imparting on this wall the work done by the original 
moving wall.  In the period between when the first 
wall stopped and the second wall received the energy, 
the energy must have been stored in the sir. 

 In many considerations of acoustics, it is important 
to know how much energy is stored in a sound wave.  
Again, in this introduction there will not be a 
mathematical derivation of this energy but just a 
presentation of the facts with a verbal description of 
how the facts might come to be. 

The energy in a sound wave is in two parts; an energy 
of compression of the medium similar to the energy 
of compression of a spring and the kinetic energy of 
motion of the medium.  It turns out that in a direct 
plane sound wave such as being considered here the 
energy density of each of these two forms is always 
equal.  The total energy density is therefore twice that 
of either the potential (spring) or the kinetic (motion) 
part. 

The total energy density in a sound wave can be 
directly related to the rms acoustic pressure or the 
intensity of the wave.  The equation that results is 

 E  =  
p2

rms
c2   

 =  7.013 x 10-6 p2
rms 

  

 =   
I
c  =   2.907 x 10-3 I 

where E is the energy density of the sound wave in 
Joule per cubic meter.   

Air propagating a sound of 100 dB therefore contains 
2.91  10-5 Joules of sound energy per cubic meter.  
The total sound energy in a standard lecture room of 
13 x 8 x 3 m at 100 dB would therefore be about 1 
thousandth of a joule or about the energy required to 
lift a gram weight about 10 cm. 
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Again, the energy involved in sound is very small in 
normal mechanical terms and ordinarily would not be 
regarded as of any significance.  It is only because of 
the enormous sensitivity of the aural systems of 
mammals that it is of significance. 

Inverting the equation connecting energy density and 
sound intensity presents a new way of visualizing this 
relationship; 

 I  =  Ec 

From this equation, the power of a sound wave can be 
thought of as coming from the rate at which it 
delivers its energy density to a surface.  An energy 
density of E travelling at a speed c will deliver energy 
at the rate of E  c to each square meter of a surface.  
Thus, although the air itself is not moving at the 
velocity c, the energy contained in the wave is 
propagated at this velocity.  

4.1.9 Spherical Sound Waves 

A plane sound wave from a moving wall may be the 
simplest possible sound wave but it is not the usual 
form of direct sound wave that is encountered in a 
room.  A usual sound source is small compared to the 
dimensions of the room and the sound waves radiate 
out from the source radially in all directions.  Since 
the sound wave will radiate at the same speed in all 
directions  the wavefront will be spherical, centered 
about the source. 

r

I AREA OF THIS
SPHERE = 4   r 2

I

I

I

I

 

Figure 4.15 The spherical wavefront from a 
point source.  The wavefront moves out in all 
directions so that at any instant, such as the one 
shown, all points on the wavefront are the same 
distance r from the source. 

How is the spherical wave different from the plane 
wave?   

The only difference between this type of wave and 
the plane wave is that the pressure in the sound pulse 
will diminish with distance from the source.  This 
effect is analogous to the effect of a stone dropped in 
a quiet pool of water.  The ripple will diminish as in 
moves out in every growing circles about the point of 
impact of the stone with the water. 

For sound waves in open air, the pressure diminishes 
simply in inverse proportion to the distance from the 
source.  If the pressure is 2 Pascals at 1 meter from 
the source, it will be 1 Pascal at 2 meters from the 
source and 0.5 Pascals at 2 meters from the source.   

Because the intensity is proportional to the square of 
the pressure, the intensity will diminish in inverse 
proportion to the square of the distance from the 
source.  This can be related to the conservation of the 
total sound power radiating outward from the source.  
For example, suppose a source is radiating power 
outward that is falling on the inside of a sphere.  The 
intensity at the sphere will be the power divided by 
the surface area of the sphere.  Now suppose the same 
power is being radiated outward to a sphere which 
has twice the radius.  The surface area of this sphere 
will be four times the surface area of the first (area of 
a sphere is proportional to the square of its radius) 
and so the intensity will fall to 1/4 th. 

Using this reasoning, the actual intensity at a distance 
from a source emitting spherical waves can be 
calculated from the total power radiated by the 
source.  As shown in fig. 4.15, the area of a sphere is 
given by  

   Area  =  4 r2 

Assuming the radiated sound power is spread 
uniformly in all directions, the intensity for a power P 
is given by 

   I  =  
P

4 r2  

Sound intensity will therefore fall a factor of 100 for 
every  increase of the distance by 10.  On the decibel 
scale, sound intensity falls by 6 dB for each doubling 
of the distance from the source and by 20 dB for each 
increase of the distance by a factor of 10. 

As an example of the use of the power-intensity 
formula for a spherical sound wave, consider the 
intensity at various distances from a one watt source 
radiating equally in all directions.  The table below 
shows the results. 

 
 r I dB dB  
 (meters) (1/r2) (1/r2) (actual) 
  

 1  0.080 109 109 
 2  0.020 103 103 
 4 0.0050 97 97 
 10 8 x 10-4 89 89 
 30 9 x 10-5 79 79 
 100 8 x 10-6 69 69 
 300 9 x 10-7 59 58 
 1000 8 x 10-8 49 46 
 3,000 9 x 10-9 39 30 
 10,000 8 x 10-10 29 -1 

  
Table 4.4  dB and intensities at various 
distances from a 1 Watt source for an ideal 1/r2 
dependence and what is actually achieved in 
open air. 
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The values calculated from the formula are accurate 
to within 3 dB for distances up to 1000 meters. 
However, for greater distances the actual sound level 
that will be achieved is less than that predicted by the 
formula.  This is because air, like any other real 
material, is not a perfect transmitter of sound.  Some 
energy is lost due to viscosity in the air movement.  
This loss is about 3 db per kilometer in clean dry air 
and the figures in the right hand column of the table 
include this absorption.  However, in normal auditoria 
the distances for sound propagation, including all the 
reflections involved in reverberant sound, are seldom 
more than 1000 m.  

What is perhaps astonishing about these figures is the 
tremendous carrying power of sound.  A source of 
only 1 watt of sound power (remember that an 
ordinary light bulb will dissipate about 100 watts of 
electrical power) will produce a deafening sound of 
about 110 db at 1 meter.  If we take a sound level of 
70 db as a loud conversational level, then this 1 watt 
source will interfere with conversation  at 100 meters 
distance.  Even perhaps more amazing, if there were 
such a thing as perfect atmospheric conditions and no 
other noise, this sound would still be audible at up to 
almost 10km distance (even taking atmospheric 
absorption into account).  Perhaps those of you who 
have had the experience of being outdoors far from 
civilization on a cold winter night on a frozen lake 
(about as close as you can get to ideal atmospheric 
conditions for sound) can confirm the tremendous 
carrying power of sound over great distances.  Under 
such conditions, the sound of somebody talking can 
be heard over a kilometer away. 

In buildings the direct sound wave never travels these 
great distances.   Even in the largest halls, it will 
reach a surface of the room within 30 m of travel.  
When it does so, another aspect of the sound wave 
becomes very important; a great deal of its energy 
reflects from the surface back into the room.  
Reflection then becomes another very important 
aspect of the physics of sound. 

4.2  Sound Reflection 

4.2.1  Plane Wave Reflection 

 When a sound wave reaches a surface, that surface 
normally is almost an immovable object for the air.  
The moving air in the sound wave therefore builds up 
against the wall and its internal velocity stops.  
However, the piling up of the air against the wall due 
to the momentum associated with the air velocity 
causes the pressure to momentarily exceed that in the 
original wave.  This extra overpressure generates a 
backwards wave away from the surface. 

To show the dynamics of this, the overpressure region 
of a sound wave as it reaches an immovable wall is 
shown in fig. 4.16.  At (a), the wavefront has almost 
reached the immovable wall.  At (b) the wave has 
moved into the wall and the air velocity in the region 
which has reached the wall has been reduced to zero. 
Furthermore the air which has already reached the 
wall has pushed back to kill the velocity of the air in 
the region which has not yet even reached the wall.  

While all motion of the air in this piled up region has 
stopped, the pressure in this region has doubled over 
that for the incoming pulse. 

As this motion progresses, more and more of the 
wavefront region is piled up against the wall until in 
fact a momentarily stationary state is reached.  This 
occurs when exactly half the region of compression in 
the wave has reached the wall  (at (c) in fig. 4.16).  
After this state has been reached, the compressed air 
now begins to push the uncompressed air on the left 
backwards.  The result is a wave which begins to 
develop in the direction away from the surface (at (d) 
in fig. 4.16).  Finally, at (d) in fig. 4.16, the fully 
developed reflected wave appears. 

It might be noted that at all times the total energy in 
the wave during reflection is conserved.  For 
example, at the momentary stationary state the 
pressure is doubled giving four times the energy 
density for the pressure part. However, since the 
kinetic part has vanished and this was originally equal 
to the pressure part, the overall energy density has 
only twice that in the original wave.  Since the actual 
extent of the wave at this instant in its reflection is 
only half that of the original then the total energy 
(energy density times volume) remains constant.  
(Those with a physics deviation might like to prove 
that this is the case at any instant in the reflection.) 

The case shown in Fig. 4.16 is for a wave arriving 
perpendicularly to a surface.  If it arrives at an angle, 
the reflected wavefront takes up an angle with the 
surface such that the angle of incidence equals the 
angle of reflection (Fig. 4.17). 

An important aspect of this phenomenon is that it is 
extremely difficult to prevent.  For example, with a 
simple microphone and a high frequency speaker 
("tweeter") producing a sharp pulse of sound, it is 
easy to see on an oscilloscope the reflected sound 
wave from a thin piece of paper held a meter away 
from the speaker.  It is also easy to see that the 
reflected wave is strongest when the paper is oriented 
so that the reflected wave is directed toward the 
microphone (fig. 4.18). 

In order to prevent sound reflection from a surface, 
the air moving onto the surface must have somewhere 
to go.  Reflection is therefore reduced by providing 
holes for the air to move into  (an open window is, in 
fact, almost a perfect absorber of sound).  However, 
any real surface, by definition,  cannot be made up 
completely of holes.  Carpets, drapes and acoustic 
absorbing tiles have about as many small holes for the 
air to move into as it is possible to get in a material 
which will support itself.  The "acoustic absorption 
coefficient" of such material (fraction of sound 
energy absorbed from a sound wave falling on the 
material) is typically from 30% to 80%.  The 
absorption coefficients for normal building materials 
designed to provide structural strength are much 
lower.  Some typical figures are given in table 4.5. 



The Sound of a Point Source in a Room 35 

p c

(a)

(b)

c

c

p

(c)

c

c

p

(d)

c

cp

(e)

cp
 

 
Figure 4.16 The reflection of a sound pulse at a 
firm boundary. 
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Figure 4.17  The reflection of a sound pulse at a 
firm boundary. 
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Figure 4.18  The reflection of a sound pulse 
from a sheet of paper. 

 

 
 Material Absorption 
  coefficient 
 
 Concrete           0.015 
 Brick wall         0.02 
 Plaster 0.06 
 Wood Sheeting  0.10 
 Carpet             0.20 
 "Acoustic Tile"    0.80 
 Open Window       1.0 
 

Table 4.5  Absorption coefficients (fraction of 
sound energy absorbed upon reflection for 
various materials. 
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4.2.1  Spherical Wave Reflection 

When sound with a curved wavefront reaches a 
reflecting surface, there will be a new reflected 
wavefront which is itself curved. In the special case 
of the spherical wave radiating from a small source, 
the reflected wave will be another spherical wave but 
now appearing to radiate from behind the reflecting 
surface (see fig. 4.19). 
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Figure 4.19  The reflection of a spherical 
wavefront  from a wall. 

The apparent source of this reflected wave will be a 
point behind the surface at the "mirror image" of the 
real source.  An observer listening to the sound from 
the source would, if it were a sharp pulse, hear two 
waves passing.  One would be the direct sound wave 
from the source and the other would be the reflected 
sound from the surface.  The perceived positions of 
the sources of these two sounds would be as shown in 
fig. 4.19 

The image source of a reflected sound appears to be a 
very important source in the human perception of 
sound in a room.  Even though the time difference 
between the direct sound wave and the reflected 
sound wave in a typical room would be only a few  
hundreds of a second, this time difference is used by 
the brain to tell the distance and direction of the 
closest wall (the one giving the first reflection).  For 
some reason, this appears to be an important 
psychological factor in the feeling of well-being of 
the listener.  For example, some modern results in a 
scientific study of concert hall preference (see chapter 
3) have shown that people generally prefer halls in 
which the first reflection comes from one of the side 
walls rather than from the ceiling.  The manipulation 
of the first reflections by altering the design of a room 
is therefore an important aspect of the acoustics of 
concert hall design. 

4.3 Multiple Sound Reflections 

So far only the first reflection from one surface has 
been considered.  Normally, all six interior surfaces 
of a room, the floor, ceiling and four walls, are 
significant sound reflectors.  A direct spherical sound 
wave will reflect from each of these surfaces, 
producing in each case another image source.  In 
addition there can be multiple sound reflections such 
as those in the corner of a room shown in Fig. 4.20. 
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Figure 4.20 Corner reflections of a wave 
from a point source. 

Furthermore, each of these corner image sources have 
mirror images in the opposite walls (fig. 4.21). 
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Figure 4.21 Four corner reflections of a wave from a 
point source. 

In turn, all of these images have their images out to 
very great distances.  Because of the high reflection 
coefficient for sound of normal walls, these perceived 
images can extend out to very great distances. 
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Figure 4.22  Images of multiple reflections of a 
wave from a point source in a room.  The 
dotted boundary of the room has no real 
significance but could be thought of indicating 
that the images at some distance must get too 
faint to be perceived. 

This is similar to being in a room in which the walls 
are made of mirrors.  The optical absorption 
coefficient of a good mirror is about the same as that 
of concrete for sound; about 1.5%.  To be similar to 
that for typical sounds in a room, the floor and ceiling 
would also be mirrors but they would be a little dirty 
if the ceiling was covered with acoustic tile and the 
floor with carpeting.  Imagine that a bright light was 
turned on in this room.  The result would be a pattern 
of light in the mirrors which extended to very great 
distances in all directions, even to some distance 
above the ceiling and below the floor.  The mirrors 
have provided much more light in the actual room by 
supplying a host of image sources.   

Similarly, the walls of a music room considerably 
increase the sound falling on a listener's ears by 
providing a host of images sources in the walls.  
However, the images sources also provide another 
effect in sound that would not be perceived in the 
case of the mirrors. With mirror walls, all the light 
would disappear as soon as the actual source was 
turned off.  This is because light travels as such a 
very high speed.  (It would actually disappear in 
about one millionth of a second.)  However, because 
of the much slower velocity of sound, the sound from 
the distant sound images will take a perceptible time 
to arrive. 

The walls of the room therefore have two important 
effects on the sound in the room; they increase the 
amount of perceived sound in the room and they 
make the sound in the room linger for a perceptible 
time.  This lingering sound is one of the most 
important sounds perceived in a room and has been 

given the labels "Room Reverberation" or 
"Reverberant Sound".  This was the sound that was 
introduced in chapter 2 as the sound which makes 
many home recordings seem as if the recording 
microphone was kept inside a barrel. 

4.4  Reverberant Sound 

Again, one of the most important aspects of the 
reverberant sound in a room is how long it appears to 
last.  This section is an introduction to the principles 
by which it is possible to estimate how long a sound 
will last in a room by knowing the room geometry.  
No attempt will be made here to prove the equations 
used as that is not the purpose of these notes.  Rather, 
there will be an attempt to give some idea of where 
the equations come from. 

First it is perhaps worthwhile to get some impression 
of how long a reverberant sound appears to last in a 
typical room.  This can be done by the "hand-clap" 
technique.  By simply giving a sharp clap of sound 
into a room and then listening carefully to the 
response, we can get some idea of the reverberation 
time.  In fact an experienced observer can get a very 
good estimate of this reverberation time by such a 
simple test. In a typical lecture room the reverberation 
time will be something shorter than one second, 
usually about 3/4 of a second. 

The first attempt to calculate the reverberant time of a 
room was made by Sabine in dealing with the 
acoustic problems of Fogg Hall at Harvard, opened at 
the turn of the century.  By today's standards, the 
measuring apparatus that he had to guide him in his 
theories were extremely insensitive but the results of 
his work are still regarded as the basics of room 
acoustics.  With his success in diagnosing the 
problems with Fogg Hall and in suggesting 
improvements, acoustics became to be regarded as a 
science. 

The essential features of Sabine's approach was to 
assume that the sound energy in a room was 
uniformly divided throughout the room and to 
consider the effect a particular sound absorbing 
surface would have on this energy.  Sabine's reasoned 
that a sound absorbing surface will remove a fraction 
of the sound energy falling on it according to the 
equation 

Rate of absoprtion
of sound energy

Rate at which energy
falls on surface=        abs  

where abs is the sound absorption coefficient for the 
surface (i.e. the fraction of sound energy absorbed in 
reflection from the surface).  In the language of 
mathematics (i.e. calculus), this equation becomes 

dE
dt abs

  = abs  Rate at which energy falls on surface 

The rate at which sound energy falls on a surface is 
proportional to the sound energy density in the room. 
This sound energy density in the room is itself 
proportional to the total sound energy in the room.   If 
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the sound energy is uniformly distributed throughout 
the room, the sound energy density is just the total 
energy divided by the room volume.  The rate at 
which energy falls on a surface is therefore 
proportional to the total sound energy in the room and 
therefore, from the above equation, the rate of loss of 
sound energy in the room is proportional to the sound 
energy itself; 

 
dE
dt abs

   =  - Constant   E 

This is an example of an extremely important 
equation in physics, engineering and biology;  it is an 
equation in which a quantity is changing at a rate 
which is proportional to the quantity itself. Perhaps 
the most familiar example of this type of equation is 
the growth of money in a saving account.  Suppose, 
for example, that 1000 dollars were put into an 
account which gave 8% interest annually.  The money 
in this account in the following five years would be as 
in the middle column of table 4.6. 

  
 Year Money Money 
  (at 8% interest  (at 8% loss 
  per year)  per year) 
        
 
 0 1000.00 1000.00 
 1 1080.00 920.00 
 2 1166.40 846.40 
 3 1259.71 778.69 
 4 1360.49 716.39 
 5 1469.33 659.08 
 

Table 4.6  Value of money under compound 
interest or loss.  Note that the increase in the 
5th year is 8% of 1360.49, and that the decrease 
in the fifth year of a loss is 8% of 716.39, not 
8% of 1000.00. 

A related phenomenon occurs when the money in put 
into a system which loses 8% per year.  The resulting 
figures for this situation is shown in the right hand 
column of table 4.6.   

The behavior of money in such a saving account is 
not strictly analogous to the situation where the rate 
of change of a commodity is continuously 
proportional to the commodity itself. The interest or 
loss loss was calculated at the end of the year and 
then added to or subtracted from the account.  The 
growth or decay of the money would only be exactly 
analogous to the continuous change in a commodity if 
the interest were "compounded continuously".  The 
results of such a continuous compounding as shown 
in table 4.7. 

Note that the money increases or decreases at a 
slightly greater rate then under the annual 
compounding. 

But how were these numbers calculated?  How does a 
bank calculate the amount you have in an account 
when they offer you "continuous compound interest"? 

One way would be to have a computer calculate the 
interest every second and add it to your account. The 
amount would be so small that certainly the increase 
in the money in the account would be continuous (no 
discrete jumps).  This would be possible with modern 
computers but it would be a waste of the computer 
time (computers also cost money to employ them).  
The computation is done much more simply using the 
"exponential function"; 

 M  =  Mo    e (Interest Rate  time)  

where M is the value of the money at any time and 
Mo is the initial value of the money. For example, the 
value of  1000 dollars after 4 years at 8% 
compounded continuously would be 

M4yrs = 1000  e (0.08  4)  = 1000  e 0.32  = 1377.13 

 
 Year Money Money 
  (at 8% interest  (at 8% loss 
  per year)  per year) 
        
 
 0 1000.00 1000.00 
 1 1083.29 923.12 
 2 1173.51 852.14 
 3 1271.25 786.63 
 4 1377.13 726.15 
 5 1491.82 670.32 
 

Table 4.7  Value of money under continuously 
compounded interest or loss.   

The exponential function describes any continuous 
growth or decay which is at a rate in proportion to the 
quantity itself.  This is because the unique feature of 
the exponential function which is that it is its own 
derivative (see any elementary calculus book). 

 
dex

dx    =  ex 

The derivative of a general exponential function  

 y = aebx  

is then 

 
dy
dx   =  ab ebx  

or 

 
dy
dx   = by 

The exponential function is therefore the solution of 
any equation of the type 

 
dy
dx   = by 
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In the case of a decay of a quantity, the exponent b in 
the exponential becomes negative.  For example, 
again in the case of money when there is a constant 
loss rate 

 M  =  Mo    e (Loss Rate  time)  

The form of this negative exponential function is of 
particular interest here.  It is shown in Fig. 4.23  
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Figure 4.23   The exponential decay function.  

The particularly interesting feature of this function is 
that the fractional decrease is the same for any fixed 
time interval, no matter when that time interval 
occurs.  For example, the original 1000.00 is halved 
in the first 8.88 years, about 8 years, 8 months, and it 
is halved again, to 250.00, in another 8.66 years. 

There is, in fact, a very simple mathematical 
connection between the fractional rate of decay of a 
quantity and its "half life"; 

   t1/2  =  
0.693

Decay Constant  

where the "Decay Constant" is the fractional rate of 
decay.  For an loss rate of 8% per year compounded 
continuously, the Decay Constant is 0.08 per year. 

 

The factor 0.693 is just the natural logarithm of 2.  
This comes into the relationship because the time at 
which a quantity is halved is that when 

  e  Decay Constant  t   =  0.5 

 Decay Constant  t  =  Ln 0.5 =  Ln 2 

Therefore 

 t  (= t1/2)    =  
Ln 2

Decay Constant  

Another characteristic time often related to the decay 
constant of a quantity is the "Relaxation Time" 
defined as the time for a fall to 1/e and generally 
written as .  This is quite simply related to the  decay 
constant; 

  =  
Ln e

Decay Constant   =    
1

Decay Constant   

Sabine's reasoning therefore led to the conclusion that 
the sound in a room would decay exponentially.  
What this means is that it would decay with a certain 
characteristic half-life.  The range over which a 
human can detect sounds in a short time interval is 
about 60 dB.  A sound of 100 dB which is suddenly 
decreased in intensity will appear to disappear at 
about 40 dB.  If given some time of quiet the ears will 
"open up", very much like eyes become dark adapted 
when a bright light is turned off.  It is only then that 
the ears will be able to detect sounds below 40 dB.  

A factor of 2 is about 3 dB and so a loss of 60 dB will 
take about 20 half-lifes.  The reverberant sound in a 
room should therefore appear to have a duration of 20 
half-lives.  Sabine therefore defined "Reverberation 
Time"  T by the formula 

 T  =  20  t1/2 =  20  
0.693

Decay Constant  

What remained in the analysis was to obtain the 
decay constant of the sound in a room from the 
geometrical properties of the room.   

As already pointed out, the rate at which a given 
absorber remove sound energy from a room is related 
to the rate at which the sound energy in a room falls 
on the absorber.  This is the difficult mathematical 
part of the analysis.  The sound energy of the room is 
moving in all directions at the velocity of sound (344 
m/s in a normal room).  This means that for any given 
volume of sound energy in the room, half the sound 
will be moving to one side and half to the opposite.  
In particular, half the sound energy in the volume 
immediately in front of an absorber will be half 
moving toward the absorber and the other half 
moving away from it.  Therefore, half the sound 
energy does not get to the absorber at all (Fig 4.24). 

Also, the sound which is moving toward the absorber 
is generally travelling at some angle to the absorber.  
This sound will not see the full effective area of the 
absorber but only the part perpendicular to its 
particular direction (Fig. 4.25). 

Half the energy

goes toward surface

Half the energy moves

away from surface

 

Figure 4.24   The movement of sound energy in 
front of an absorber. The particular case shown 
is for sound moving exactly perpendicular to 
the wall. 
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Actual area

    = A

Area seen in 

direction 

= A cos 

 

Figure 4.25 The area seen by a sound wave 
travelling at an angle to the normal of an 
absorbing surface.  The area seen is the actual 
area of the surface multiplied by the cosine of 
the angle of the direction with the normal to the 
surface. 

Using integral calculus, it is possible to show that the 
average of all these projections for all the possible 
directions at which sound can reach the surface is just 
half the surface area.  (See almost any engineering 
text-book on room acoustics.)   

The rate at which sound energy flows in a room is the 
energy density times the sound velocity.  If one half 
of one half of the energy in front of an absorber 
actually flows onto that absorber, then the overall 
flow rate of sound energy onto the absorber is given 
by 

  

Rate at which sound 
energy falls on a surface 

Energy 
Density 

Area of surface

4
=  c  

 

 =  
Etotal

V     c   
Area of surface

4   

where Etotal is the total sound energy in the room and 
V is the room volume. 

The rate at which this surface takes sound energy out 
of the room is therefore given by 

dE
dt abs

  = abs  Rate at which energy falls on surface 

 =  abs   
Etotal

V     c  
Area of surface

4   

The abs term and the area of the surface can be 
multiplied together to get the effective area of a 
particular absorbing surface.  Furthermore, this can be 
done with all the absorbing surfaces in the room and 
the result added up to get an overall effective 
absorbing area for the room.  The equation for the 
total rate of energy loss in the room then becomes; 

 
dEtotal

dt    =     
Etotal 

V     c  
Aeff
4   

Rearranging this equation gives the equation for an 
exponential decay 

 

 
dEtotal

dt     =     
Aeff
4V     c  Etotal  

 =     Decay Constant   Etotal 

where   

 Decay Constant  =   
Aeff
4V    c 

The reverberation time of a room is therefore given 
by 

 T  =  20  t1/2 =  20  
0.693

Decay Constant  

or 

 T  =  20   
0.693  4

c     
V

Aeff
  

For c in m/s, i.e. 344, this equation becomes the 
standard form used for simple calculations of the 
reverberant sound in a room; 

  T  =  0.165   
V

Aeff
  

 (In some older texts, particularly from the USA, the 
constant in front is calculated for V and Aeff in feet.  
Since the quotient V/Aeff has the units of feet, then the 
constant in the reverberation time equation becomes 
0.165 divided by the number of feet in a meter or 
0.165/3.28  = 0.05 (about). 

 As an example of the use of this formula, consider a 
typical rectangular lecture room 10 meters wide by 8 
meters deep by 3 meters from floor to ceiling with a 
back wall being a window wall  and the front wall the 
blackboard wall. Suppose the side walls are brick of 
absorption coefficient 0.02. The ceiling would usually 
be acoustic tile but not the most absorbing kind and 
usually of absorption coefficient about 0.5.  Assume 
the floors and window wall have a typical absorption 
coefficient of 0.05.   

 The volume of the room is 240 m3. Calculating the 
effective absorption area of the walls, floor and 
ceiling gives 

 
 Front wall  10  3  0.02   = 0.6   m2 
 Window wall 10  3  0.05   =   1.5 
 Side walls 2  8  3  0.02   =  0.96 
 Floor 10   8  0.05    =  4 
 Ceiling 10   8  0.5    =  40 
 
  Total   = 47  m2 

 
Table 4.8  Calculation of  effective absorbing 
area of the walls of a typical room.   

To this we should add the absorption area represented 
by the people in the room and the chairs and tables.  
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Average values taken for people in indoor clothing is 
about 0.5 m2. The average for the type of hard chairs 
and tables that are in lecture rooms would be about 
0.03 m2 per seating unit.  The total effective 
absorbing area of the people and chairs for 25 people 
and 60 chairs be 25  0.5 + 60  0.03  = 14 m2. 

The total absorption area for the room is therefore 
about 61 m2.  The reverberation time of the room 
should therefore be about 

 T  =  0.165   
240
61    =  0.66 seconds 

This value will be typical of a modest size lecture 
room.   

The reverberation time calculated from such crude 
assumptions about a room may not have much worth 
as it stands.  However, if the actual reverberation time 
is known from measurements on sound in the room, 
then the formula can be used in reverse to calculate 
the effective absorbing area in the room and then one 
can estimate how much absorbing material should be 
added (or taken out) to get the reverberation time that 
is desired.  This is essentially what Sabine did.  He 
measured the actual reverberation time of Fogg Hall 
and then prescribed the materials needed to bring the 
reverberation time down to acceptable levels.  In 
practice, one of the common uses of the formula is to 
calculate the effect on the reverberation time of a hall 
(which usually can only be measured when it is 
unoccupied) of having the hall filled with people. 

 There are several other useful things that come out of 
this analysis.  One is that we  can now turn the 
problem around and use the reverberation time of a 
room to estimate what the sound level will be in a 
room when we put a given sound power source in the 
room. Since in the steady state condition,  the rate of 
sound energy loss by absorption will be equal to the 
rate at which sound energy is coming out of the 
source, we have 

 Sound Power  (=  N in Meyer)  

  = Rate of energy loss  

  = Decay constant  Etotal 

This allows the calculation of the energy density in a 
room; 

 Energy density =  
Etotal

V    =  
N

Decay constant  

The decay constant is related to the reverberation 
time by 

 Decay constant = 
0.693
t1/2

   =  
20  0.693

T   

The energy density is therefore given by  

 Energy density =  
T

13.8   
N
V  

The energy density is related to the sound intensity in 
a room by I = c  Energy density.  This gives a simple 
formula for the reverberant sound intensity in a room 
with a sound source of N watts; 

 Ireverb. =  Energy density  c = 
c T N
13.8 V  

For a normal room and c in m/s, this formula 
becomes 

 Ireverb. =   24 
TN
V   

Applying this formula to the lecture room example 
with a sound source of 1 watt power gives an 
intensity of 

Ireverb. =  24  
0.66  1

240    =  0.066 Watt/m2  = 108 dB 

Again, a perhaps surprising result illustrating the 
extreme sensitivity of the ears.  A 1 watt source of 
sound power (about the power involved in one person 
breathing) in a lecture room for 50 people would 
create a reverberant sound level which would drown 
out any other normal source of sound and almost be 
painful to the ears.  If exposed to such a sound for a 
relatively short period of time, temporary hearing loss 
would occur and if exposed for a longer period the 
hearing loss would become permanent. 

Finally, the analysis can give a formula for the room 
radius of a point source in the room.  Since the direct 
sound level at distance r from a source is given by  

 Idirect  =  
N

4 r2   =   24 
TN
V   

Solving for r gives the room radius; 

 rroom =  0.058 
V
T  

Using the values for the lecture room example above 
gives a room radius of  1.1 m 

 

Appendix 

The wave equation is generally presented in the form 

   
2

x2    =  
1
c2 

2

t2     
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This is the form that applies to a wave travelling in 
the direction x.  If the wave can also travel in the 
direction y, the equation becomes 

   
2

x2   +  
2

y2   =  
1
c2 

2

t2    

and if the wave can travel in all three dimensions; 

   
2

x2   +  
2

y2   + 
 2

z2    =  
1
c2 

2

t2    

This final form of the equation is often written in the 
short-hand form 

   2  =  
1
c2 

2

t2    

The variable  can be anything that is governed by 
this equation.  In the case of sound it can be pressure, 
velocity or position of a small part of the medium.  
The meaning of the equation is easiest to visualize 
when  is the position.  Then the  meaning is 
essentially that the force (left hand side of the 
equation) to produce an acceleration (right hand side 
of the equation) of any point in the medium is 
proportional to the acceleration  (F = ma).    

In the proportionality constant 1/c2, c is the velocity 
with which a wave will propagate. If, when the 
equations of motion for a variable are derived and 
they are seen to be of the form of the wave equation 
with a positive constant in front of the second partial 
derivative with respect to time, then wave 
propagation is possible in the variable and the 
velocity of that wave propagation will be the 
reciprocal of the square root of the constant term.  
This was the result of Maxwell's analysis in the mid 
19th century of the equations governing electric and 
magnetic fields in a vacuum.  From this analysis, 
Maxwell was able to prove that electromagnetic 
waves could exist and that they would have a velocity 
which was close to that which was then known for the 
velocity of light.  Thus the wave equation solved the 
mystery of what is light.  It is an electromagnetic 
wave. 

Exercises and Discussion Points 

 

1.  a) A lightning flash is followed 2.6 second 
later by a fairly sharp thunder clap. How far 
away was the lightning bolt? 

 b) As the thunder storm moves away, distant 
lightning bolts no longer produce sharp claps of 
sound but rolling thunder.  Why? 

2. A rifle bullet can hit you before you hear the 
sound of the gun which fired the bullet.  How can 
this happen? 

3. There is a curved wall of rock near Sante Fe, 
New Mexico, which a person can stand in front 
of at a designated spot and hear quite distinct 
repetitions of anything spoken by the person or 
any people nearby at about the same level as they 
were originally spoken.  What is the nature of the 
curve of the rock?  If the echo comes 0.7 seconds 
after the original, what is the distance of the wall 
from the speaker? 

4. A broad flat surface moves forward 0.4 mm in 2 
ms at uniform speed and then stops. 

 a) What is the extent of the pressure zone 
propagated away from the wall? 

 b) What is the duration of the pulse of sound 
heard by an observer near the wall? 

 c) What will be the pressure level of the sound 
pulse? 

 d) What will be the decibel level of the sound 
pulse? 

 e) Repeat for a wall which moves at 0.1 mm at 
10 cm/sec  

5. An oscillating wall is moving at a peak velocity 
of 1 mm per second.  What is the connection 
between the oscillating velocity and the 
oscillating pressure in front of the wall?  When in 
the walls motion is the pressure a maximum and 
when is it zero?  What is the peak pressure and 
what is its rms value?  What is the intensity of 
the sound propagating from the wall? 

6. What is the average sound energy density in the 
air in front of the wall in problem 5? 

7. A point source is radiating 0.1 Watt of sound 
uniformly in all directions into a room.  What is 
the intensity of the direct sound from the source 
(watt/m2 and dB) at 2 m from the source?  What 
is the intensity (watt/m2 and dB) at 5 m from the 
source? 

8. A point source of sound located 2 m from a large 
reflecting wall is radiating sound equally in all 
directions.  An observer is located 5 m from the 
wall in line with the source; 

2 m

5 m

wall
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 a) What will be the time difference between 
the arrival of the direct and the reflected sound? 

 b)  What will be the relative intensity levels of 
the direct and reflected sounds (dB difference) if 
the wall has an acoustic absorption coefficient of 
0.02? 

  c)  What will be the relative intensity levels of 
the direct and reflected sounds (dB difference) if 
the wall has an acoustic absorption coefficient of 
0.5? 

9. A listener is sitting directly in line with center 
stage at a distance of 15 m from a performer.  
The side walls of the hall are parallel and 
separated by 18 m.   

 a) What will be the time difference between 
the arrival of the direct sound from the performer 
and the first reflection from the side walls? 

 b) If the side walls have an acoustic absorption 
coefficient of 0.05, what will be the relative 
intensity of the direct sound and the first sound 
reflection? 

10. What are the energy storages in a gas associates 
with sound waves?  Which fundamental 
parameters of a gas determine the velocity of 
these waves?  Which parameter variation causes 
the most significant changes in this velocity in 
ordinary life and how does this variation show in 
the equation  

  c  =  
 po

  

11. The variation of the velocity of sound with 
temperature T can be expressed as;  

 cTo   =  c0o
273 + T

273        

 where c0o
  is the velocity of sound at zero 

degrees and T is the temperature in Celcius.  
Explain where this equation comes from.  (Do 
not attempt to derive it but merely explain its 
origin.)  

12. Explain the importance in the human perception 
of sound of the fact that in the human range of 
hearing, all frequencies of sound have the same 
velocity.   

13. Explain the meaning of the equations;  

 
Etotal

V    =  
p2

c2   =  7.013  10-6 p2 

 I  =  c 
Etotal

V      =    
p2

c   =  2.412  10-3  p2  

14. Describe the experience of being in a room with 
very sound reflective walls in terms of the 
analogy of being in a room in which all four 
walls , floor and ceiling are mirrors.  Use the 
principle of "imaging" in optics to describe the 
perceived sound sources.  Point out the 
difference that the ability of the human 
perception system to perceive time intervals in 
sound makes to the perception of the sound 
compared to the perception of the light (where no 
such ability exists because of the extremely high 
velocity of light waves).  

15. How many reflections from a surface of 
absorption coefficient 2% would be required to 
reduce the intensity of a sound wave by 60 dB.  
(Assume no reduction in intensity because of 
distance travelled by the wave).  If the average 
distance between the reflecting surfaces was 10 
meters, how long would this take?  

16.  Why did Sabine take 60 db as the drop in sound 
level at which reverberant sound is no longer of 
any importance?  

 Sketch in a graph the way reverberant sound 
intensity will decay with time.  How many times 
does the sound level have to halve to equal a 60 
dB drop?  How many times does the sound 
pressure have to halve to equal a 60 dB drop? 
What is the connection between these two 
numbers?  If the amplitude of a sound as 
recorded on an oscilloscope halves in 120 
milliseconds, what is the room reverberation 
time?  

17. State the basic assumptions made by Sabine in 
his analysis of reverberant sound in a room.  In 
the equations  

  T  =  
4
c   ln (106) 

V
Aeff

   =  0.165 
V

Aeff
  

 explain the significance of the terms and where 
they come from in Sabine's analysis.  

18. Define room reverberation time, energy density 
and room radius as they appear in the following 
equations  

  T  =   0.165 
V

Aeff
  

  
Etotal

V    =  
T N

13.8 V  

  rroom  =  0.056 
V
T  
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 Give the meaning of the terms in the equations 
and some qualitative explanation of where these 
equations come from. 

 

19.  Given the equations;  

 
Etotal

V    =  
T N

13.8 V   ;    Idir = 
N

4 r2   ;     

 rroom  =  0.056 
V
T   ;  c = 344 m/s 

 suppose one had a musical instrument creating a 
sound level of 80 db direct sound at 2 meters. 

 a) What is the sound power of the instrument 
assuming that it radiated uniformly in all 
directions?  

 b)  What would be the reverberant intensity in a 
room 10m x 15m x 20m with a reverberation 
time of 1.4 s?  

 c)  What would be the decibel level of 
reverberant sound in part b)?  

 d)  What would be the room radius for the 
instrument assuming it radiated uniformly in all 
directions? 

 e)  What would be the relative decibel level of 
the direct sound and the reverb sound at 15 m 
from the instrument (near the back of the room)?  

20.  If an orchestra consisted of instruments of the 
following average capabilities in sound level 
production in a room; 

  5 instruments of 85 db each  
  3 instruments of 88 db each  
  1 instrument of  92 db  

 what would be the decibel level in the room if all 
9 instruments were playing at once?  

21.  A room 10 meters wide, 15 meters long and 4 
meters high is constructed with the following 
acoustical properties;  

 Front wall of plaster of acoustical abs. coefficient 
5%  

 Back wall of brick of 2%  
 Side walls of concrete of 1.5%  
 Ceiling of acoustical tile of 40%  
 Floor of hardwood of 5%  

 What would be the reverberation time with 100 
people sitting on 100 chairs in this room?  (The 
effective area of a person is assume to be .5 
OWU (open window units) and of the particular 
type of chair in this room, .12 OWU).  

 How much curtain material of absorption 
coefficient 35% would have to be added to the 
room to drop the reverberation type by 0.25 sec?  
What would be the effect of carpeting the room 
with a carpet of 55% absorption coefficient?  

 

Answers; 

1. a)895m; 3. b) 120m; 4. a)69 cm b) 2ms c)83 Pa d) 
132 dB e) 34.4 cm, 1ms, 41.3 Pa, 126 dB; 5. In phase, 
when wall is at center of its motion, when wall is at 
maximum of its motion, 0.4 Pa, 0.28 Pa, 83 dB; 6. 5.5 
x 10--7 J/m3; 7.  2 x 10-3 W/m2, 93 dB, 3.2 x 10-4 

W/m2, 85 dB; 8. a)11.6 ms b)7.4 dB c) 10.4 dB; 9. 
a)24.5 ms b)4.1 dB; 15.  684, 20 s; 16. 20,10, I 

 p21.2 s; 19. a)5 mWatt, b)5.8 x 10-5 W/m2, c) 78 
dB, d) 2.6 m, e) -15 dB; 20. 97 dB ; 21. 0.72 s, about 
200 m2, about the same as the curtains. 
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CHAPTER 5 

 

THE SOUND OF A VIBRATING SURFACE 

 

A point source which radiates uniformly in all 
directions may be the simplest type of sound source 
that one can have in a room but it does not resemble 
very closely the typical musical sound source that one 
will have in a room.  Such a source will not usually 
radiate uniformly in all directions. 

This effect is not so noticeable in everyday life.  For 
example, a loudspeaker which is rotated as it is 
sounding a musical note, (see fig. 5.1) will not 
present a noticeable variation as it rotates, even when 
the note is of fairly high frequency.  However, a 
microphone placed near the speaker while these notes 
are being sounded will record a distinct variation in 
amplitude of sound, particularly for the higher 
frequencies. 

Listener

(a)

Microphone

Loudspeaker

Loudspeaker

(b)

 

Figure 5.1 The effect of rotating a 
loudspeaker in a room while it is sounding a 
note.  A human being seated as shown in (a) 
will usually not notice a significant difference 
as the speaker rotates but the pick-up on the 
microphone near the speaker (b) will be quite 
noticeably different, particularly for high 
frequency notes. 

Most musical sound sources behave in this fashion.  
In fact a loudspeaker is designed so as to minimize 
the variation of sound level with direction from the 
speaker.  The reason that the effect was not as 
noticeable for the far listener is again because of the 
room reverberation.  The greater part of the sound 
intensity of the note at the listener is due to the 
reverberant sound and only a small part of it is due to 

the direct sound from the speaker and, in the case of a 
sustained note, the ear has no way to discriminate 
between the direct and the reverberant sound. Since 
the level of reverberant sound in a room usually 
depends very little on the original direction of the 
sound from the speaker the level of sound heard by 
the listener changes very little as the speaker rotates. 

This presents another problem for the recording 
engineer.  The sound picked up by a microphone 
close to a source will have variations in intensity for 
different frequencies depending on the direction of 
the microphone relative to the source.  This can be 
demonstrated by making a simple recording with a 
microphone close to a speaker's head. By moving the 
microphone around the speaker's head while the 
recording is being made, a quite noticeable change 
can be detected from when the microphone is in front 
of the speaker to when it is behind.  When the 
microphone is behind, the speech is much harder to 
interpret than when the microphone is in front (see 
fig 5.2). 

Best point for microphone 
to pick up clear speech

Speech picked up with microphone here      
will have muffled consonants 

Speaker

 

Figure 5.2 The effect of rotating a recording 
microphone around a persons head while the 
person is speaking.  The speech will be much 
less intelligible when the microphone is behind 
the person's head than when it is in front. 

The reason for this is that the high frequency 
components of a persons voice, those which contain 
the information distinguishing the consonants, radiate 
predominantly forward while the low frequency 
components are more uniformly radiated in all 
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directions.  The speech picked up behind the persons 
head will therefore contain too much of the vowel 
sounds compared to the consonants.  In everyday life, 
this is why a polite person directly faces a listener. 

The effect is not so noticeable in a typical room when 
one is farther from the sound source.  Again, this is 
because most of the sound power reaching a person in 
such a room will be reverberant sound which will 
contain all of the frequencies anyway.  What is 
affected is the direct sound which is used primarily to 
determine the direction and the nature of the source.  
Since we generally have good visual clues in this 
regard, the missing clues in the direct sound are not 
so noticeable.  A perhaps too familiar example is that 
of a professor who lectures facing the blackboard. 

 However, while it is more difficult to understand a 
person speaking with his or her back to you, it is still 
usually possible. When the sound is recorded and 
played back in another setting however, the visual 
clues are removed and the deficiencies of the high 
frequency components of the sound become much 
more apparent.   

The same phenomenon can produce a recorded sound 
which is much harsher than the natural sound of a 
musical instrument if the microphone is placed in a 
position which picks up more of the high frequency 
components than would normally be heard by a 
listener.  A particular example is the trumpet which 
radiates its very high frequency components directly 
forward.  When a player is playing a note with a lot of 
these high frequencies, the trumpet is normally 
directed upward, away from any particular listener in 
the audience.  If a recording microphone happens to 
be placed in line with the trumpet when such a note is 
being played, quite an unnatural effect will be 
recorded. 

The frequency at which a pronounced directional 
pattern starts to show for a sound source is that for 
which the wavelength of the sound has approached 
the source dimensions. This is a common feature of 
sound sources.  It is very important for a recording 
engineer to know the actual directional pattern of a 
musical instrument in its different registers (i.e for its 
various frequency components). 

5.1  Polar Diagrams 

5.1.1 Decibel Plots 

The way directional patterns are usually described for 
the sound from a particular musical instrument. or 
even for loudspeakers themselves, is to draw a polar 
diagram representing the intensity in any direction.  
These are diagrams on so-called "polar" graph paper 
with a circular coordinate system.  An example of 
such a diagram for a typical sound source is fig. 5.3 
obtained from the data shown in Table 5.1. 

Such data are obtained by having the source operate 
in an anechoic chamber (a room with no perceptible 
sound reflections from the walls) and measuring the 
sound intensity in different directions at a chosen 
fixed distance from the source.  The distance chosen 
is usually limited by the dimensions of the anechoic 

chamber and the dimensions of the source.  A 
common distance is about 2 meters but for smaller 
anechoic chambers it will be often 1 meter.  Because 
the difference in the pattern for different frequencies 
of sound is very important, the measurements will be 
performed at different frequencies by either having 
the source produce a pure tone, as in the case of 
loudspeaker testing, or as in the case when testing 
musical instruments, having the measuring instrument 
separate the sound received into frequency 
components. 

TABLE 5.1 

 
Angle dB Int. Press. Angle dB Int.  Press. 
(deg) (Watt (Pa) (deg) (Watt (Pa) 
   /m2)     /m2) 
  109  104   109  104 
     _____   
 0 69 7940 574 180 30 1 6.4  
 10 70 10000 644 190 37 5 14.4 
 20 69 7940 574 200 39 8 18.1 
 30 67 5000 455 210 40 10 20.3 
 40 63 2000 288 220 38 6 16.2 
 50 57 500 144 230 36 4 12.8 
 60 50 100 64 240 30 1 6.4 
 70 30 1 6.4 250 52 158 81 
 80 42 16 25.6 260 58 630 162 
 90 48 63 51 270 60 1000 204 
100 50 100 64 280 58 630 162 
110 49 79 57 290 52 158 81 
120 46 40 41 300 30 1 6.4 
130 30 30 6.4 310 55 316 114 
140 37 5 14.4 320 63 2000 288 
150 38 6 16.2 330 66 4000 406 
160 40 10 20.3 340 67 5000 455 
170 38 6 16.2 350 68 6300 511 
  

Measurements taken at 2 m from a sound source in an 
anechoic chamber. Average intensity = 1.50  10-6  

Watt/m2  corresponding to an acoustic pressure of 
2.50  10-2  Pa. 

Generally, what is measured and plotted are decibel 
levels such as in Fig. 5.3.  One advantage of using 
decibel levels is that they allow a much larger range 
of sound levels to be represented on the graph.  For 
example, the data in fig. 5.3 cover a range of 40 dB.  
This corresponds to a pressure range of a factor of 
100.  Plotting the information using a straight 
pressure scale would compress all the information in 
the lower 20 dB range into the inner 10% of the 
pressure scale  (see fig. 5.4). 

Another advantage of the decibel plot of intensity is 
that it more closely resembles the human sensation of 
the relative intensity levels in different directions (see 
any good text on psychoacoustics such as Roederer.) 
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Figure 5.3 A polar diagram representing the 
variation of intensity with direction for a 
typical sound source.  What is plotted on this 
graph is the actual intensity in decibels 
measured in different directions at a fixed 
radius from the center of the sound source.  
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Figure 5.4 Polar diagrams representing the 
variation of sound pressure with direction for a 
typical sound source.  The decibel plot shows 
much more of the information in the low 
intensity region. 

5.1.2   Directivity Plots 

Sometimes the directional characteristics of a source 
may be shown in sound pressure levels.  Imagine the 
distance from the source at which the sound would 

have a particular pressure level.  As one walked 
around the source, this distance would be greater for 
directions in which the sound propagation was 
favoured and would be less for directions which were 
not favoured.    

A polar diagram representing the actual sound 
pressure in any direction can be easily converted into 
such a plot by noting that the pressure in direct sound 
increases in inverse proportional to the distance from 
the source. If the pressure at a given distance in a 
particular direction is, say, 1/10th of what it is at the 
same distance in a standard reference direction, 
usually taken as 0o, then one would have to move in 
to 1/10th the given distance to get the same reference 
level pressure.  Thus the diagram of fig. 5.4 
representing the pressures can be reinterpreted as 
representing the relative distance from the source at 
which there will be a specified pressure level (see fig. 
5.5). 

One way of expressing this effect quantitatively is to 
plot the ratio of the distance on the graph in a given 
direction with the distance at which the same 
intensity would be received from a source of the same 
power that radiated uniformly in all directions (i.e an 
"isotropic" source) with the same total power. To 
obtain this diagram one has to have the total power 
radiated by the source.  A figure good enough for 
acoustics work can be obtained by noting the 
intensity for about every 10 degree interval, 
calculating this in watts and taking the average for the 
complete circle.  This gives the average intensity 
from which can be calculated the pressure level for 
this average intensity.  

 The average intensity of the polar plot we have been 
considering is 1.5  10-6 Watts /m2, and that would be 
the intensity at 2 meters for an isotropic source of the 
same power as the actual source.  The acoustic 
pressure at this intensity is 0.0250 Pa.  For the actual 
source which gave 0.0650 Pa at 10o, the ratio is then 
2.60.  The resulting plot of the ratio of the distance 
from the actual source to the distance for the same 
intensity from an isotropic source is shown in fig. 5.6. 

Such a plot is called a "directivity" plot and is of 
interest in recording engineering because of its 
connection to the room radius for a musical 
instrument.  The room radius (which is the distance 
from a source at which the direct sound intensity is 
the same as the reverberant sound intensity) will 
move in and out in proportion to the way the line on 
the directivity graph moves in and out.  If it is 
important to be within the room radius in order to 
favor picking up the direct sound from the instrument, 
then the room radius for a given direction of the 
microphone relative to the instrument can be 
determined by using the directivity plot and the 
equation connecting the room radius with the room 
volume and reverberation time 

  rroom  =  0.058 st 
V
T  

where st is the directivity as determined from the 
directivity plot. 
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Figure 5.5 A polar diagram representing the 
variation of distance at which a given sound 
level will be received in various directions.  It 
is obtained from the  pressure polar diagram 
just by changing the radial scale from pressure 
to distance. 
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Figure 5.6 A polar diagram representing the 
ratio of distance at which a given sound level 
will be received in various directions to the 
distance for the same intensity for an isotropic 
source.  This is sometimes called a "Directivity 
Diagram".  The circle for the isotropic and the 
real sources providing the same intensity is 
shown heavy for reference. 

5.2  Radiation Patterns of Some Standard 
Surfaces. 

The directional pattern of sound can be calculated for 
any vibrating surface by using the methods that will 
be described in Chapter 8. This has been done for a 

variety of simple shapes and the results are available 
in standard works on acoustics (see for example, 
Olsen).  There are two shapes which are of particular 
interest in music; that of a plane circle vibrating 
perpendicular to its surface and that of a segment of a 
cylinder which is vibrating in a mode in which the 
surface is expanding and contracting along radial 
lines.  The results for the calculation of these two 
surfaces will be presented here. 

  

5.2.1  The Radiation Pattern from a Vibrating 
Circular Surface  

The radiation pattern for a vibrating circular surface 
is of great importance in many branches of physics 
and engineering.  This is because it approximates the 
radiation of light or any other electromagnetic wave 
through a circular aperture.  Its importance in music 
is that it approximates the radiation pattern of many 
musical instruments in which the sound leaves the 
instrument through a circular opening.  The best 
examples of this are the brass instruments in which 
the sound radiates from the instrument through the 
bell.  The sound pattern from such instruments is 
similar to that of a vibrating circle (piston) in an 
infinite baffle as shown in fig. 5.7  (The reason for 
including the infinite baffle surrounding the circle 
will be explained later.) 

Plots of the radiation patterns of a circular vibrating 
surface at different frequencies of vibration are shown 
in Fig. 5.7. 

Note again the general characteristic; the lower 
frequency tones have much less directional 
characteristics than do the higher frequency tones.  
The particular frequency at which the wavelength is 
1/1.22 times the diameter of the source is important in 
that it is the lowest frequency at which a distinct node 
can occur (no sound whatever radiated in a particular 
direction).  At this particular frequency, no sound is 
radiated in the direction parallel to the surface.  As 
the frequency is raised above this level, the nodal line 
moves forward until at a wavelength equal to 1/4 the 
surface diameter, it is at an angle of only 18o with the 
forward direction from the surface.  Meanwhile, three 
new nodal lines have moved into the graph at 33.8o 

and at 54.3o.  

These patterns are, of course, symmetrical about the 
axis of the vibrating disk, the nodal "lines" actually 
being the intersection of a nodal cone with the plane 
of view of the diagram. (see fig. 5.8.) 

The actual  intensity of radiation from a disk of radius 
R in a direction  compared to that in the direction 
perpendicular to the surface is given by the formula 

 I=  Io   
2 J1

 
2 R

 sin 
2 R

 sin 
   

2

  

where J1 is the Bessel function of order 1 and Io is the 
intensity in the direction perpendicular to the surface.   
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Figure 5.7 Polar diagrams representing the directional patterns of the radiation from a circular surface for 
different frequencies of vibration of that surface. Pattern on the left is for wavelength = 2 times surface 
diameter, in center 1/1.22 times and on right 1/4 times the surface diameter.  Zero degrees is forward, 
perpendicular to the surface. 
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Figure 5.8 Diagram representing the 
directional patterns in three dimensional space 
of the radiation from a circular surface for a 
frequencies of vibration of that surface with a 
wavelength equal to 1/4 of the surface 
diameter. 

The fact that a vibrating surface can produce no 
radiation whatsoever in a particular direction is 
perhaps a puzzling feature of wave propagation, but it 
is one of the characteristic features of wave 
propagation.  If one has such a phenomena, (no 
propagation in special directions) then this is regarded 
as clear evidence that the phenomena is associated 
with wave propagation.  The discovery that light 
through a hole exhibited such a characteristic was 
regarded as proof that light was a wave propagation.  
It took many more years of scientific research before 
it was discovered that light was in fact an 
electromagnetic wave. 

5.2.2  The Radiation Pattern from a Vibrating 
Cylindrical Segment 

In some music instruments, a significant portion of 
the sound radiates from a curved surface.  The most 
important example is the sound from the classical 
stringed instruments such as the violin, viola, cello 
and bass.  In certain frequency ranges, a great deal of 
the sound radiates from the vibration of the front and 
back surfaces of the instruments.  The sound from 
such a source can be roughly approximated by that 
from a cylindrical segment vibrating along radial 
lines (see fig. 5.9). 
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Figure 5.9  The pattern of radiation from a vibrating cylindrical segment where the vibration is along radial 
lines to the surface.  The patterns are for a 60o vibrating segment.  All points on the segment move in and out 
along the radial lines perpendicular to the surface.   

The interesting feature of the radiation from such a 
surface is that the pattern is broad for both very low 
and very high frequencies.  At low frequencies, as for 
any source, the pattern extends uniformly in all 
directions.  At high frequencies, the pattern 
approaches the 60 angle subtended by the surface.  
Note however, the rather complicated pattern for 
intermediate wavelengths. 

5.2.3  The Radiation Pattern of Musical Instruments 

The radiation patterns of the simplest possible 
surfaces discussed here are themselves rather 
complicated.  Acoustic musical instruments are 
generally made up of many sources of sound in any 
one instrument.  Furthermore, the frequencies of 
sound radiated by the instruments are generally of  
wavelengths near some dimension on the instrument; 
in other words at frequencies where the directional 
properties are most pronounced. It is to be expected 
than that the radiation pattern of musical sounds from 
musical instruments will be extremely complicated, 
requiring immense computing power to accurately 
predict.  This is indeed the case. However, the actual 
radiation patterns are of great importance to the 
recording engineer and so they have been extensively 
measured for the classical instruments.  One of the 
most extensive collections in one source is that in 
chapters 4 and 7 of Meyer. 

Exercises and Discussion Topics 

1.   Explain the meaning of the "Directivity Factor" 
as used by Meyer to express the directional 
characteristics of musical instruments.  Why 
would it appear in the equation for room radius 
of a musical instrument as follows;  

      rroom  =  0.058 st 
V
T  

2.   Suppose one measured 107 db as the sound 
intensity 1.5m in a particular direction from a 0.5 
Watt sound source in an anechoic chamber.  

  a)  What would be the distance from a 0.5 Watt 
isotropic source at which the sound level would 
be 107 dB?  

   b)  What is the directivity of the source in the 
direction measured?  

3.   What is the connection between the directivity 
factor and the polar contour plot for equal 
intensity of sound?  What extra piece of 
information is needed to get directivity factors 
from such a contour plot?  
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4.   A sound source is being probed in an anechoic 
chamber.  In moving the sound level meter 
around the source, the following values are 
obtained for the distance at which the sound level 
is 90 dB.     

Angle Dist. Angle Dist. Angle Dist. 
(deg.) (cm) (deg.) (cm) (deg.) (cm) 
_______________________________________  

 0 164 120 80 240 64   
 10 153 130 72 250 73 
 20 140 140 70 260 86 
 30 132 150 71 270 96 
 40 99 160 75 280 102 
 50 90 170 78 290 106 
 60 88 180 80 300 108 
 70 88 190 78 310 116 
 80 92 200 76 320 131 
 90 92 210 70 330 134 
 100 90 220 64 340 142 
 110 86 230 62 350 162 

 

  Plot this data on a polar graph.  (Copies of polar 
graph paper may be obtained from the university 
book-store).  Draw a smooth curve through the 
points.  If the distance from an isotropic source 
of the same power was 104 cm, what would be 
the directivities at 0, 90, 180, 270 degrees?  

 

5.   Measuring the sound intensity of a 1000 Hz tone 
one meter from a source in an anechoic chamber 
gave the following numbers; 

  Angle Dist. Angle Dist. Angle Dist. 
(deg.) (cm) (deg.) (cm) (deg.) (cm) 
______________________________________  

 0 100 120 75 240 74   
 10 99 130 74 250 72 
 20 97 140 73 260 70 
 30 93 150 72 270 65 
 40 87 160 70 280 66 
 50 82 170 68 290 68 
 60 75 180 65 300 71 
 70 72 190 70 310 78 
 80 70 200 72 320 86 
 90 73 210 73 330 93 
 100 74 220 74 340 97 
 110 75 230 74 350 99 

 Plot this data on a polar graph and draw a smooth 
curve through the points.  

6.   What is the connection between the polar graph 
of dB level for direct sound from a musical 
instrument and the contour line for a uniform 
intensity level around the speaker?  What is the 
connection between decibel changes for different 
directions at a uniform distance from a source 
and the movement of the contour line about the 
source for a uniform intensity level?  

7.   Using the fact that the direct sound from a source 
varies with distance according to the equation  

       I  =  Io 
ro
r

2  

     convert the data of problem 4 to obtain a polar 
graph of the decibel level at 1 m.  

8.   Convert the data of problem 5 to obtain a contour 
plot for 100 dB.  

9.   Discuss the relative usefulness of the polar graph 
of dB levels at some reference distance versus 
the directivity factor diagram (or a contour 
diagram from which it is derived).  

    

Answers 

2. 0.89m, 1.69; 4. 1.58, 0.88, 0.77, 0.92; 7. An 
example: at 0o, 94.3 dB; 8. Examples: 0o, 1m; 180o, 
1.8 cm; 50o, 12.6 cm. 
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CHAPTER 6 

SOUND DIRECTION AND RELATIVE PHASE 

 

This chapter introduces the physics of why  sound 
waves travel in particular directions and why the 
sound patterns from relatively simple sources can be 
complicated. 

To start, consider the direction of sound from the 
simplest possible source; a sphere which has a surface 
which is expanding and contracting in an oscillatory 
fashion at a regular rate; 

 

Figure 6.1  Schematic diagram of the surface 
motion of a sphere that  becomes an isotropic 
source of sound.  All points on the surface move 
in and out at the same amplitude and frequency 
and in phase.  This mode of oscillation of a 
sphere is sometimes referred to as the "breathing 
mode"  

Such a source pushes air directly outwards from its 
center and this air pushes against air which is just 
outwards from it and so on ad infinitum.  Because of 
the symmetry, it is easy to agree that such a source 
will radiate sound equally in all directions.  To an 
observer outside the sphere, the sound would appear 
to come from a point at the center of the sphere.  Such 
a source would therefore be equivalent to the simple 
point source considered in Chapter 4. 

However, what if the source is more complicated than 
this extremely simple point source. All musical 
instruments are more complicated than point sources 
and therefore more complicated sources must be 
studied to understand how musical instruments 
actually radiate sound.  How are such sources to be 
studied? 

6.1  The Superposition of Sources 

The basic principle by which complicated wave 
sources can be studied was invented by Huygen in the 
17th century. Any source which is very small 
compared to the wavelength of the sound that it 
radiates will radiate isotropically as if from a point at 
its center.  The surface of a complicated source can 
therefore considered to be made up of many small 
pieces with each piece radiating as a point.  The trick 
then is to add up the effects of all these little point 

sources radiating at the same time.  This principle is 
called "superpostion of sources". 

As a start to how small isotropic sources add, 
consider four small spherical sources each radiating 
spherical waves when operated on their own. Such 
sources can be created by putting small speakers 
(about 4 cm diameter or less) in small glass jars and 
sealing the mounting joint with modeling clay.  (The 
result is a kind of "acoustic suspension" speaker in 
which the air in the glass jar behind the speaker is 
compressed and expanded by the speaker cone 
motion but does not radiate sound into the room.  
This will be shown to be an important consideration 
later.)  

Leads

50 ml Glass Jar

Speaker

Modeling Clay

 

Figure 6.2 Speaker mount for a small source that 
is isotropic to about 2500 Hz 

By moving the microphone around one of these 
speakers operated alone, it is possible to check that it 
is in fact radiating sound almost equally in all 
directions. 

A particularly simple arrangement of four of these 
speakers is to have them mounted in a line equally 
separated by about 9 cm and each emitting a 2000 Hz 
tone, the speakers all being fed from the same source 
and all being connected together so that each speaker 
is exactly in phase with each other and each 
producing the same sound power.  By placing the 
microphone close to each speaker in turn, it is 
possible  to check that each speaker is indeed putting 
out sound of about the same amplitude and in phase. 

 

Speaker 1 Speaker 2 Speaker 3 Speaker 4

Microphone

 

 
Figure 6.3 Speaker set-up.  The center line of 
each speaker is separated by 9 cm from its 
neighbor(s). 
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Now suppose the same microphone is used to probe 
the sound level at much greater distances from the 
speaker combination. Here it is important to 
remember that we are trying to probe the direct sound 
from the speakers.  For this the microphone must be 
well within the room radius for the sound.  For 2000 
Hz the room radius will be about 2 m. However, the 
microphone must also be far enough from the 
speakers to receive sound almost equally from all 
four. It would seem that a distance of about one meter 
would be most appropriate. 

Placing the microphone at this distance from the 
speakers on a line directly in front of the speakers 
results in a fairly good signal being received.  Placing 
it in line to the side of the speakers, we see hardly any 
significant signal. 

No noticeable signal here

Strongest signal here

Speakers

Microphone

 

Figure 6.4 Probing the sound field at 1 m around 
the speakers, all speakers in phase. 

This is perhaps surprising.  What happened to the 
sound travelling sideways from the speakers? 

A further puzzle arises when the speakers are 
connected so that speakers 2 and 4 in the array are in 
opposite phase to speakers 1 and 3 (fig. 6.5). 

Speaker 1 Speaker 2 Speaker 3 Speaker 4

Microphone

 

Figure 6.5  Speakers 2 and 4 reversed in phase 

Again it can be checked that the speakers are in 
opposite phase by probing with the microphone close 
to each speaker. 

Probing at one meter, it will now be seen that there is 
a strong sound to the side of the speakers.  On the 
other hand, there is now no significant sound to the 
front of the speakers (fig. 6.6). 

The direction of radiation of sound from this array of 
sources has been completely altered by merely 
changing the relative phase of the sources.  When 
they were all in phase, they radiated in a direction 
perpendicular to the line of the array.  When they 
were phased so that there was a delay of half a cycle 
between speakers, they radiated in a line along the 
line of the array. What is going on? 

No noticeable signal here

Strongest signal here

Speakers

Microphone

 

 Figure 6.6 Probing the sound field at 1 m 
around the speakers when speakers 2 and 4 are 
antiphased. 

To understand this phenomenon, one has to consider 
how sources of different phases add.  In the simple 
case set up here, the sources are either in phase or 
180o out of phase.  (More complicated phase 
differences will be considered later.) Such sources 
either simply add or cancel (see fig. 6.7). 

+ +

= =

 

Figure 6.7  Addition and cancellation of 
oscillations 

Now consider the phases with which the sounds from 
the speakers  arrive at some point in space around the 
speakers.  Take the simplest case first; that of a point 
directly in front of the speakers when the speakers are 
all connected in phase (fig. 6.4).  At this point the 
sounds from each of the speakers will arrive in phase.  
They will therefore all add together giving a good 
sound signal.  

However, at the point to the right of the array the 
sounds from the speakers will not all arrive at the 
same phase.  This is because the sounds from the 
farther speakers will be delayed.  In fact, the 
dimensions have been set up and the frequency 
deliberately chosen so that the speakers are one half-
wavelength apart.  Therefore, at a point to the right of 
the array the sound from speaker 3 in the array will be 
one half oscillation behind the sound of speaker 4, the 
sound of speaker 2 will be one half oscillation behind 
3 and the sound of speaker 1 will be one-half 
oscillation behind speaker 2.   

Speaker 3 will threfore cancel the sound of speaker 4 
and speaker 1 will cancel the sound of speaker 2.  
This results in no sound in the direction of the line of 
the array. 
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Consider now the case when speakers 2 and 4 were 
delayed in phase by 180o (fig. 6.6).  Now when the 
sound of speaker 3 arrives at a point to the right of the 
array the delay due to its extra distance has just 
allowed it to match up with the output of speaker 4 
which had been already delayed by 180o at its start.  
Similarly for speakers 1 and 2.  All four speakers 
therefore reinforce each other along a line to the right.  

However, for points directly in front of the array, the 
sounds from the four speakers will arrive with their 
original phase differences. tjhis is because they are all 
delayed by the same amount because their sounds had 
to travel the same distance through air.  The sounds 
will therefore cancel. 

In summary, the direction of the sound propagating 
from this array of sources can be switched simply by 
changing the relative phase of the sources making up 
the array.  All that has to be done to get the sound to 
swing from going forward to going to the right is to 
change the relative phases of the sources. 

In the example shown, the direction of propagation 
would swing by exactly 90o.  Can the direction be 
aimed it at somthing between straight forward or to 
the side? 

6.2 Directing Sound to Any Desired Direction 

To see that it is possible to direct sound to 
intermediate angles, consider the result if speaker 2 
was only 90o in phase behind speaker 1, speaker 3 
90o behind speaker 2 and speaker 4 only 90o behind 
speaker 3.  Then the sound would propagate in the 
direction 30o to the right (see fig. 6.8). 

Strongest signal here

Speakers

Microphone

30 deg

 

Figure 6.8   Each speaker is out of phase by 90o 
to its neighbors; speaker 2 90o behind 1, speaker 
3 90o behind  2 and speaker 4 90o behind  3.  

To understand this, consider sound propagating from 
the various speakers in this direction (fig. 6.9).  The 
sound from speaker 1 would have travelled exactly 
the right distance to have delayed its phase enough to 
be in step with the sound starting from speaker 2 (i.e 
it has travelled one-quarter wavelength giving a 90o 
phase delay).  The same thing happens when these 

sounds travel the distance from speaker 2 to speaker 3 
and from speaker 3 to speaker 4; they all are delayed 
by the extra distances they travel so as to be in step 
with the more delayed sources. 

Speaker 1 Speaker 2 Speaker 3 Speaker 4
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Figure 6.9   The geometry of wave propagation 
at 30 degrees to the normal to an array of four 
sources separated by half a wave-length..   

It is not necessary to understand the mathematics of 
this to understand the principle. However, for those 
readers that are interested, the angle at which the 
sources will propagate is given by  

      = arcsin d    

where  is the angle between the line of propagation 
and the normal to the line of the sources,  is the 
phase delay from one speaker to the next in fractions 
of a cycle and d is the distance from one speaker to 
the next in fractions of the wavelength of the sound.  
In the case considered, the time delay from one 
speaker to the next would be one quarter of a cycle 
and the speaker separation would be one-half a 
wavelength giving an angle whose sine is 0.5.  That 
angle is of course 30o.  Taking one more case as an 
example, if the phase delay were 0.4 cycles and the 
speaker separation 1.2 wavelengths, the angle would 
be that whose sine is 0.3.  That angle would be 17.5o. 

Thus there is a way of setting up any direction we 
wish for wave propagation from an array of sources.  
All that is required is to be able to adjust the relative 
phases of the sources. This is a technique commonly 
used for radio transmission were the phase delay 
between sources (the array of antennae commonly 
making up the radiating system) is easily controlled 
electronically.  In this way radio waves can be 
beamed to the areas of greatest population density 
from a given fixed array of antennae.  Furthermore, if 
the p[opulation densities change the direction can be 
easily changed to accomodate this by adjusting the 
phases of the sources.  Another example in modern 
technology is the scanning of radar beams where the 
scanning is not done by rotating radiators, as can be 
often seen on many ocean going vessels, but by 
electronically switching phase delays between small 
sources.  (See the February 1985 issue of Scientific 
American).  In this way the scanning times are not 
limited to the mechanical speeds with which you can 
spin the radiator but only to the speed with which you 
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can electronically switch the phases.  This can be 
very fast. 
6.3 Directional Microphones 

Another example of the use of relative phases to 
determine the direction of a wave is in the highly 
directional microphone.  This device consists of a line 
of small omnidirectional microphones all connected 
so as to add to the input of the same amplifier (fig. 
6.10). However, before being added to the amplifier 
input, the outputs of these microphones all go through 
delays, each microphone having its own delay.  This 
delay is set to be as close as possible to the time it 
would take for sound to pass from one microphone to 
the next if it were travelling straight along the line of 
the array.  For microphones 10 cm apart, this time 
delay from one microphone to the next, the 
microphone farthest upstream being the most delayed, 
would be 0.29 ms. 

 

Delay1 Delay2 Delay3 Delay4 Delay5 Delay6 Delay7

1 3 4 5 6 72

Microphones

Direction of
sound wave

Summing
Amplifier

Output

 

 
Figure 6.10   Schematic of a highly directional 
microphone made up of a set of small 
omnidirectional microphones and electronic 
delay circuits for each microphone.  The outputs 
of the individual microphones will only add 
coherently for sound coming in the line of the 
microphones.  For a separation of 10 cm between 
microphones, the delays would be set to increase 
by 0.29 ms from one to the next. 

In such a system, only waves travelling exactly along 
the direction of the array will cause the outputs of all 
the microphones to arrive at the amplifier at the same 
time and therefore reinforce each other.  

In some older versions of directional microphones the 
delays are achieved by using hollow tubes to bring 
the sound to a region where the pressures are added 
before being registered by a single microphone. 

6.4 Phase Relationships and Wave Direction 

Thus wave direction is fundamentally connected to 
phase relationships within the wave.  For those with a 
previous introduction to the physics of waves, this is 
perhaps familiar.  Consider for example any wave 
travelling through a medium.  It is perhaps best to 
visualize a water wave travelling along the surface of 
the ocean on which there is a line of floating objects.  
Fig. 6.11 represents a view looking down on such a 
water wave with crests moving in various directions 
relative to a horizontal line of objects. Each of these 
objects will be oscillating up and down as the wave 
passes them.  However, there will usually be a phase 

delay from one object to the next due to the time it 
takes for the wave to travel from one to the other.  

 

_
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Figure 6.11   Diagram representing four regularly 
spaced pieces of flotsam in a regularly spaced 
series of water waves. The angle between the line 
of the pieces and the direction of the wave is 
shown for three case; in line with the wave 
direction, perpendicular to the wave direction 
and at 60 degrees to the wave direction.  The 
phase delay in the oscillation of the pieces of 
flotsam will depend on the wave direction as 
shown. 

Thus wave propagation can be considered as resulting 
in a specific phase relationship between objects 
experiencing that wave at different points in space.  
In this chapter, the point has been made that waves 
are propagated in specific directions if the correct 
phase relationships are established between many 
small sources that are producing the wave. 

Here then is the basis of Huygen's idea about wave 
propagation. The two phenomena of wave motion 
producing phase relationships at points in its medium 
and points in the medium producing wave motion are 
in fact just two different ways of looking at the same 
thing; wave motion.  Thus at any time a wave in 
space can be decomposed into a multitude of small 
sources at all points in the medium.  These sources 
would then have, of course, the phase relationships 
produced by the wave in the medium at that time. 

One is left with a conundrum; which is the cause and 
which is the effect?  Like for most things in physics, 
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this is a meaningless question; the cause and the 
effect are the same thing.  They are just different 
ways of looking at a system.   We then come to a 
general statement regarding sound propagation from 
an array of sources: 

 

The intensity of a wave disturbance and the 
direction of its propagation at any point in 
space is determined by the strengths and 
relative phases of each of the elementary 
sources making up the total source of the 
wave. 

 

The elements making up the source of the wave can 
even be the oscillating segments of a medium that has 
been excited by a wave travelling through it. This is, 
in effect, how waves propagate. 

In the next chapter we will look at how to use this 
principle to treat more general problems in wave 
propagation. 

Exercises and Discussion Topics 

1.   Explain why 4 isotropic sound sources emitting a 
pure tone in phase and set in a straight line will 
give no sound in the direction of that line if the 
sources are equally spaced at half a wavelength 
for the tone.  

2.   Explain why the same sources in problem 1 will 
radiate strongly along the line but not at all 
perpendicular to the line when they are 
alternately phased.  

3.   Why is there no sound radiated at 30 degrees to 
the perpendicular in problem 1? 

 4. Explain the principle of the highly direction 
microphone based on delayed pickup from a 
group of isotropic microphones arranged in a 
line.  Is the directional property of this 
microphone very dependent on the frequency of 
the sound being picked up?  Why? 

5.  How are the relative phases of the oscillations in 
a medium through which a wave is passing 
related to the direction of the wave?  Explain 
how this relationship can be used to set up a 
wave travelling in a desired direction. 

 





59

CHAPTER 7

SOUND WAVE DIFFRACTION

The  previous chapter dealt with the importance of the
relative phase of combined sources.  In this chapter a
simple technique will be introduced with which you can
conceptually deal with many sources of different
phases.  The full mathematical treatment of this subject
is called Fresnel integration because it was first used by
Fresnel in the study of the diffractive properties of light.
While no doubt the most powerful way to treat the
subject, here such a mathematical treatment would be
inappropriate and could in fact hide the essential
principles involved.

What will be introduced here is a graphical approach
based on the concept of phasors as elemental sources of
sound.  As an introduction, consider again the simple
four speaker array of sound sources that was studied in
chapter 6 (see fig. 7.1).

No noticeable signal here

Strongest signal here

Speakers

Microphone
No noticeable signal here

30 deg
Secondary maximum around here

Figure 7.1 Probing the sound field at 1 m around
the speakers, all speakers in phase.

Again all the four speakers are in phase but now make a
more careful probing of the sound field around the
speakers.  It will be noticed that there is no sound in a
direction 30o to the straight forward direction!

By moving the microphone a bit beyond this point, it
will be seen that the sound level grows again after 30o,

reaching a maximum somewhere around 45o before it
falls to zero again at 90o.

What has happened to cause this cancellation of sound
at 30o?  One simple way to look at this problem is to
recognize that at 30o the sounds from speakers #1 and
#3 will arrive at 180o relative to each other (#1 is one
half-wavelength behind #3 and the same for speakers #2
and #4).  Therefore speakers #1 and #3 cancel as do
speakers #2 and #4.  No sound is therefore propagated
in this direction.

Are there any other regions where such cancellation can
occur?  How can one determine how much sound is
propagated at the angle of 45o compared to straight
forward?  Indeed, how can one calculate the relative
sound level that would result from this speaker
combination in any arbitrary direction that we wish to
know about?  The simple way of only looking for the
angles at which sounds reinforce or cancel does not

answer such questions and such questions must be
answered if one is to understand the directional
properties of sound sources

A more powerful way of looking at this general sort of
problem is through the concept of phasors.

7.1  The Treatment of Oscillations as Phasors

A phasor is a vector way of representing the amplitude
and phase of an oscillation.  The length of the phasor is
the amplitude of the oscillation and its direction on the
paper on which it is drawn is determined by the phase
angle of the oscillation.  By convention, an oscillation of
zero phase angle is drawn as a phasor that points to the
right.  Oscillations with positive phase angle have
rotations counterclockwise (as do positive angles in
trigonometry) and oscillations with negative phase
angles are shown as phasors rotated clockwise.
Representative phasors are shown in Fig. 7.2.

A
A

Oscillations Phasors

A

A A

A

A

A

A

A A

1/6 Cycle

1/3 Cycle

60 deg

120 deg

A

Figure 7.2   Representative phasors of oscillatory
motion
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Look at them carefully until you understand exactly the
relationship between the arrows and the waves.  One
way of visualizing the connection is to notice that the
intercept of the waveform of the oscillation with the y
axis is the same as the projection of the phasor on the y
axis.

The great advantage of the phasor way of looking at
oscillations is that now one can add oscillations of
different amplitudes and phases by simply adding the
phasors.  This is of course vector addition which  can be
done graphically by drawing the vectors head to toe as
shown Fig. 7.3.

Oscillations Phasors

+

=(a)

+

+

=

=

(d)

+

=

=

Oscillations Phasors

(c)

+

=

(b)

+

+

=

=

(e)

Figure 7.3   Addition of some representative oscillations using the phasor method.  (a) is a very simple case; that
of adding two equal oscillations that are in phase with each other.  The result is an oscillation of the same phase
and twice the amplitude.  (b) is that of two equal amplitude oscillations that are out of phase with each other.
The result is, of course, zero.  (c) is two oscillations which are only 90o apart in phase.  The graphs of the
oscillations tell us only that the result of adding these two oscillations is in fact another oscillation of the same
periodicity as the two originals. The phasor addition tells us that it will have an amplitude 1.414 or √2 of the two
components and a phase of 45 degrees.  (d) is an even more complicated situation where it can be seen  that
three oscillations 60o apart in phase can be added to give an oscillation which is twice the amplitude of any one
of the components and has the phase of the middle oscillation. The final example is the case of three oscillations
separated in phase by 120o. Here it can be seen that the result of the addition is zero.  Thus oscillations can add
to zero total amplitude even when there are no oscillations exactly out of phase with each other.  All that is
required is that the vector sum of the phasors representing the individual oscillations be zero.
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7.2  Phasor Treatment of a Four Speaker System

We now have another way of understanding the
cancellation of the sound of the four speaker system at
30o.  Consider first a point directly in front of the
speakers. It can be seen that the phasors of the
oscillations of the sound arriving at this point from the
four individual speakers all line up (fig. 7.4)

Now consider what happens as we move toward the
right with our observation point.  The phasor of speaker
4 moves counterclockwise because its phase is moving
forward as speaker 4 becomes closer to the point of
observation while that of speaker 1 moves clockwise
due to its greater phase delay.  The result of the phasor
addition is as shown in the diagram.  Notice that the
resultant phasor is now shorter than the one for the
central point.

As we move farther, we would have a phasor pattern that
curls more and more.  At a point in the direction of 30o

to the central axis, the phase change from one speaker to
the next will 90o and the phasor diagram will appear as
shown.  The resultant phasor of this diagram is of
course zero;  adding the phasors head to toe simply
brings one back to the start of the phasor diagram.

Now consider what happens as we move even farther to
the right.  Now the phase angle between the arriving
oscillations from the speakers is greater than 90o.  The
resultant phasor diagram is as shown and now the
resultant phasor is no longer zero!  In fact it is starting
to grow again. At the point shown, the angle between the
phasors is 120o.  At this point we have a phasor
diagram  where the resultant phasor is the phasor left
over after the first three have cancelled each other.

Doing the vector addition carefully gives the rise to a
maximum at an angle of about 47o with then a falling in
net amplitude until we have reached 90o. Here the
individual phasors are 180o apart and merely run back
and forth along each other when they are added.
Because there are an even number of sources, the result
is zero.

The resultant diagram of the radiation pattern of the four
source system is as shown. The pattern will be repeated,
of course, in the region on the diagram above the
sources.  There are then six radiation lobes from this
source combination; two major ones front and back and
four minor ones roughly pointing at 45o to the main
lobes.

A multi-lobe pattern is characteristic of multiple source
systems when the sources are separated by significant
fractions of a wavelength.

Four Sources

N
ode Line

Node Line

Radiation pattern (secondary 
maximum at about 47 degrees 
to forward direction)

30o

Figure 7.4   The phasors for the sound arriving at various observation points around a four source system, the four
sources all operating in phase and at the same amplitude.  The individual phasors are added in order from the source
farthest to the left to the source farther to the right.  At a very large distance where all the speakers are the same
distance from the source, they will exactly line up but for closer distances such as we have here there will be the slight
bending of the direction of the vectors due to the noticeable extra distance of speakers 1 and 4 from the central point.
The resultant phasor would still be practically the algebraic sum of the four speaker oscillations even for oscillations
arriving at points fairly close to the speakers.
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7.3  Phasor Treatment of a Dipole Radiator

Having seen how phasors can be used to sum the
oscillations from four sources, return now to an even
simpler case; that of two equally strong sources
physically close to each other (separated by a small
fraction of a wavelength) but 180o out of phase to each
other.  This is a very important type of source in wave
theory and is called the "dipole radiator".

- +

Figure 7.5 A dipole radiator.  Both elements of
the dipole radiator are of equal strength but of
opposite phase.

A common example of such a radiator is an individual
electroacoustic speaker that is not in an enclosure.

Leads

Speaker

Figure 7.6 A bare electroacoustic speaker  as a
dipole radiator.  With a forward motion of the
speaker cone, he air expanding from the front of
the speaker would be a positive source and the
air being sucked into the back of the speaker
would be a negative source.  Because of the
thickness of the speaker, there will be a
separation of these two sources.

A microphone moved around very close to such a
speaker will show that the sound is not radiated
uniformly in all directions. No sound is radiated to the
side and the sound radiated to the rear of the speaker is
out of phase to the sound radiated toward the front.

This is not difficult to understand.  The sound is
produced by the movement of a speaker cone.  When
that cone is moving forward to produce a positive
pressure buildup in the front of the speaker, it is
creating a vacuum at the rear of the speaker.  This
vacuum propagates backwards as a wave that is 180o

out of phase with the wave propagated from the front.

Such a radiator will have a very distinct radiation
pattern which can be understood by the way the waves
from the two sources add together at various points in
space around the radiator.  Consider for example a
point directly to the side of such a dipole. At this point

the waves from the two sources making up the dipole
will arrive with their original phase differences intact.
They will therefore exactly cancel.

For points to the front or back of the dipole (i.e in the
direction of the line of the dipole) the source nearer will
be advanced in phase relative to the source which is
farther.  This means that the waves will now not exactly
cancel and that some wave action will appear.  For
points that are not exactly in front of or to the rear of
the dipole the phase delay will be less and so the
cancellation will be greater.

The phasor diagrams showing this is detail for the
dipole radiator are shown in fig. 7.7.

Figure 7.7 Phasor diagram of the two sources
in a dipole radiator.

To the side the phasors cancel and therefore there is no
sound oscillation.  However to the front and back,
because of the different distances of the two elements
of the dipole the phasors are no longer back to back;
the phasor of the farther element is turned clockwise
and that of the nearer element is turned counter-
clockwise. The result is a small vector sum
representing the sound amplitude that will arrive at
such points.  It is easy to see that this vector sum will
be the greatest when the rotation of these phasors is the
greatest.  That will be along the line of the dipole at
points both front and back. The radiation pattern of the
dipole is thus easily explained in detail and the actual
amplitudes at any point in space can be easily
calculated if one wished to do so.  The result is shown
in Fig. 8.6 where it is seen that the characteristic
radiation pattern of sound pressure around a dipole is
in fact two circles back to back, the sound in the
forward circle being 180o in phase relative to the sound
in the backward circle.

The phasor treatment of the dipole radiator also
explains a very important feature of the open
loudspeaker cone as a dipole radiator; that it lacks bass
even in the forward and backward directions of the
speaker.  This can easily be seen when it is realized that
the phase difference between the arrival of the two
sounds from the two elements of the dipole depends on
the wavelength of the sound.  Longer wavelengths have
less phase delay for the same distance travelled than do
shorter wavelengths. Thus the phasors of the two
elements of the dipole line up more closely to each
other for the bass; the lower the frequency, the more
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cancellation of the phasors and the less sound that is
radiated.

7.4  Slit Diffraction

The purpose of introducing phasors in this chapter is
to use them to understand diffraction, one of  the most
important ideas in physics and of tremendous
importance to all wave phenomena, acoustics included.
Diffraction is the reason for the complicated radiation
patterns for even a simple circular surface introduced in
chapter 5.

Again, we will start by considering the simplest
possible example, in this case a wave falling on a slit
opening.  This could be a sound wave arriving at a gap
in a doorway, a light wave arriving at a slit between two
razor blades  or  a water wave reaching a gap in a
breaker in a harbor.  For simplicity we will have the
wave arriving at the opening with its crests parallel to
the plane of the opening  (ig. 7.8).

Wavecrests

Figure 7.8   Wavecrests arriving at a slit opening
in a wall.  The slit is regarded as being long into
the plane of the view.  The slit width is shown.
The waves are arriving with their crests lined up
with the wall

Consider in detail how this wave will pass through the
opening. A first simple-minded approach would
perhaps lead to the conclusion that it goes through the
opening and spreads out the other side.  We might
guess that the distribution of the wave action on the
other side would not be uniform; there would be more
wave action in the original direction of the wave and
less to the side but we would be quite prepared to
believe that some wave action would show up in any
direction from  the opening that was not in the original
direction of the wave.

In fact this will not be the case.  If the wavelength of
the waves is less than the slit width, then the wave will
enter the region after the opening avoiding certain
directions!

This was the puzzle investigated by Fresnel and others
that led to the invention of very small phasors and the
so-called Fresnel integral calculus, which is a vector
calculus method for adding many small phasors.  They
were trying to solve the puzzle of light which had been
shown by Young to behave in this fashion when it went
through a very fine slit.

The phasor approach to this problem starts with
Huygens principle, the wave at the opening is thought
of as many little sources very, very close together in a
line along the source opening (fig. 7.9).

Figure 7.9 The wavecrest at the slit opening is
theorized to be made up of a line of very small
individual sources, all of the same strength and
all in phase.

Each of these sources is in phase.  Taking up some
point away from this slit on the far side of the opening
and directly in line with the original wave, all of the
little phasors representing these little sources will be in
line and add up like little vectors in line (see fig. 7.10)

Opening in Wall

(Nodal Line)

Radiation Pattern

(Nodal Line)

Figure 7.10 The phasor diagrams for the
multitude of sources assumed to be in the slit
opening.  The individual small phasors for each
small part of the slit are all assumed to be of
equal length.  With change in position in the slit,
the phasors will rotate by an amount equal to the
phase delay associated with that position.
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Now consider what happens to this phasor diagram as
we move away from the central direction.  Suppose that
we move to the left.  The phasors corresponding to
sources to the right of the slit will now rotate
counterclockwise because these sources are closer to
the point of observation.  The phasor diagram starts  to
curl as shown.  The resultant phasor for the total wave
action arriving at the point (A ) is therefore a little
shorter.

Now consider what happens as we go farther and
farther.  The phasor diagram curls more and more until
it is in fact a complete circle!  At this point the resultant
phasor is zero!.In which direction does this occur?
Looking carefully at the phasor diagram it can be seen
that the individual little phasors must change their
direction by exactly 360o from beginning to end. This
means that the phase difference between the arrival of
the oscillations from the two extremes of the opening
(the two edges) is one complete oscillation or 360o.
The two edges of the opening must then be one
wavelength different in distance from the point of
observation.

Fig. 7.11 shows the geometry of this critical situation.

No Wave action in this direction

Wavecrests

Two wavelengths

Figure 7.11   If the slit is twice as wide as the
wavelength, there will be no wave action along a
line at 30o to the direction of the original wave.

The angle for this critical direction in space is given by
a very simple formula;

sin θ = 
λ
w

where θ is the angle, λ is the wavelength of the wave
and w is the width of the slit opening.

Waves of wavelength say 10 cm going through an
opening 20 cm wide will show no wave action
whatsoever in a direction 30o to the direct line from the
opening.

An enlarged view of the diffraction pattern of the wave
passing through a slit is shown again in fig. 7.12.

Opening in Wall

Figure 7.12  Enlarged view of the polar graph of
intensity of a wave after passing through a slit.

The width of the central lobe is very dependent on the
width of the opening through which the wave passes.
The wider the opening the smaller the distance we have
to move away from the central axis to get a one
wavelength difference in distance of the edges of the
opening. This means that there is broad dispersal of the
wave on the other side of the slit only if the opening is
about a wavelength or so.  If the opening is many
wavelengths wide, the wave on the other side will have a
very narrow angular divergence after it passes through
the slit.  It will cast itself into a beam.

This is the answer to the puzzle of light.  Light is a
wave action with a very short wavelength.  Ordinary
openings that would be barely visible to the naked eye
would still be gigantic compared to this wavelength.
Openings that would show broad dispersal of
transmitted light would be so small that not enough
light to see would get through.  It is only with modern
lasers that the diffraction properties of light can be
easily demonstrated.

Of what importance is this to acoustics?  One item of
importance is the way sound will reflect from or radiate
from a surface.  Such a source of sound produces
waves very much like those that come through the
opening we have just considered.  The sound does not
radiate in a smooth pattern in all directions but radiates
in preferential lobes governed by the wavelength of the
sound being radiated and the size and shape of the
radiator.  Thus the directional properties of musical
instruments are determined by diffraction theory and it
is only through this theory that the complicated
radiation patterns of musical instruments and
loudspeakers   can be understood.

7.5  Diffraction  Through a Circular Opening

As an example, return to the vibrating circular surface.
Imagine the surface to be divided into many little
regions the effects of which are then added together as
in the case of the slit.  Here the segments can be lines
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made up of points which are all equidistant from the
observer (fig. 7.13).

All points along this line
are equidistant from the ear

Vibrating disk

Figure 7.13  The elemental phasor source for the
vibrating disk.

Unlike the case for the slit, the strengths of these
elemental sources are not now all of the same; the
strength will depend on the length of the line on the
disk. The phasor diagrams will now look something
like that shown in fig. 7.14.

              

Figure 7.14   The phasor diagram for the wave
propagating from a vibrating disk in two distinct
directions.  The diagram on the left is for a
direction in which the far edge of the disk is one
wavelength more distant than the near edge of
the disk.  The phasors at the extremes are very
short because the lengths of the disk segments
for these phasors are very short.The diagram on
the right is for a direction where the far edge of
the disk is 1.22 wavelengths more distant than
the near edge of the disk.  The phasors for this
direction do lead to complete cancellation.

The result is that the phasor diagram does not give zero
for this direction, as it did for the case of the slit where
each phasor had the same length.  This does not mean,
however, that there is no point at which such a
cancellation can occur; it occurs at a slightly greater
phase difference between the two edges.

There is then a nodal cone about the axis of the disk
containing a central maximum lobe of radiation, similar
in pattern to that of Fig. 8.10 for the slit, the difference
being that the nodal line comes at an angle θ given by

sin θ  =  1.22 
λ
d

where d is the diameter of the disk.  (Compare this
formula with that for the slit; sin θ = λ/d.)

The radiation patterns of a vibrating disk that were
introduced in chapter 5 are therefore explained fully by
phasor addition applied with Huygens principle of
wave propagation.  Exactly the same diffraction pattern
as for a vibrating disk will therefore occur for a wave
falling on a circular opening.  Again, this is because the
wavefront in the circular opening can be thought of as a
set of many small oscillators, all in phase.

7.6 Some Consequences of Wave Diffraction

This chapter will conclude with pointing out another
remarkable feature of wave diffraction.  The elemental
sources that make up the wave in a circular opening not
only propagate forward in the direction of the wave but
also backward; they are assumed to be isotropic.  At
points on the wave side of the opening, these elemental
sources can therefore be heard (fig. 7.15).

Direction of Wave

Diffracted sound will
come from the hole.

Figure 7.15   A hole will diffract a wave back
into the room from which the wave was
originally travelling.  A sound can therefore be
perceived as coming from the hole which is, of
course , a perfect absorber!

The effect of these elemental sources on the wave side
of the opening are therefore the same as on the far side;
oscillations are diffracted backward in a lobe pattern
just as they are propagated forward.

What does this do to our concept of what happens to
sound in a room with absorbers and openings such as
doors and windows.  Up to now we have taken the
point of view that sound which falls on a perfect
absorber or goes out a window (which physically is the
same thing) is lost from the room.  Now diffraction
theory is telling us that sound bounces even from such
absorbers and scatters back into the room.  In fact it
would seem that half the sound in the opening would
bounce backward and half continue to go forward.  The
simple theory of room reverberation assumed that the
absorber merely removed the sound energy that fell on
it.  Was an error made in this assumption?

The mathematics to prove it is not appropriate for this
material but rest assured.  The sound energy arriving at
the opening does go out the opening and disappear
from the room.  Where then does the sound energy
scattered back from the opening come from?
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The sound energy does scatter back in the way
diffraction theory would indicate. The energy involved
in this backscattered wave is robbed from the energy in
the wave falling on the opening in the vicinity of the
opening.  Thus not only the energy actually falling on
the slit is lost from the wave but energy of an equal
amount is scattered back from the wave in directions
determined by diffraction theory.  Thus absorbers not
only take energy out of the sound wave in the room but
also scatter an equal amount of the remaining energy
about the room as well.  This backscattered energy
does not represent a loss in sound energy in the room
since it stays in the room.  Therefore it does not affect
the elementary theory of room reverberation as
developed by Sabine.

However, the backscattered sound from an absorber
has profound implications in how the absorbers should
be placed.  Because people seem to like the sound
waves bouncing around a room to be scattered so as
the appear to come from all directions, having the
absorbing surfaces broken up into pieces of
dimensions about equal to the wavelengths of the
important components in the reverberant sound in a
room can give a much more pleasant effect than having
all the absorbing done by one flat wall.

As a finish to the subject of diffraction, one of the
difficulties with understanding modern physics will be
pointed out. In modern physics, particles (electrons,
protons, neutrons etc. i.e. the fundamental building
blocks of the world as we know it) are regarded as
wave packets travelling through space.  Thus they can
exhibit the bizarre properties we have been talking
about here for sound waves.  In principle, all objects
are collections of waves and therefore, in principle, an
object arriving at an opening (such as a baseball about
to enter a living room window) should break into parts
some of which will bounce back from the opening.
This is of course not what happens.

The particle "waves" that we talk about in modern
physics are "waves of probability" and what modern
physics is really trying to tell us is that there is a
probability that when a baseball arrives at an open
window it will bounce back from the window.  Modern
physics gets around the problem of explaining this to
any normal person by stating that, of course the
wavelengths of the probability are so extremely short
that this would never be witnessed in real life (just as
light diffraction is never seen in ordinary life because
of its short wavelength).

While the problem is of no consequence in ordinary
matters, it does pose some extreme philosophical
problems which are not a subject for these notes but
which have occupied philosophers and modern
physicists quite a lot since these principles were
discovered in the early 1920's.

Exercises and Discussion Topics

1. What would be the phasor representation of 3
equal intensity pure tones of the same frequency
arriving at a point in space 120 degrees apart in
phase?  What would be the net result of the arrival
of these three tones?  What would be the result if

they arrived 60 degrees apart in phase?  What
would be the result if they all arrived in phase?

2.  What is a "dipole radiator" in acoustics?  What are
its directional properties?  What is the relative
phase of the front and back waves?  Why is a bare
loudspeaker, at frequencies for which the
wavelength is much longer than the speaker
dimensions, essentially a dipole radiator?

3.  Why does a loudspeaker in an infinite baffle
become a monopole radiator?  What are the
directional properties of a monopole radiator?
Why is the loudspeaker baffle (or enclosure) so
important at the lower frequencies?

4. State the principal assumptions of wave diffraction
theory.  What are the consequences in the
extremes of source size being very small
compared to the wavelength and of a flat source
which is very large compared to the wavelength?
Qualitatively, what sort of things happen when the
source size and wavelengths are comparable?

5.  From the assumptions of Huygens principle and
diffraction theory, explain why an opening in a
reflecting surface (such as a window in a concrete
wall) will disturb the pattern of the reflected wave.
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CHAPTER 8

THE RADIATION PATTERNS OF MUSICAL INSTRUMENTS

This material is from that of Meyer and Olsen on the
radiation patterns of musical instruments and other
sound sources.  The material in Meyer is to be found
in chapters 4 and 7.  The material in Olsen is to be
found in chapter 4, section 4.12 (beginning at page
100) and in chapter 6, section 6.5 (beginning at page
231).

At the present time, this material has not been
transcribed and no permission has been obtained for
copying the material from these sources. The reader is
strongly encouraged to read the original material for
factual information on the subject of the directional
patterns of sound from musical instruments.

Exercises and Discussion Topics

1. Select one of the following categories of musical
instruments; strings, horns or winds, and discuss
the predominate directional characteristics of the
direct sound from that class of instruments.
Present the common features of the members of
that class and the change of the features from
instrument to instrument within that class.

   2. What are the directional characteristics of the
human voice and how do they relate to the ease of
perception of speech with different orientation of
the speaker relative to the listener?
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CHAPTER 9 

THE FREQUENCY SPECTRUM OF SOUNDS 

 

The diffraction of sound waves around a source and 
objects in front of it leads to complex directional 
patterns to a sound wave coming from that source.  At 
the same distance from a source the sound will 
generally have much different intensities in different 
directions.  Furthermore, this pattern of directionality 
will be different for different sound frequencies.  As a 
general rule, low frequencies will not have much 
directionality, i.e. they will radiate with about the 
same intensity in all directions, even towards the back 
of the source. On the other hand, high frequencies 
will radiate in quite specific directions with many 
directions in which the sound will be very weak. 

Diffraction of sound therefore means that the timbre 
of a note, i.e. the relative amounts of fundamental and 
higher harmonics that give a note the characteristics 
that distinguish an A on a trumpet from an A on a 
violin, will appear to be different in different 
directions.  This is generally an acceptable situation 
for the normal seats in a music theater because only a 
small fraction of the total sound in a sustained note is 
the direct sound where these directional features 
occur.  The majority of the sound intensity used to 
discern the timbre of a note is in fact the reverberant 
sound and in a good auditorium this sound will 
eventually reach the listener with a good balance in 
the various frequencies no matter in what direction it 
left the source.  

However, the majority of the sound that should be 
picked up in a good recording will be the direct sound 
itself.  The directional features giving the sound a 
particular timbre at the location of the microphone 
can then be very important. 

9.1 Frequency Components of the Human 
Voice 

As a specific example, consider the human voice. A 
spectrogram of a typical sound such as a sustained 
vowel "ee" sung at a particular note will be seen in a 
spectrum analyzer to be particularly rich in high 
frequency components. A representative spectrum for 
the "ee" vowel sound is shown in fig. 9.1. 

While the fundamental frequency, 110 Hz, of the 
spectrum shown in fig. 9.1 designates the pitch of the 
tone it is seen to by far not the strongest component in 
the spectrum, this being typically in the range of 
about 440 or 550 Hz for the "ee" sound.  Also, note 
that there are strong components in the 3000 Hz range 
and even quite a noticeable amount in the 6000 Hz 
range. 

These "clumps" of components are referred to as 
"formants" in speech and music and the reason for 
their existence will be an important part of the second 
half of this course.  For now the important point is 
that they exist and are very important in perceived 
quality of a musical note.  For instance, the difference 
between an "e" and an "ah" vowel sound is that in the 

"ah", the higher frequency formants peak at different 
frequencies and are much weaker  (fig. 9.2). 
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Figure 9.1  A typical spectrogram of a vowel 
"ee" sung at A110 by a male singer. 
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Figure 9.2  A typical spectrogram of a vowel 
"ah" sung at A110. 

 

As an example consider what an incorrectly  placed 
microphone can do to the quality of an "e" sound of a 
singer.  The spectrum with the microphone in front of 
the face will be as shown in fig. 9.1 but the spectrum 
with the same microphone behind the head will have 
most of the high frequency components missing. 

Practically all musical sounds of any significance will 
have such complex frequency spectra and will have 
their timbres severely affected if the directional 
characteristics of the various components are not 
taken into account in a recording.  The actual 
frequency spectrum of a sound source therefore is 
important when considering the directional 
characteristics of that source. 

As in acquiring knowledge of any complex 
phenomenon, an understanding of its basic causes in 
usually a help.  In the case of musical acoustics this, 
of course, implies understanding the physics of how 
the spectra arise.  Again, one starts any such physics  
study with the simplest cases.  
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9.2 The Frequency Spectrum of Some Simple 
Tones 

9.2.1 A Pure Tone 

The very simplest musical tone that can be created is 
that of a pure tone resulting from a sinusoidal (simple 
harmonic) oscillation of air pressure.  Such a tone is 
created by the oscillation of a simple musical device 
such a tuning fork. The variation of pressure with 
time and the resultant spectrum is shown in fig. 4.3. 

f0

Spectrum line
for a pure sine wave

Vn

Moves horizontally as 
frequency is changed

 
Figure 9.3  The waveform and spectrogram of a 
pure tone. 

As the tone is changed in loudness it can be seen that 
the height of the single line rises and falls.  As it is 
changed in pitch, it is seen that the line moves 
sideways, left for lower pitch and right for higher 
pitch. 

9.2.2 A Square Wave form Oscillation 

The next simplest musical tone that can be created is 
that of a pressure which is alternating between an 
overpressure of a certain amount and an 
underpressure of the same amount.  Such a sound 
would be created by a wall moving back and forth at 
constant velocity but abrupt changes in direction, 
producing first a pressure wave and then a vacuum 
wave as described in Chapter 4. The variation of 
pressure with time and the resultant spectrum for a 
repetition rate of 500 Hz is shown in fig. 9.4. 

 

frequency

0

V n

5kHz 10kHz

Spectrum for a square wave
of 500 Hz

0
Vpp

Vrms

 

 
Figure 9.4  The waveform and spectrogram of a 
"square" 500 Hz tone. 

It is seen that this tone does have the fundamental as 
its strongest component but contains also all the odd 
harmonics up to beyond the range of the spectrogram.  
It is these higher harmonics that give the "square" 
tone it much harsher quality compared to the pure 
tone. 

In these notes the numbering of the harmonics 
will start at 1 for the fundamental, i.e. the 
fundamental is the first of the harmonic series 
making up a tone.  A "harmonic" is not to be 
confused with the term "overtone".  A musical 
term more in keeping with the term "harmonic" 
is "partial".  Thus the fundamental is one of the 
partials of a musical tone.  

Sometimes, but not always, an overtone or a 
partial can be a harmonic. This is because a 
harmonic is rigorously defined to be an integer 
multiple (i.e. exactly 1, 2, 3 or etc, times the 
fundamental frequency) while an overtone or a 
partial is sometimes not so exactly related.  
There is much confusion in the literature, even 
in the Harvard Dictionary of Music, about this 
point and it will be discussed more thoroughly 
later in the course. 

 

9.2.3 A Triangular Waveform Oscillation 

The last simple musical tone that will be presented 
here is that of a pressure which is swinging between 
an overpressure and an underpressure in a fashion 
that presents a triangular waveform (fig. 9.5).  The 
variation of pressure with time and the resultant 
spectrum for a repetition rate of 500 Hz is shown. 
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Figure 9.5  The waveform and spectrogram of a 
"triangular" 500 Hz tone. 

It is seen that this tone, like the "square" tone,  
contains all the odd harmonics but that the higher 
ones are much weaker.  This is the reason that the 
tone is not as harsh. 

Why do these tones have these odd harmonics and 
only these odd harmonics?  To gain some 
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understanding of this phenomenon consider the 
simple addition of a few low order odd harmonics of 
a tone. 

9.3 The Synthesis of Some Simple Tones 

9.3.1 A Square Tone 

First add to a fundamental a third harmonic at one 
third the amplitude of the fundamental, both starting 
at the same zero phase angle.  The result is as shown 
in fig. 9.6. 

 
Figure 9.6 Pure sinusoid plus 1/3 amplitude 3rd 
harmonic.  

Suppose now we add yet another wave, the fifth 
harmonic at one fifth the amplitude.  The result is as 
shown in fig. 9.7. 

 

Figure 9.7   Pure sinusoid plus 3rd and 5th harmonic.  

  

Continuing with some seventh harmonic at one 
seventh the amplitude, and finally with some ninth 
harmonic at one ninth the amplitude, the results are as 
shown in fig. 9.8 and 9.9. 

Listening to the sounds of these waveforms, you 
would easily discern the presence of each harmonic 
as it is added. Aurally, at least, they seem to stay 
separate even as they are added into the system. 

 

Figure 9.8   Pure sinusoid plus 3rd, 5th and 7th 
harmonic.  

 

Figure 9.9   Pure sinusoid plus 3rd, 5th, 7th and 
9th harmonic.  

But also you would notice that the sound of all the 
harmonics simultaneously is approaching that of the 
square wave.  Furthermore, the shape of the 
waveform is approaching a square wave. 

From this it would appear that the sound of the tone 
and the picture of the waveform will become closer to 
that of the square wave if more harmonics are added 
in this fashion.  The rule used is only odd harmonics 
added in phase at a amplitude relative to the 
fundamental given by the reciprocal of the harmonic 
number. 

This can be confirmed graphically if you have a 
computer.  The result of adding up to the 21st 
harmonic is shown in fig. 9.10. 

 

 

Figure 9.10   The result of adding to the 21st 
harmonic.  
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9.3.2 A Triangular Tone Plus Others 

It is also possible to do the same sort of thing for a 
triangular waveform. Again, this wave can be 
simulated by adding together carefully selected 
harmonics of carefully selected amplitudes and 
phases (see fig. 9.11) 

 

Figure 9.11   The result of adding to the 21st 
harmonic to create a triangular waveform.  

Note now that the waveform approaches the 
triangular much more quickly and with much less 
amplitude for the harmonics than for the square 
waveform. This is related to the triangular waveform 
sounding less harsh than the square waveform. 

It should not be surprising that this can be done for 
any waveform.   Note the result of adding together 
another selected group of the first 9 harmonics in fig. 
9.12.  This group of harmonics approaches what is 
called the "sawtooth" waveform.  Here all the 
harmonics had to be used, including the even ones.  

 

Figure 9.12   The result of adding to the 9th 
harmonic to create a sawtooth waveform.  

The conclusion is that any repetitive waveform can be 
synthesized by adding together pure tones; a 
fundamental and selections of its harmonics.  The 
reason that only the harmonics can be used to create 
these waveforms is that for the overall waveform to 
be repetitive at the fundamental frequency all the 

components must start again at the restart of a 
fundamental cycle.  Only those oscillations that have 
completed an integer number of whole cycles in this 
fundamental period can do this. 

This result has a powerful corollary:  Any repetitive 
waveform created by any means can be decomposed 
into pure tone components, or can be thought of as 
being made up of those pure tone components.  For 
example, consider the square waveform, which is 
often generated in electronic circuitry by simply 
having a switch going from being connected to a 
positive voltage to being connected to a negative 
voltage. No harmonics are actually used to generate 
the resulting "square"  waveform but, nonetheless, the 
waveform does contain all these harmonics. 

This can be demonstrated by adding to a square 
waveform a pure sinusoidal wave of phase opposite 
to that of the square wave so that it will cancel any 
fundamental that is in it (fig. 9.13). 

 

Figure 9.13   The result of adding a 
fundamental component out of phase to a 
square wave.  

Note what happens as the amplitude of the added pure 
tone is increased.  The fundamental tone of the square 
wave is heard to disappear at a very definite 
amplitude of the superimposed pure tone.  The 
resultant waveform at this condition is what is shown 
in fig. 9.13. 

This exercise can be repeated for a removal of the 3rd 
harmonic from the square wave.  When listening 
carefully to the resulting tone as complete removal of 
the harmonic is approached, the initial presence of 
these components stands out. 

The effect of switching these cancelling sinusoidal 
waveforms on and off  can be clearly seen in the 
spectrograms of the sounds (fig. 9.14) 
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Figure 9.14   The spectrogram resulting from 
the addition of the cancelling waveforms for 
the fundamental and the 3rd harmonic to a 
square wave.  
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The superimposed pure tones are exactly canceling 
the pure tone components of the same frequency in 
the fundamental, leaving only the higher harmonics in 
the square waveform to be heard. Thus the square 
wave does indeed contain a pure  fundamental 
component even though the mechanism that produced 
it used no such tone. 

You might even note that the fundamental component 
of the square wave has a larger amplitude than the 
square wave itself. At first it might be puzzling that 
the square wave contains a fundamental which is 
higher than it.  However, notice again what happened 
in the initial combining of the harmonics to simulate 
the square wave.  The primary effect of adding the 
third harmonic was in fact to bring down the top of 
fundamental.  The effect of the remaining harmonics 
appeared to be to make the top flatter and to make the 
sides of the waveform progressively steeper.  The 
origin of the higher harmonics appears to be the sharp 
rise and the sharp corners of the waveform. 

9.4 The Frequency Spectrum of Sharp Pulses 

  In all of the simple examples discussed so far, the 
higher harmonics making up a tone were much 
weaker than the fundamental.  However there is 
another conceptually simple tone for which this is not 
the case and which is one of the most important tones 
in musical acoustics.  This is the sound from a series 
of sharp pulses.  As a start consider a waveform that 
is not very different from the square waveform that 
has already been considered, only the low pressure 
period compared to the high pressure period has been 
reduced (fig. 5.15) 

 

 

 
 Figure 9.15  A asymmetrical square pulse. 

Playing such a pulse through a loudspeaker at the 
same repetition rate of as a square waveform or a 
triangular waveform will produce a sound quality that 
is much harsher than either.  Furthermore, the quality 
gets harsher still as the duration of the pulse is 
shortened. 
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   Still harsher sounding pulse 

 
Figure 9.16 Progressively harsher asymmetrical 
square waveforms for sound pulses. 

The harshness of the pulse seems to increase 
continually until the pulse duration is only about 0.05 
ms, after which further reduction just seems to 
diminish the sound level of the pulse without 
changing its timbre. 

Using the Fourier analyzer to determine the frequency 
spectrum of such repetitive pulse shows why this 
should happen.  Starting with a pulse which is exactly 
one-half as long as its repetition period, i.e.of  a 
square waveform, we see that the frequency spectrum 
of the square wave is reproduced.  However, slowly 
decreasing the pulse duration shows that at the 
particular point when the duration is one-third of the 
repetition period every third harmonic disappears (fig. 
9.17). 
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Figure 9.17  Spectrogram for a square pulse 
which has duration of 1/3rd of a cycle period. 

Decreasing the pulse duration further shows that at a 
duration of one-fifth of the repetition period, only 
every fifth harmonic disappears (fig. 9.18). 
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Figure 9.18  Spectrogram for a square pulse 
which has duration of 1/5th of a cycle period. 

Finally, at a pulse duration which is only one-tenth of 
the repetition period, every tenth harmonic disappears 
(fig. 9.19). 
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Figure 9.19  Spectrogram for a square pulse 
which has duration of 1/10th of a cycle period. 

These spectra show that as the duration of the pulse 
narrows, more and more harmonics are developed. 
Also it is seen that there is a particularly simple 
relationship between the duration of the pulse and the 
lowest frequency which is cancelled.  Referring to 
this lowest frequency as a "band-pass" f gives 

f  =  
1
t  

where t is the duration of the pulse. 

This is the reason for the timbre of the pulse 
becoming harsher as it is made progressively 
narrower.  For durations of only 0.1 ms, the first null 
is at 10kHz.  For durations shorter than that, the first 
null frequency goes even higher but into a range 
which is not possible for the simple speakers to 

reproduce or, even if they did, for you to hear very 
loudly.   Durations of less then 0.1ms therefore do not 
result in an increase in timbre but in throwing more 
power into high frequencies which cannot be heard.  
The sounds therefore appear just to get weaker. 

At first it is usually very hard to understand the 
bandwidth theorem at first.  However, it is extremely 
important in physics and electrical engineering.  One 
aspect of it can be shown be  lowering the repetition 
rate while maintaining a constant pulse duration.  For 
example fig. 9.20 shows what happens as the rate of 
repetition of a 0.4 ms pulse is lowered from 500 Hz to 
250 Hz;   
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Figure 9.20  Spectrogram for a square pulse of 
duration 0.4 ms at two repetition rates; 500 Hz 
(top) and 250 Hz (bottom). 

The shape of the spectrum has not changed from the 
500Hz rate but there a twice as many spectrum lines 
in the same frequency interval. By lowering the 
repetition rate, the spectrum has become richer! 

A little thought might make this seem somewhat 
plausible.  The fundamental is now reduced to 250 Hz 
and so there are more harmonics possible in any 
given frequency  range.  What is still not perhaps so 
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plausible is that the shape of the spectrum has nothing 
to do with the basic repetition rate of the pulse but 
only its duration! 

This phenomenon is very important in human speech.  
Both male and female voices have about the same 
spectrum shapes for the different vowel sounds in a 
language. However, these vowel sounds are made up 
of harmonics of a relatively low fundamental.  They 
come about because the basic sound production is 
from sharp puffs of air injected into the vocal tract 
through the tightly stretched muscles forming the 
larynx and it is the frequency of these puffs which is 
the fundamental.  

However, because of basic physiological differences 
in the structure of the throat the frequency of these 
puffs is much lower for men than for women. For 
women it is typically about 220Hz, for men only 
about 140Hz.  (Yet another case where women are 
faster than men.)   

Typical spectra for the vowel sound "ee" are shown in 
fig. 9.21 for both male and female voices. 
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Figure 9.21  Spectrogram for a typical male 
voice (top) and a typical female voice (bottom) 
for an "ee" sound. 

The result of the slower repetition rate of the male is 
that the spectrum of the vowels sounds for a male 
voice is much richer than that for a female voice.  
Some people will say that it is not so much richer as 
noisier.  In any case, it makes the male voice 

distinctly different in quality to the female voice and 
provides, for learning children, a different perceptual 
problem.  For most children brought up in a normal 
home environment, this poses no difficulty since the 
father will be screaming at a child nearly as often as 
the mother.  However, in special cases such as the 
training of deaf children that have been given the 
benefit of hearing through powerful hearing aids in 
special situations, there can be a problem.  This 
comes about because most of the hearing experiences 
with human voices for such a child will that of a 
female voice, either of the therapist, who is usually 
female, or the mother, who is usually the one who has 
given up her job to train the child.  This tends to make 
the child unreceptive to male voices since they are 
different to what is being intensively experienced in 
the training sessions. Many people in the field of 
auditory rehabilitation for children are concerned 
about the low number of males entering the 
profession  and would like to encourage more to get 
involved. 

To return to the pure (i.e more useless) physics of this 
phenomenon, consider what happens as the repetition 
rate of the pulse further lowers.  At about 25 Hz, the 
sound would appear to undergo an abrupt change in 
character from a continuous tone (or noise) to a 
discernable series of clicks.  However, it still has the 
same spectral shape that it did at 500Hz.  This is 
because it still has a duration of 0.4ms   

Going all the way down to 3 Hz, would give quite 
clearly distinct pulses 3 times a second.  Yet the 
spectrum shape is still the same, except that now it is 
impossible to see any distinct lines because they are 
separated by only 3Hz (fig. 9.22). 
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Figure 9.22  Spectrogram for a square pulse of 
duration 0.4 ms but at a repetition rate of only 3 
Hz.. 

Yet there is a distinct pitch to this pulse. For example, 
if the pulse duration is changed from 0.4 ms to 1.0 
ms, the pitch of the pulse would appear to lower.  If 
the duration were changed to 0.1 ms, its pitch would 
appear to go higher.  There would be an apparent 
change in pitch without a change in the fundamental 
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frequency (3 Hz). This is because the spread of 
frequencies up to the first null depends only on the 
duration of the pulse and is given by the bandwidth 
theorem. 

This leads to some difficult philosophical questions.  
The first is what happens when the repetition rate 
drops to zero; i.e when there is just one pulse and it is 
never repeated?  Fourier analysis seems to be telling 
us that the shape of the frequency spectrum of such a 
tone burst or pulse will be the same as it is when the 
repetition rate is 500 Hz! 

To get even deeper into this philosophical quagmire, 
consider what happens when we make such a burst 
infinitely narrow in time.  The result will be a f of 
infinity.  Thus we have the result that an infinitely 
narrow single tone burst of pulse contains all 
frequencies at equal amounts. 

The mathematics which proves that this must be the 
case is not apprropriate for this course.  It is called the 
Fourier transform and is related, of course, to the 
mathematics of Fourier analysis.  Here, an attempt 
will be made to show how the phenomenon comes 
about by adding up a series of sine waves made up of 
all the harmonics of a fundamental but now with all 
the components of the same amplitude.  They will all 
start at their maxima.  (In terms of phase this means 
that they are all starting at a phase angle of 90o). 

The individual waves are shown for the fundamental 
(500 Hz) and for the second harmonic (1000 Hz) in 
Fig. 9.23. 

Notice that they both start at their crests but that the 
1000 Hz has an extra crest in between the two shown 
for the fundamental and therefore tends to cancel the 
through of the fundamental at this point when they 
are added together. 

Now consider the result of adding the third harmonic 
(1500 Hz) as shown in Fig. 9.24.   Notice that again 
the oscillations all add at the crests of the 
fundamental but that elsewhere there seems to be no 
coherent summing.  The resulting oscillation between 
the fundamental crests is even less than if we had the 
1500 Hz tone alone. 

Fig. 9.25 shows the result of adding the rest of the 
harmonics up to 4500 Hz.  That is as far as the simple 
device used for this addition will allow, but you can 
imagine what the result of more additions would be; 
the peak that has developed would get higher and 
narrower. What has happened as more and more 
components are added is that reinforcement only 
occurs at the crests of the fundamental.  In between 
these crests, the waves tend to cancel each other out.  
The result of adding all these higher frequency 
components onto the fundamental is to create a rather 
sharp spike at the fundamental frequency. 

 

 

 

 

Figure 9.23  The result of adding a 500 Hz tone 
and a 1000 Hz tone, both of the same amplitude 
and both of the same starting phase (90o).The 
top graph is for the 500 Hz tone, the second for 
the 1000 Hz tone and the third shows both 
tones simultaneously.  The result of the 
addition is shown in the bottom graph. 
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Figure 9.24   The result of adding the 1500, 
2000, 2500 and 3000 Hz tones at the same 
amplitudes and phases as the components in 
Fig. 9.23. The top graph, left, shows the result 
of in fig. 9.23 with the third order harmonic 
(1500 Hz) overlaid.  The next graph below it 
shows the result of adding these first three 
harmonics. The next graph below that one has 
the fourth harmonic overlaid and the graph 
below it the result of adding this fourth 
component. This continues to the lowest graph 
showing the result for all six harmonics. 

 

Figure 9.25   The result of adding 3500, 4000 
and 4500 Hz tones at the same amplitudes and 
phases as the components in Fig. 9.1. The 
upper graph shows the result of Fig. 9.2 and the 
seventh order harmonic.  The lowest graph 
shows the result of the addition of all of the 
first nine harmonics of 500 Hz. 
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Fig. 9.26 shows the result of a calculation of the sum 
of 100 harmonics of 500 Hz (up to a frequency of 
50,000 Hz).   

 

Figure 9.26  The result of adding up harmonics, 
all of the same amplitude and starting phase 
(90o). The upper graph shows the result of the 
first 9 harmonics as in fig. 9.25 but with the 
phases shifted to locate the peak in the center of 
the diagram.  The graph below it shows the 
result of adding up the first 100 harmonics 
using the same phase relationships.  The 
components in the graph on the right are only 
about 1/12th as large as they are for the graph 
on the left.   

Thus a very sharp pulse can be created by adding 
together at the proper phase a large number of 
harmonics, all of equal amplitude. Again, this can be 
turned around.  If a sharp pulse has been produced by 
any means whatsoever, then all these harmonics, with 
the correct phase relationships, have also 
automatically been produced.    

Now notice what happens if the phase relationship 
governing the harmonics in the spike is altered?  This 
can be demonstrated by showing the result of adding 
up harmonics from 500 Hz to 4500 Hz but now with a 
different phase relationship.  Fig. 9.27 shows the 
result of adding harmonics which all start at zero 
phase angle.  It is seen that different shaped pulses are 
produced than when the phase started at 90o.  Here 
the pulses are "bipolar" meaning that they make sharp 
excursions to both above and below the axis, the 
negative excursion occurring first if the starting 
phases are 0o and the positive excursion occurring 
first if the starting phases are 180o. 

It is perhaps not too surprizing that the upside down 
version of the original spike can be obtained by 
starting all the oscillations with a phase of 270o (see 
Fig. 9.28). 

 

Figure 9.27  The result of adding up the first 9 
harmonics, all of the same amplitude and 
starting phase. The graph on the top shows the 
result if the starting phase is 0o.  The graph on 
the bottom shows the result if the starting phase 
is 180o.   
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Figure 9.28  The result of adding up the first 9 
harmonics, all of the same amplitude and 
starting phase, in this case 270o.   

9.5  The Connection Between Time and 
Frequency Spectra 

The important point from the previous section his that 
each different phase relationship between an infinite 
set of harmonics creates a  different sort of spike or 
"transient".  Now again turn this thought around.  
Each different spike has its own phase relationship 
between the harmonic components making up that 
spike.  Therefore, if recording apparatus  does not 
faithfully reproduce that phase relationship in its 
output, the original quality of the a sharp sound pulse 
may well be lost.  Rather the sharp transient will 
appear to be just a noise burst. 

Thus the preservation of phase relationships in the 
components of a sound is very important in 
preserving the quality of the attack of the sound and, 
as pointed out in the early part of this course, the 
attack of a sound is a very important part for our 
recognition of the nature and the direction of the 
source.  This was not only important for the survival 
of our ancestors but is apparently also very important 
in our appreciation and enjoyment of music. 

Perhaps the logic of all of this may become a little 
clearer by looking at the frequency-time relationships 
in two extremes; that of a steady pure tone that last 
forever and that of an infinitely sharp pulse.  The first 
case is shown in the top half of fig. 9.29 and the 
second in the bottom half. 
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Figure 9.29  Diagrams representing the two 
extremes of types of oscillations; the infinitely 
stable single frequency pure tone (top 
diagrams) and the infinitely sharp spike 
(bottom diagrams).  Note the inverse 
relationships in the diagrams; the frequency 
spectrum of one has the same form as the time 
spectrum of the other and vice versa. 

Thus frequency and time have changed roles in the 
diagrams. 

 This is the beginning of an understanding of Fourier 
analysis and the Fourier Transform.  There are two 
equivalent ways to look at any oscillation; in the time 
domain of actually following the motion and in the 
frequency domain of perceiving the frequency 
spectrum.  Those of you who have taken Physics 224 
should be quite familiar with this concept since the 
frequency spectrum is what the human brain 
perceives in discerning sound and the subset of 
sounds called music. 

Thus any oscillation can be viewed in these two 
equivalent ways.  One is called the "Fourier 
transform" of the other.  If one of the forms is known, 
then the other can be obtained by the mathematics 
called the Fourier transform. 

Again, I would like to include something about 
philosophical implications.  As pointed out in chapter 
8, when it was found that particles were collections of 
waves in space there were enormous philosophical 
difficulty.  One of these is that an event such as a 
collision between particles must be capable of being 
described by a set of frequencies.  If then it were 
indeed a single event, then it must be made up of all 
the frequencies.  Furthermore, for that event to occur, 
all of these frequencies had to have the right set of 
phases at the start so as to line themselves up at the 
instant in time the event occurred.  How did these 
phase relationships get set up?  What are the 
governing rules of nature in this regard? Rationalizing 
these questions with our observations of nature was 
one of the most difficult problems that mankind has 
ever had to cope with in philosophy.  
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However, to return to more mundane matters, the 
frequency spectra that we have been dealing with are 
rather special; the harmonics of a fundamental.  To 
look at another feature of the "Fourier" transform, 
consider yet another type of addition of pure tones; 
that leading to beats. 

 

9.6  The Addition of a Bundle of Close Frequencies 

 

As always, one starts with the simplest possible case; 
a pure tone.  As a specific example to focus on, take 
one with a frequency of 3000 Hz.  Such a tone is 
shown in the top graph of Fig. 9.30. 

Suppose as a second example, two tones, close in 
frequency, are added together. Fig 9.30 show the 
result for a tone of  2800 Hz and another of equal 
intensity at 3200 Hz.  The result is the familiar beat 
pattern at a beat frequency of 400 Hz also shown on 
the figure. 

Now go to something that you probably never 
encountered in any previous physics course that you 
had to suffer through; that of the combination of three 
frequencies which are close together.  This is also 
shown in the diagram.  By keeping the separation at 
400 Hz and having the proper balance between the 
center frequency and the two side frequencies (in this 
case 2 to 1), you can get a very distinct beat pattern, 
even more distinct than for the simpler two frequency 
case. 

Here the beat frequency is the same as for the two 
frequency case but the null is of longer duration. 

By adjusting the frequencies so that the gap is halved 
from what it was, then you will get a beat frequency 
which is only half of what it was.  (See bottom 
diagram of the set). 

Again, there are two ways of looking at the 
phenomena; the amplitude in time and the frequency 
spectrum. 

However, now lets go to another stage.  Take a five 
frequency beat pattern.  How I get the right relative 
intensities for this beat pattern is  not important here.  
The important thing is that there is a set of these 
frequencies and amplitudes that, when programmed 
into a microcomputer results in these graphs. Notice 
that for a spectrum of five frequencies of the relative 
amplitudes shown, a beat pattern occurs with a very 
distinct hollow empty region in between the beats.  
Notice that the beat frequency is now only half again 
what it was in the previous diagram. 

Finally on the same diagram, is included what 
happens when nine components of the relative 
amplitudes shown in the frequency spectrum are 
summed.  Here the frequency separation is only 50 
Hz.  Notice that now the beat pattern repeats itself 
only every 20 milliseconds.  Also notice how broad 
the quiet region in between the beats has become. 

But now notice a rather important effect.  If the 
amplitude balance is kept the same as before, but the 

frequency interval is broadened to to 100 Hz, the 
beats are brought back to being only 10 ms apart but 
the duration of the oscillation bunch is also shorter. 

There is thus an intimate connection between the 
shape of the frequency spectrum and the shape of the 
amplitudes within a beat.  Note that they are both the 
"Napolean's hat" shape which in mathematics is 
called Gaussian.  However, more important, note that 
the widths are interconnected.  The broader I make 
the frequency spectrum, the narrower I make the 
amplitude duration in the beat.  Conversely, the 
narrower I make the frequency spectrum, the broader 
I make the amplitude duration. 

In the lower part of the diagram, is shown the result 
of adding 32 oscillations of the correct amplitudes.  
The result is a beat which has not noticeably changed 
its amplitude in time, but for which the second beat 
has moved cleanly off the page. All that was done to 
achieve this was introduce to introduce a set of 
frequencies that more completely filled the region of 
the spectrum making up the beats.  If I continued to 
do this the result would be to move the second beat 
farther and farther away in time.  Again, going to the 
logical extreme, all the frequencies in the spectrum 
were filled in, the second beat would never occur! 

 

9.7  The Fourier Transform 

 

Putting together this whole mess of frequencies 
would be practically impossible.  However, it is 
certainly possible to turn an amplitude on and off in 
the manner that was the result of the addition of the 
32 component frequencies in Fig. 9.29.  If we do that 
once and only once, then we must have automatically 
produced the associated frequency spectrum. 

This is the principle of the Fourier transform.  Any 
modulation of the amplitude of an oscillation perturbs 
the frequency of that oscillation; it renders it from the 
infinitely narrow spike that defines a continuous 
oscillation at constant frequency, to a spectrum of 
frequencies.  To obtain what the frequency spectrum 
actually is we do the mathematics of the Fourier 
transform. 

The Fourier transform of two extremes has already 
been considered.  The Fourier transform of the 
continuous steady oscillation is a sharp vertical line.  
The Fourier transform of a sharp spike in time is the 
flat frequency spectrum of all frequencies (fig. 9.30). 

The Fourier transform of other amplitude variations 
(and the inverse Fourier transform going from a 
frequency spectrum to an amplitude variation) is 
more complicated and requires the mathematics of the 
Fourier transform to be carried out.  Luckily, even for 
electrical engineers, there are now commercial 
devices which will do the Fourier transform by 
computation, and will do it very rapidly.  Also with 
the advent of cheap computing power, these devices 
are becoming more and more reasonable in cost.  
They are called "Fast Fourier Transform" or FFT 
devices. 
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Figure 9.30 Diagrams showing the result of adding pure tones very close together in frequency.   
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About all the mathematics that I will give here is that 
the Fourier transform of the so-called "Gaussian" 
shape previously referred to is another Gaussian 
shape with an intimate connection between the two 
shapes.  That connection is the width of the two 
shapes.  As already pointed out, the wider one shape 
is, the narrower is the other.  The actual connection is 
that if one takes what is called the  " "  (sigma) of the 
curves (this turns out to be how far you have to go 
away from the maximum to fall to about .605 of the 
maximum) then the product of the two sigmas will be 
1/2 ; 

 

 time frequency  =  
1

2   

 

The sigma of a gaussian is often referred to as the 
uncertainty in the value at the center of the guassian.  
The above equation is therefore often quoted and "the 
product of the uncertainties in frequency and time is 
given by 1/2 ".   

This is another version of the bandwidth theorem.  If 
the manner in which you turn an oscillation on and 
off can be approximated by a Gaussian, then you can 
immediately estimate by how much you have 
broadened the frequency by this act of turning it on 
and off.  The figures that you get for the diagrams in 
Fig 9.30 are shown and, considering the rough way 
the numbers were estimated, show a remarkable 
agreement with the figure of 1/2 . 

Again forgive some more fundamental physics in 
closing.  Modern physics has shown that energy is 
always quantized in units of planks constant times 
frequency. 

 

          E  =  h f 

 

Thus energy is intimately related to the frequency of 
oscillations.  If that is the case then the only way we 
can have a very definite energy is to wait forever.  If 
we try to do anything to the energy of a system, we 
are turning energy on and off and therefore changing 
this frequency. The uncertainty in energy and the 
uncertainty in time will therefore be related by the 
famous Heisenberg uncertainty principle of modern 
physics    

 energy time  =  
h

2   

 

Another point that is important for these notes is 
illustrated by the following thought experiment.  The 
notes of a piano and all their overtones constitute a 
set of oscillations that cover a bandwidth of about 
4000 Hz with a sigma of perhaps about 2000 Hz.  
Such a collection of frequencies would correspond to 
an amplitude of sound being turned on and off with a 
sigma of 1/2  divided by 2000 or about 80 
microseconds.  In other word, the Fourier transform 

of the sounds of the piano is a sound pulse which lasts 
80 millionths of a second!   

Yet everybody knows that if one bangs down on all 
of the keys of a piano at once, one gets more then 60 
millionths of a second of sound. What has happened 
here?  Is the Fourier transform just a mathematical 
abstraction that has little relevance in the real world.? 

What has happened is that we forgot about the phase.  
Sure the Fourier transform gives us the frequency 
spectrum resulting from a given amplitude variation 
with time but it also gives us the exact phase 
relationships between all these frequency 
components.  If we do not preserve these phase 
relationships, we will not get the right amplitude 
variation with time when we do the inverse Fourier 
transform back from the frequency spectrum.  The 
frequency spectrum of an 80 microsecond sound 
pulse will be roughly the same as all the notes on a 
piano played at once but the phase relationships will 
be quite different.  The phase relationships in the 
sound pulse will be tightly governed by the rules 
introduced in the beginning of this chapter. The phase 
relationships between all the frequencies in the piano 
will be random.  Again, this illustrates the importance 
in preserving the phase relationships of all the 
frequencies in any recording.  If they are not, then 
one can turn a sharp transient into a sustained noise 
such as the roar of a piano keyboard with all its keys 
pressed at once. 

Exercises and Discussion Topics 

1. How can two very different oscillations have the 
same frequency spectrum of sound?  

2. Explain why preserving the relative phasing of 
the frequency components of a sound is 
important in reproducing the quality of a sound, 
particularly the attack of musical notes.   

3. What is the difference between the attack of 
percussion musical instruments and that of 
musical instruments that give sustained notes?  
By diagrams of amplitude versus time, illustrate 
the attack of a few representative musical 
instruments.   

4.  What is the Fourier transform?  Where does the 
concept of phase come into this transform?  
Qualitatively, what is the connection between the 
duration of a tone and the frequency spread of 
that tone?  Explain the importance of the Fourier 
transform in understanding sound perception by 
humans.  
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CHAPTER 10

THE ORIGINS OF MUSICAL SOUNDS

The perception of all types of sound is a very important
part of our everyday lives.  Yet for human beings (and
perhaps for some mammals and birds), there is a very
special class of sounds called musical sounds which
seem to be perceived as quite different from the others.
For many people, the perception of these sounds is so
enjoyable that they will engage in a great deal of
playful creation of such sounds or even just in playful
exercise of the perception of such sounds made by
other people.

Just as the playful exercise of perception and motor
skills in sport heightens these skills, so does the
playful exercise of performing and listening to music
heighten the perception skills related to that type of
sound.  This means that people who engage in such
exercises can become highly critical of musical sounds.
Any artificial creation of musical sounds, or any
reproduction of "natural" musical sounds, by electronic
devices, must be very faithful to the nature of these
sounds.  A knowledge of the nature of sounds that are
generally regarded as musical is therefore important to
musicians and recording engineers.

What makes a particular kind of sound musical is a
very difficult question.  It seems that music is
somehow connected with very short interval timing
mechanisms within the nervous system, the same sort
of timing mechanisms that are associated with the
perception of sound direction. Whatever the neural
mechanism involved, the result is that sounds that
contain tones which have frequencies related by simple
numbers will generally be regarded as musical. The
phenomenon is a large part of the subject of
psychoacoustics and is regarded as outside the subject
material of these notes.  Here it will be assumed that
certain sounds are indeed musical and present a
somewhat technical description of how they originate
in so-called "acoustic" arise (as opposed to "electronic"
instruments).

Since antiquity, people have made music with
practically any implement that could be handled.  Again
as an introduction, the simplest possible example, and
probably the oldest in human history, will be
considered; that of the sound produced by blowing into
the neck of a bottle. Such an action can produce a very
pure musical tone, the pitch of which depends on
simply on how much empty space there is in the bottle
and the size of it's neck.  Although known since
antiquity, this device was first analyzed scientifically by
Helmholtz in the mid 19th century and is now called
the Helmholtz Oscillator.

10.1  The Helmholtz Oscillator

If one blows across the opening of a short-necked
bottle with a capacity of about 340 ml, such as the old
standard Canadian beer bottle - the "stubby", which has
a neck of 16 mm inside diameter and about 2.5 cm

long, a pure tone of about 220 Hz (the A below middle
C) can be easily obtained.

The explanation of the source of this sound is fairly
simple.  Suppose, as a starting point, that there was an
underpressure of air in a cavity to which there was a
tube connected to the outside as in fig. 10.1.

Tube
Cavity

Figure 10.1 A schematic diagram of the
Helmholtz oscillator.  It consists simply of a
cavity of undefined shape but a definite volume
connected to the outside by a tube with a definite
cross-sectional area and length.

Air in the tube would be pulled into the cavity.
However, this air has mass and therefore does not
move immediately into the cavity.  The underpressure
of the cavity has to act on it for a period of time to
build up a flow.

After the flow has built up there comes a point where
the underpressure of the cavity will have been relieved
and there will be no more tendency for air to be pushed
into the cavity.  However, this does not mean that no
more air will flow into the cavity.  Rather, it is the flow
rate that will no longer increase. The air that is in the
tube will continue to flow due to its own momentum
and now as this air moves into the cavity it will create
an overpressure.  It is as this overpressure builds up
that the flow will finally stop.

At this point the cavity has an overpressure.  Air will
now start to flow out of the cavity, creating exactly the
reverse of the case when the cavity had an
underpressure.  Eventually the cavity returns to the
negative pressure it had at the start of the sequence.

Considering the energy of the system, the elastic
energy of the overpressure (or underpressure) in the
container is oscillating with the kinetic energy of the air
in the tube.  When the elastic energy is at a maximum
(i.e. the pressure in the container is at a maximum
overpressure or a maximum underpressure) the kinetic
energy in the tube is zero because there is no air flow at
this point. Similarly, when the elastic energy is zero
(i.e. there is no overpressure or underpressure) the
kinetic energy is at a maximum because the air in the
tube is then either flowing into or out of the container
at a maximum rate.
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This analysis, of course, neglects energy losses in the
system.  One such loss is that due to viscous drag in
the air flow through the tube.  A more important loss,
from the point of view of the Helmholtz resonator as a
sound source, is that due to the air flowing out of the
hole of the tube  having to push away the air which is
already outside the tube.  This causes sound energy to
be radiated away from the opening.

A thin walled container with a hole is also a Helmholtz
oscillator.  This is because, from the aerodynamics of
the flow of air through a hole, it is equivalent to a short
pipe.  If the hole is circular, it can be shown to be
equivalent to a pipe of length equal to about 1.7 times
the radius of the hole.

Helmholtz analyzed this system in a way analogous to
that of an oscillating mass on a spring (fig. 10.2).

m

k

Figure 10.2 A schematic diagram of the
elementary mechanical oscillator.  It consists
simply of an object of undefined shape but a
definite mass connected to a spring of a definite
spring constant k.

In this system the oscillation is described by the two
equations for the force in the system.  One of these
equations is that for the spring force;

F  = kx (10.1)

where k is the "spring constant" representing the
stiffness of the spring and x is the stretch of the spring.

The other equation is that for the force on the
accelerating mass;

F  = ma (10.2)

where m  is the oscillating mass and a  is the
acceleration.

Anyone who has taken an elementary course in physics
will have seen the resulting equation for the oscillation
frequency of this system;

f = 
1

2π √⎯ k
m 10.3)

Thus the stiffer the spring, the higher the frequency
and the heavier the mass the lower the frequency.

In the Helmholtz oscillator, the overpressure of the
cavity is analogous to the spring force.  A stretch of the
spring is analogous to a volume of air which has been
pulled out of the cavity.  The relationship between the

pressure in the cavity and the amount of air put into it
can be shown to be as in (10.4) (see appendix).

p = 
Q
CA

(10.4)

In this equation Q is the volume of extra air put into the
cavity (in cubic meters) and CA is a quantity called the
acoustic capacitance,  This acoustic capacitance is
related to the volume V of the cavity by the equation;

CA = 
V
ρc2 (10.5)

where ρ is the density of the air and c is the velocity of
a sound wave in that air. It can be seen that the acoustic
capacitance is an inverse concept to the spring constant
of a mechanical spring.  A large acoustic capacitance
means a large volume flow to reach a given pressure.
A large spring constant means a small stretch to get a
large force from the spring.

(In dealing with loudspeaker design problems, a
concept which is the inverse of the spring constant, and
hence more analogous to acoustic capacitance, is often
used.  This is the "mechanical compliance" which is the
ratio of stretch of a spring to the force the spring
develops.  Thus a large compliance means that a given
force will produce a large stretch to a spring.)

The quantity in the Helmholtz oscillator analogous to
the acceleration of the mass in (10.2) is the rate of
change of the flow of air through the tube.  The
quantity analogous to the mass being accelerated is the
so-called "inertance" of the air in the tube.  The
equation analogous to (10.2) is then

p = M × rate of change of flow (10.6)

where M is the inertance and again p is the pressure, in
this case the overpressure of the cavity which is
causing the flow rate to change.

It can be shown (again see the appendix to this chapter)
that the inertance of the air in a tube is the mass of the
air which is moving divided by the square of the cross-
sectional area of the tube through which it is moving;

M = 
mass of moving air

(cross sectional area)2
(10.7)

For a tube of length L and radius R, the inertance is

M  =  
ρ (L + 1.7 × R)

πR2
(10.8)

In this equation, πR2 is, of course, the cross-sectional
area of the tube and L + 1.7 × R is the effective length
of the air moving through the tube.  The term 1.7 × R is
the length of tube that has already been pointed out to
be equivalent to a circular hole. It comes from the air in
the vicinity of the openings which has to move some
distance from the opening before its velocity slows to
insignificance.
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Completing the analogy is the equation for the
frequency of a Helmholtz resonator;

f = 
1

2π√⎯⎯ 1
CAM (10.9)

( f = 
1

2π√⎯ k
m  )

Putting in the expressions for CA and M , gives a
working equation which predicts the oscillation
frequency of of a Helmholtz oscillator;

f  =  
cR

2 √⎯⎯⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯  πV (L + 1.7 × R)
(10.10)

For an internal volume of 340 ml, and a neck of length
2.5 cm and internal diameter 16 mm, the predicted
frequency of the air oscillation is 214 Hz.

The Helmholtz oscillator is an important part of many
musical instruments, most notably the violin family and
the guitar.  The curly "F" holes in the body of the
violin and the single circular hole in the guitar are
designed to produce this type of oscillation of the air in
the body of the instrument. Its importance here is that it
is the very simplest example of how air can be made to
oscillate at a specific frequency by an interplay of the
energies associated with its pressure and its velocity.

There are, however, many other modes in which air can
be made to oscillate, even in the simple case of an
empty bottle.  If one blows very hard on the type of
bottle described here, one gets a shrill note at about
1500 Hz.  By using compressed air one could get an
even higher, more shrill note at about 2800 Hz.  The
types of motion of the air in the bottle that give rise to
these oscillations will now be considered.

10.2 Standing Waves on a String

Here there will be what at first might appear to be a
digression; a discussion of the modes of vibration of a
stretched string.  This is also one of the musical
instruments of antiquity and could be discussed on its
own merits.  It is introduced here however as a means
to understand the analogous modes of vibration of air
in a container.

The modes of vibration of a stretched string can be
easily seem by vibrating the string at the frequencies
of these modes.  For a string which is stretched and
tied down at the ends they will look like those shown in
fig. 10.3.  The frequencies at which these vibrations
take place are successively integer multiples of the
frequency of the lowest mode (the top mode of the
figure).  Thus the frequency of the second mode is
twice that of the lowest, the frequency of the third mode
is three times that of the lowest and so on.

Figure 10.3 The lowest four modes of
vibration of a stretched string.  The higher
modes are similar but with successively more
nodes (points of no vibration).

It is possible to have a heavy string which is stretched
and not tied down but attached to very light long
strings so that the ends of the heavy string are quite
free to move. The modes of vibration will then be as
shown in fig. 10.4.

Fig. 10.4 The lowest three modes of
vibration of a stretched string free to move at
each end.  The higher modes are similar but with
successively more nodes.

These modes, for the same string under the same
tension as that in figure 10.3 will have the same
frequencies.

The modes if one of the ends is tied down and the
other is free to move are as shown in fig, 10.5.

Fig. 10.5 The lowest three modes of
vibration of a stretched string free to move at one
end but tied down at the other.  The higher
modes are similar but with successively more
nodes.
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In this case the frequencies of the modes will be odd
integer multiples of the lowest frequency mode, the
frequency of this lowest mode for the same string
under the same tension as in the previous cases being
only one-half the frequency of the previous lowest
modes.

The detailed motion in these modes of vibration are
shown in Fig. 10.6. This diagram shows  the motion
for one half-cycle of the third mode of the stretched
string tied down at both ends. It can be seen that
adjacent maxima on either side of a node are always
out of phase with each other.

Figure 10.6 The detailed motion of the string
for the 4th mode of vibration in Fig. 10.3

The modes of vibration of a string shown in fig. 3 to 5
are often referred to as "standing waves".  This is
because they have the appearance of waves that do not
move but oscillate in a standing pattern, the peaks
becoming troughs and back to peaks and the troughs
becoming peaks and back to troughs.

A very important property of these standing waves is
that they all have distinct frequencies.  If their motions
are coupled to the surrounding air then there will be
distinct frequencies of sound waves propagated
through this air.  These distinct frequencies will be
heard as tones and if the frequencies of these tones are
related by integer multiples then they will normally be
regarded as resulting in a musical sound.  Since the
modes of vibration of a stretched string are integer
related (they are in the sequence 1:2:3:4... or 1:3:5:7....)
then coupling the motion of a string to the surrounding
air results in a musical instrument. The stretched string
is indeed on of the first musical instruments invented
by humans.

To understand the modes of vibration of a stretched
string one must understand the physical principles
governing the frequency of the vibration. The general
treatment of this subject which is applicable to all types

of systems involves the solution of the wave equation
in bound systems and will be found in an advanced
text-books in acoustics.  What will be presented here is
an elementary introduction using pictures that should
illustrate more clearly how these standing waves arise.

A standing wave can be produced by two interfering
waves travelling in opposite directions  (see fig. 10.7)

Standing wave pattern

A

B

A

B
A

B
A

B
A
B
A

B
A

B

Figure 10.7 The production of a standing wave
by two equal amplitude travelling waves
travelling in opposite directions.  The standing
wave produced is shown in the top diagram.  The
successive pictures below it show how this
standing wave is produced by movements of the
two travelling waves.  The first picture of this
sequence is for when the  two waves overlap,
producing a result which is twice that of either.
The fourth picture is for when they have moved
just the right amount to cancel.  The final picture
is for when they have moved so that they
reinforce each other in a waveform upside-down
to that of the first picture.

It can be seen by the motions in this picture that the
time for one half-cycle of the standing wave is the time
for motion of the individual travelling waves through
one-half cycle each. Thus the frequency of the standing
wave is just the frequency of the individual travelling
waves from which it is formed.

The frequency of a travelling wave is directly related to
its wavelength by the simple equation f = c/λ where c is
its velocity.  Thus we can get the frequency of a
standing wave from the wavelength of the travelling
waves that would make it.  It is easily seen that this
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wavelength is twice the distance between adjacent
nodes in the standing wave.

The frequencies of the standing waves on a stretched
string of length L held down at both ends, or free at
both ends, are therefore

f  =  
c

2L
   ,  

2c
2L

   , 
3c
2L

   , 
4c
2L

   ,  etc. (10.11)

where c is the velocity of travelling waves on the string.
The frequencies for a string of length L tied down at
one end and free at the other are

f  =  
c

4L
   , 

3c
4L

   , 
5c
4L

   , 
7c
4L

   ,  etc. (10.12)

As pointed out at the beginning of this section, it might
appear as a digression from the subject of the second
mode of vibration of the air in a bottle.  What will be
introduced now is the analogy between the transverse
motion of a stretched string and the motion of air in a
tube.

10.3 Standing Waves in Air in a Tube

The motion of air under the influence of a sound wave
has already been shown in chapter 3.  It is a velocity of
the air in the direction of the wave motion which occurs
in connection with the pressure in the wave.  For the
case of a pure simple harmonic motion the motion will
be as shown in Fig. 10.8.

From this diagram it can be seen that the pressure and
the velocity are in phase.  For a wave travelling to the
left, the velocity diagram would be inverted resulting in
the pressure and the velocity being 180o out of phase if
the velocity is still regarded as being positive toward
the right.

Thus the pressure and velocity diagrams for sound in
open air look very much like the shape of travelling
waves on a stretched string which has no boundaries.
To complete the analogy of standing waves on a string
to the same sort of wave pattern in a column of air,
consider what happens to the sound waves when there
are reflecting boundaries to the wave motion similar to
that of a stretched string which is tied down at both
ends. As an example, consider sound waves in a closed
pipe.   The pattern of vibration analogous to the first
mode of the stretched string is shown in fig. 10.9.

Figure 10.8 The motions involved in a sound
wave in open air.  The regions of compression
can be clearly seen and these regions progress
towards the right for the successive pictures.
The detailed motions of the air can be noted by
comparing one picture with the next.  A vertical
line representing a particular region of air can be
seen to be merely oscillating back and forth in
the direction of the wave motion. (This can be
most clearly seen for the lines at the extremes of
the pictures.)  The heavy lines represent the
pressure on a vertical scale and it can be seen
that these progress to the right in the successive
pictures.  These same lines can also be seen to
represent the velocity of the lines representing
the regions of air; where there is a maximum
concentration of the lines and therefore a
maximum pressure, there is maximum velocity to
the right.  Where there is a minimum
concentration there is maximum air velocity to
the left (in an algebraic sense minimum velocity
to the right).
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Velocity  Patterns Pressure Patterns

Figure 10.9 The motions involved for one half-cycle of  the first standing wave mode of vibration of the air in
a closed pipe.  The vertical lines represent the positions of the air at the instant in time represented by the
diagrams.  Successive diagrams downward represent successive instants in time.  The diagrams are repeated side
by side so that one set can be used to indicate the velocity patterns and the other to indicate the pressure patterns
(both shown as shaded lines on the diagrams).  The diagrams on the bottom give an overview of the velocity and
pressure patterns for a complete cycle.

Velocity  Patterns Pressure Patterns

Figure 10.10 The motions involved for one half-cycle of  the first standing wave mode of vibration of the air in
an open pipe.  The diagrams are laid out as in fig. 10.9.
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Two aspects of these patterns are immediately obvious.
The pattern for the velocity oscillation is analogous to
the oscillation pattern for a stretched string tied down at
both ends but the pattern for the pressure oscillation is
analogous to the oscillation pattern for a stretched
string which is free to move at both ends.  This reversal
of the patterns for pressure and velocity also appears in
the case of an open tube, the diagrams for which are
shown in fig. 10.10.

Finally, the motions of air in a pipe which is closed at
the right end but open at the other is shown in  fig.
10.11. Here it can be seen that the pattern is the same
as that of the left half of the patterns in Fig. 10.10.  A
mirror image of this pattern would occur for a pipe
closed at the left end and open at the right; a pattern
that would be just the right hand half of the patterns of
Fig. 10.10.  This comes about because the oscillation
of the air in the lowest mode of the open pipe involves
no motion at its center.

Velocity Patterns Pressure Patterns

Figure 10.11 The motions in one half-cycle of
the first standing wave mode of vibration of the
air in a pipe which is open at the left but closed
at the right end.

The modes of vibration of the air in a pipe are therefore
very analogous to those of a stretched string and the
simple formulae 10.11 and 10.12 can be used to
calculate their frequencies.  The old standard Canadian
"Stubby" beer bottle approximates a tube closed at
both ends and of length about 13 cm.  The frequency
of the lowest standing wave mode of the air in this
bottle should therefore be about

f = 
c

2L
  =  

340
0.26  =  1308 Hz (10.13)

This explains the shrill higher note that can be obtained
by blowing very hard across the neck of such a bottle.
The still higher note that could be obtained by
compressed air from a nozzle would be the second
standing wave mode of the air in this bottle.

Thus air in an enclosure can vibrate in modes other
then just the simple oscillation of air in and out of a
hole.  From the simple analysis given here where the
modes of oscillation of air in a pipe are taken as
analogous to those of a stretched string, it is apparent
that, in fact, there are practically an infinite number of
such other modes.

However, the analogy between the motion of a
stretched string and that of air in an enclosure does not
show the full richness of the modes of vibration of the
air in an enclosure.  This is because air in an enclosure
is a three dimensional system while the stretched string
is a one-dimensional system.  To consider what this
does to the possibilities of air motion in an enclosure,
first consider the modes of vibration of two-
dimensional systems.

10.4 The Modes of Vibration of Surfaces

Vibrating surfaces are also one of the most primitive
form of devices for producing music.  They are the
basic parts of drums and bells and are essential
components of many more modern instruments such
as the violin.  The modes of vibration of a surface
therefore determine many of the characteristics of the
sound from musical instruments.

Again, we start with the simplest possible example, in
this case that of a flat circular surface.  The modes of
vibration of such a surface will approximate those of
the stretched membrane which typically forms the head
of a drum.

As in the rest of these notes, only a diagrammatical
description will be given.  The full mathematical
description  of the modes of vibration of a circular
surface is rather complicated and is not even given in
some excellent advanced text-books on acoustics but is
left as an exercise in advanced mathematical physics.

The solution of the wave equation for two
dimensional surfaces with circular symmetry
turns out to involve Bessel functions which have
some of the properties and some of the
appearance of trigonometric functions which are,
of course, the solutions of the one-dimensional
system such as the stretched string.  The modes
of vibration of a circular surface will therefore
have a resemblance to those of the stretched
string but there will be features that have no
analogy in the string.

The lowest mode of vibration of a flat circular surface
that is held down around its edge appears very similar
to the lowest mode of a stretched string tied down at its
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ends.  This is a mode in which the center of the surface
undergoes the maximum motion (see fig. 10.12).

Cross-sectional 
View of Motion

Maximum 
displacement 
up

No distortion 
(maximum 
velocity 
downward)

Maximum 
displacement 
down

Figure 10.12 The motions involved for one
half-cycle of  the lowest mode of vibration of a
circular plate held down around its rim.

The next lowest mode of this type is one in which the
center region of the plate moves in the opposite
direction to that of the outer region (shown in fig.
10.13).  This mode has some of the characteristics of
the third mode of the stretched string except that the
distance between the nodal points is not uniform.  Also,
the amplitude of motion of the outer region is not as
great as that of the central region.

There is, nonetheless a mode which is analogous to the
second mode of the string.  It has the appearance
shown in fig. 10.14.  This mode of vibration is,
however, of a different class of symmetry than the
other two already introduced; it is asymmetrical about a
particular diagonal of the plate, the nodal line, whereas
the others are symmetrical about any diagonal.

This opens up a whole new dimension for the modes
of vibration.  There can be modes which have two
perpendicular nodal lines, with adjacent regions of the
plate vibrating out of phase but opposite regions
vibrating in phase as shown in fig. 10.15.

Furthermore, the two classes of modes can be
combined, the lowest member of this combined class
being one in which there is a nodal circle similar to that
for the symmetrical mode but also a diagonal nodal
line.  Fig. 10.16 shows the pattern for two of these
combined modes.

All the modes of the circular plate then form a two-
dimensional array as shown in Fig. 10.17.

Cross-sectional 
View of Motion

Maximum 
displacement 
center down

No distortion 
(maximum 
velocity)

Maximum 
displacement 
center up

Figure 10.13 The motions involved for one half-
cycle of  the second symmetrical mode of vibration
of a circular plate held down around its rim.

Cross-sectional 
View of Motion

Maximum 
displacement right 
side down

No distortion 
(maximum 
velocity)

Maximum 
displacement 
right side up

Figure 10.14 The motions involved for one half-
cycle of  the first asymmetrical mode of vibration of
a circular plate held down around its rim.

Up

UpDown

Down

Figure 10.15 The pattern of the second mode of
vibration with diagonal nodal lines for a circular
plate held down around its rim.
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Figure 10.16 The patterns of two of the modes
of vibration with diagonal and circular nodal lines
for a circular plate held down around its rim.

Fig. 10.17 The patterns of the higher modes of
vibration of a circular plate held down around its
rim.  Only the first 16 are shown of the set which
extends to infinity in each of the symmetry
directions of the diagram.

An equivalent but more restricted set of modes also
exist for a circular plate which is not tied down at its
edge. In this case the symmetries of the motion and
conservation of momentum during the vibration require
that there be at least one nodal circle and an even
number of diagonal nodal lines.

An important characteristic of all of these modes is that,
unlike for the stretched string, there is no simple
numerical relationship to their frequencies.  The tones
which result when these oscillations are coupled to air
will therefore not be of much musical use.  To get
musical tones out of a vibrating plate, it will generally
have to be modified so as to have variable thickness or
variable mass loading over its surface so that some of
the important lower modes of vibration will actually

have frequencies which are close to being related by
simple numbers.  A bell, despite its shape, is essentially
a vibrating surface, the lower modes of which have their
frequencies tuned to musical intervals by adding metal
to or shaving metal from the surface at particular
points. This operation is one that involves a high
degree of experience and craftsmanship. Another
similar surface tuning operation of importance in music
is that of the wood panels that make up the top and
bottom of a violin.

The mathematical treatment of the vibration of surfaces
in typical musical instruments would be enormously
complicated and of very little use in setting up the
correct modes and their frequencies, this setting up
being normally accomplished by trial and error based
on a great deal of experience.  The reason for
introducing the concepts here is that they should lead
to a better understanding of the phenomena of
vibrations in musical instruments and give a new
perspective from which to view the wonderful
experience of the production and perception of musical
sounds.

Another reason for introducing the modes of vibration
of surfaces is to get a better understanding of the cause
of the complexity of the direction patterns of sound
radiated from a typical musical instrument.  The
complexity of the radiation pattern from a surface that
is vibrating as a whole has already been pointed out in
Chapter 5.  In a typical musical instrument for which
the vibration of its surfaces is an important part of the
generation of a musical sound, the surfaces are not
vibrating as a whole but in the various modes that have
been introduced here.  It is to be expected that the
radiation patterns from these modes are even more
complicated than those shown in Chapter 5.

A final reason for introducing the modes of vibration
of a surface is that it can lead to a better understanding
of the modes of vibration of air in an enclosure.  These
modes are another important source of sounds from
musical instruments and, as well, are important in the
generation of sound in a room.  Air in an enclosure is
essentially a three-dimensional system and so to
understand its modes of vibration , one has to extend
the consideration of modes of vibration to three-
dimensions.

10.5 The Modes of Vibration of Air in an
Enclosure

The modes of vibration of three dimensional systems
such as air in an enclosure form an important branch of
study in physics and engineering.  Consequently they
have been extensively analyzed for a variety of
geometries.  Again, as for the vibrating surface, the
simplest possible system to visualize is the one with the
greatest symmetry; the circular disk  for a surface and
the sphere for a volume.

It should not be surprizing that the modes of vibration
of air in a spherical enclosure have similarities to those
of a vibrating disk.  The simplest class of modes have
spherical symmetry. These are modes in which the air
at any point in the system moves radially in and out
from the center (see fig. 10.18).  There is a difference
from the two dimensional case in that all the modes of
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this class have a node at the center. (The air at the
center cannot move in any direction without violating
the spherical symmetry).

Analogous to the modes of the vibrating disk are the
modes of vibration of air in the sphere which have
symmetry about a diametrical plane.  It is perhaps not
surprizing that now, however, there is a third type of
symmetry possible; that about an axis of the sphere.
This opens up another class of modes involving
circular motion about such a symmetry axis.

Lowest 
symmetrical 
mode 

Second 
symmetrical 
mode

Figure 10.18 The patterns of the first two
spherically symmetrical modes of vibration of air
in a spherical enclosure.  All modes have a
velocity node at the center with all modes after
the lowest having intermediate spheres on which
then is a velocity node.

The modes of vibration of a spherically
symmetric system have been analyzed very
thoroughly  in modern physics because of their
importance in understanding the dynamics of the
electron cloud forming an atom.  The solutions
for such a system are expressed in terms of
"spherical harmonics". The dynamics of an
electron around an atomic nucleus are not the
same as those of air in an enclosure but the form
of the solutions are very analogous.  The various
modes of the system are specified by n,  and m
"quantum numbers". Here "n" specifies the
complexity of the vibration pattern and may be
thought of as number of nodal surfaces, axis or
points in the system plus one.  (The electron
cloud in the lowest mode has no nodes.)   may
be thought of as the degree of complexity of the
pattern about a particular plane, the spherically
symmetric modes having  = 0.  m may be
thought of as the degree of complexity  around a
particular axis.

The modes of vibration of air in a sphere have elegant
symmetries which are of relevance to modern physics
but they are not of much relevance to musical
acoustics.  This is because spherical enclosures are not
often used in music, either in instruments or in
auditoria. Of more importance here are the modes of
vibration of air in a rectangular box such as a typical
room.

While a box may be more complicated to visualize than
a sphere, the motions of air in a box are, in fact, easier
to visualize than those in a sphere. The lowest modes
are particularly easy to visualize (see fig. 10.19). They
are just motions parallel to the walls.  For example, the
lowest frequency mode is just motion back and forth
along the longest dimension of the room (usually
regarded as the room length);

l x
ly

l z

Figure 10.19 The motion of air in the three
simplest modes of vibration in a rectangular
enclosure.

Since the dynamics of this motion are the same as for
those in a closed pipe, the frequencies of this motion is
simply c/2Lx where Lx is the room length.

The next lowest mode is motion along the middle
dimension of the room (usually the room width). The
frequency of this oscillation will, of course, be c/2Ly
where Ly  is the room width. There will also be, of
course, a vibration mode in which the air moves along
the shortest dimension of the room (usually the room
height). The frequency of this oscillation will be c/2Lz
where Lz  is the room height.

The type of pressure pattern in the room during these
modes of oscillation is shown in Fig. 10.20. Note that
there is a pressure node in the middle of the room and
that therefore this type of air oscillation will not shown
a pronounced effect on a typical pressure sensitive
microphone placed in the center of the room.

There will, of course, be higher modes along each of
the three dimensions, the frequencies of these higher
modes along any dimension being just integer
multiples of the lowest mode in that dimension.

There are also higher modes with symmetries in two
dimensions. The lowest mode combining motion in the
x and y direction is of this type shown in Fig. 10.21

The motions for the lowest mode combining all three
directions is shown in Fig. 10.22. Again, it can be seen
that there is a three dimensional pattern of symmetries
in the modes of oscillation of the air in the room,
corresponding to the three dimensional nature of the
motion.
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Figure 10.20 The motion of air  for one half of
a cycle of the lowest mode of vibration in a
rectangular enclosure.
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Figure 10.21 The motion of air  for one half of
a cycle of the lowest crossed mode of vibration
in a rectangular enclosure.
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Fig. 10.22 The motion of air  for one half of a
cycle of the lowest mode of vibration in a rectangular
enclosure encompassing all three directions of motion.

The frequencies of all the possible modes of vibration
of air in a rectangular enclosure is given by a rather
simple formula

f = 
c
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where nx, ny and nz refer to the number of pressure
nodal lines in the x, y and z motions respectively.  For
example, the lowest mode of vibration in the system in
the x direction would have nx = 1 but ny and nz = 0.
This mode would be referred to as the (1,0,0) mode.
The lowest node that combines motion in the x and y
direction would have nx and ny = 1  but nz = 0 and
would be referred to as the (1,1,0) mode.  The lowest
mode that would combine all three would be the (1,1,1)
mode.

For the normal room containing the sounds produced
by a musical instrument, the frequencies of the sounds
will correspond to high modes of the room vibrations.
As an example, consider a typical lecture room 13 m
long, 8 m wide and 3 m high in which an instrument is
playing a note of 250 Hz.  The modes of air motion
along the length of the room with frequencies nearest
this note are (19,0,0) and (20,0,0) at 248.5 and
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261.5 Hz respectively (assuming the velocity of sound
to be 340 m/s). The modes in the other directions are
the (0,11,0), (0,12,0,), (0,0,4) and (0,0,5) modes with
frequencies of 233.8, 255, 226.7 and 283.3 Hz
respectively.

An important feature of these modes is that for a
normal room there are usually very many of them in
the range of frequencies important to the pitch of a
musical note. For example, in the room just considered
there would be 69 modes between 245 and 255 Hz.
This means that, in principle, there will be some mode
or modes very near the actual frequency of the tone and
which can be excited by the tone from the instrument.
This gives a completely new way to consider
reverberant sound in a room; it is made up of sound in
the various modes of air vibration in the room.

However, many of the modes of air oscillation involve
motion between the floor and the ceiling.  In fact, of the
69 modes between 245 and 255 Hz, only 13 involve
only motion parallel to the floor and ceiling.  If the
sound absorption of the room is concentrated on the
floor and ceiling, then the only modes that will be
easily driven by the musical instrument will be from
these 13 modes.  Thus there is a possibility that notes
of different frequencies will not be evenly enhanced by
room air vibrations.

Again the need is seen for the sound absorption to be
scattered uniformly throughout the room so that all
modes of room air vibration can take part evenly in the
sound.  By extending the number of possible room air
vibrations in the given frequency interval of 245 to
255 Hz from 13 to 69, there will be a much more even
distribution of the sound energy over the possible
modes.

Another way to introduce more modes of vibration into
a given frequency interval would be to raise the height
of the room.  Taking a room of 12 × 8 × 4.8 m, which
has about the same seating capacity as the above
"lecture" room but now with the recommended
dimension ratios for music of 4:3:1.6, one gets 122
modes of air vibration in the frequency range of 245 to
255 Hz.  Such a room, providing the sound absorption
surfaces are scattered throughout the room, should
provide a much more even distribution of the
reverberant sound than the lecture room.

In can be shown that the number of modes of air
vibration in a given small frequency interval at high
values of n is proportional to the square of the center
frequency of that interval and the volume of the room.
The formula is

ΔN = 
4π
c3  f2 Δf V (10.15)

where ΔN is the number of mode in the frequency
interval Δf, f is the center frequency of the interval and
V is the room volume.  This result is an important one
in physics. Its importance in acoustics is that it shows
the importance of room volume in obtaining a rich
spectrum of modes in room reverberation. It also
shows that the problem of having adequate numbers of
vibration modes occurs mostly for the lower
frequencies.

Another aspect of the modes of air vibration in a room
that is important to the recording engineer is that they
all have pressure nodes somewhere in the room.
Placing a pressure sensitive microphone anywhere in
the room can produce a distortion of the spectrum of
the room modes caused by some of the nodes near a
particular note having pressure nodes at the position of
the microphone.  Placing the microphone very near a
wall will eliminate this possibility for many of the
modes but the only sure place to avoid nodes is to
place the microphone in a corner of the room.  The
richest spectrum of room modes in the reverberant
sound will therefore be obtained by such a microphone
placement.

10.6 Some General Aspects of Standing Waves;
The Concept of Normal Modes

In these notes, standing waves have been introduced as
special, separate ways that systems can oscillate.  How
are such modes related to the general oscillation of
systems at any frequency?

To begin this subject, consider a simple mechanical
system made up of two identical pendula lightly
coupled by a thin rod.  Such a system can be easily
constructed as shown in fig. 10.23 from two 200g
masses, two pieces of string and a soda straw.

200g 200g

Strings looped over 
soda straw 

25 cm

25 mm

Figure 10.23 A simple coupled pendulum made
of two 200g masses, two pieces of string and a
soda straw.  The strings are looped over the soda
straw at about the position shown, the distance of
the soda straw from the top support being the
same for each string.  The soda straw transfers
the motion of one of the pendula to the other.

If one of these pendula is pulled to one side and
released while the other is not disturbed, the initial
motion will be just an oscillation of the moved
pendulum.  However, after about 20 seconds, the
motion of this pendulum will have stopped and the
other pendulum will have picked up the motion of the
first.  After another 20 seconds, the motion will transfer
back to the first.
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This curious behavior is at first a little difficult to
understand.  However, drawing a graph of the motions
will give a clue as to some underlying cause.  Such a
graph is drawn in fig. 10.24.

Figure 10.24 The motions of the two pendula in
Fig. 10.23 when one of the pendula is given an
initial displacement and released. The top diagram
refers to the pendulum given the initial
displacement and the bottom diagram to the other.

It is apparent that there is a beat phenomenon in the
motion of the two pendula.  A beat occurs when there
are two equal amplitude simple harmonic motions of
slightly different frequency.  This means that there are
two simple harmonic motions that are "beating" in this
system.

The two simple harmonic motions that are in this
system are fairly easy to set up.  All that is required for
one of them is to displace both pendula the same
amount before releasing them.  The resulting motion
will be a constant swinging of both pendula, in phase,
at a frequency of about 1 Hz.  The second motion can
be set up by displacing each pendulum the same
amount but in opposite directions before releasing.
The resultant motion will again be steady simple
harmonic motion of both pendula but this time out of
phase and of frequency about 1.05 Hz.

It is relatively easy to see, in passing, how these two
frequencies come about.  For the symmetrical motion,
the length of the pendulum motion is the full length of
the strings.  For the asymmetrical motion, the length of
the pendulum motion is the length of the strings from
the soda straw to the masses.

The beat frequencies of these two types of simple
harmonic motion would be 0.05 Hz or 20 seconds per
beat.  What this implies is that the initial displacement
of only one of the masses is equivalent to putting equal
amounts of these two simple harmonic motions into
each mass and having them beat together.

That this is so can be seen by combining equal
amounts of an initial amplitude of the two simple
harmonic motions (see fig. 10.25).

+ =

Figure 10.25 The input of equal amounts of the
two pure simple harmonic motions of the two
pendula in Fig. 10.21.  It can be seen that this
addition is equivalent to an initial displacement
of only one of them.

This introduces one of the most important concepts in
physics.  The combined motions of the pendula that
resulted in steady simple harmonic motions for each
are called the "normal modes" of the system.  Any
initial set of displacements of the masses can be
decomposed into initial amplitudes and phases of these
two fundamental normal modes.

The importance of this analysis is that, at any time after
the initial set-up, the condition of the system is the
result of the superposition of these two modes.  In
other words, after the set-up and release, the two
normal modes behaved completely independently of
each other.

This, in fact, is why these modes are called "normal".
The word "normal" here does not have the meaning of
"usual" or "expected" but in the mathematical meaning
of "perpendicular" as in the normal to a plane.  Normal
coordinates, such as the x, y and z coordinates in the
usual perpendicular coordinate system, are
mathematically independent.  (In everyday terms,
walking so as to change only your x and y coordinates
doesn't chance your height z.)

Many mechanical systems have normal modes of
oscillation, sometimes hard to identify.  An amusing
example is the Wilberforce Pendulum made up of a
single mass with extended arms and a single spring.
By pulling down the mass and releasing it, a curious
motion is set up in which the initial up and down
motion of the mass translates itself completely into a
spinning motion of the mass and back again (see
fig. 10.26)

Figure 10.24 The motions of the Wilberforce
Pendulum.
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Again, there is obviously some sort of beating motion.
Here it takes some experimentation to find that the
normal modes of this system are a certain amount of
clockwise twist, looking down, with a downward
displacement and another with the same amount of
counterclockwise twist associated with the same
downward motion. To get the amusing beats, these
normal modes are tuned by adjusting the lengths of the
arms on the mass until they are very close in
frequency.  A straight downward pull with no twisting
is then equivalent to putting in equal amounts of the
normal mode with a clockwise twist and the normal
modes with the counterclockwise twist. (A twist to the
right and a twist to the left at the same time is no twist
at all.)

There is another important aspect of normal modes.
The number of normal modes in a system is equal to
the number of degrees of freedom of all the elements
of the system.  In the case of the Wilberforce
pendulum there are two degrees of freedom for the one
mass; an up and down motion and a twisting motion.
Hence there are only two normal modes of vibration.
For the coupled pendula there are two masses.  If the
pendula are allowed to only move in the plane of the
diagram of Fig. 10.21, then there is only one degree of
freedom for each pendulum and so the number of
normal modes is again two.

A string, a plate or a sphere is made up of practically an
infinite number of individual masses, i.e. atoms. There
are therefore, in principle,  almost infinite numbers of
normal modes of oscillation.  The standing waves that
have been considered in this chapter are, in fact, the
normal modes of oscillations of these systems.

 The fact that the standing waves in continuous systems
are normal modes of these systems means that these
modes are independent.  Energy put into these normal
modes at a start-up of a system will therefore stay
locked into each normal mode without transferring
from one to the other.  Each normal mode can be
expected to have its own rate of energy dissipation and
so some of the modes will die more quickly then the
others.

This explains the behavior of many struck musical
instruments such as the piano or the guitar.  The initial
displacement of the string by an impact will correspond
to a certain mixture of normal modes of that string.
Each of these normal modes then decays at its own
rate, in general the higher frequency components most
quickly.  The energy put into the room by these modes
as they decay are the "partials" of the musical tone the
instrument is producing.  The tone of these instruments
therefore starts with a very rich mixture of partials in
which the fundamental is relatively weak and decays
rather quickly into predominantly the fundamental.

It should also be noted that in such struck instruments
the partials have the frequencies of the normal modes.
These frequencies are only harmonics of the
fundamental for the ideal string.  In real strings such as
those of a piano or a guitar there is a finite thickness
and the system becomes a complex three dimensional
one.  The frequencies of the higher modes are then not
exactly harmonics of the fundamental and so the
musical partials of the tones produced are not exactly
harmonics.  This gives the tones a special

characteristic; close enough to being harmonics to be
musically related but far enough off to be more
interesting than pure harmonics.

Exercises and Discussion Topics

1.  Describe the action of a Helmholtz resonator
through one cycle.  In your description of the
action, answer the following questions;

   a)  In what part of the resonator does the air
velocity play a dominant role and in what part does
the pressure play a dominant role?

   b)  What is the analogy to the oscillation of a mass
on a spring?

   c)  What are the two forms of stored energy in the
system and how do each behave in time through
the oscillation?

2. What would be the acoustic capacitance, the
acoustic inertance and the resonating frequency of
the lowest frequency oscillation of a 4 liter wine
jug with a 3 cm long neck of 2 cm diameter?

3. Suppose that all dimensions of a bottle are
doubled.

    a)  By what factor is the acoustic capacitance of
the bottle changed?

    b)  By what factor is the acoustic inertance of the
neck changed?

   c)  By what factor is the Helmholtz resonating
frequency changed?  How is this related to your
answers for parts a) and b)?

4. Describe the motion of air as a sound wave with a
pure tone is passing through it.  What is the
relative phase of the pressure oscillation and the
velocity oscillation? What changes between
pressure and velocity when a wave goes in the
opposite direction?  Distinguish clearly between
the actual air velocity and the wave velocity of the
sound.

5. Describe the motion of air in the lowest two
modes of vibration in a closed pipe (use sketches
as much as possible to save words in your
descriptions.) What is the relative phase of the
pressure oscillation and the velocity oscillation in
different parts of the pipe? What changes between
pressure and velocity as one looks at different
parts of the pipe?

6. Describe the general features of the normal modes
of vibration of two and three dimensional systems
and why one would expect the radiation patterns
of these modes from typical musical instruments
to be very complex.
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7. Discuss room reverberation as being made up of
the normal modes of vibration of a room and their
decay after the sound source has been turned off.

8. What would be lowest frequency normal mode in
a room which was 10 meters wide by 15 meters
long by 4 meters high?  What would be the next
five frequencies?

    b) Where should you place a high impedance
microphone to pick up all the normal modes of
room resonance that may be in a reverberant
sound?  Why?  What type of modes would you
miss by placing a microphone in the exact center
of the room?

9. What are the two normal modes of the simple two
coupled pendula oscillator?  How is it that these
modes can be said to each be normal?  How is the
simple movement to one side and release of one of
the pendula described in terms of these two
normal modes?

10. In what sense are the normal modes of oscillation
of a system "normal"?  Of what significance are
the normal modes in describing any arbitrary
oscillation of a system due to some driving force.
What importance do the normal modes have in
how the vibration energy of a system is
dissipated?

11. Define harmonics, musical partials and normal
modes of oscillation.  Point out clearly how any
one of these may not be equivalent to another and
discuss their importance in music in general.

Answers

2) 2.82 x 10-8 m4s2/kg, 179.6 kg/m4, 70 Hz; 3) a)
x8,b) x1/2, c) 1/2 = √⎯⎯⎯⎯⎯⎯⎯⎯⎯ 1/(8 x 1/2); 8) (1,0,0) 11.33Hz,
(0,1,0) 17 Hz, (1,1,0) 20.43 Hz, (2,0,0) 22.66 Hz (2,1,0)
28.33 Hz

APPENDIX

The following is a short derivation of the equations of
the Helmholtz oscillator.  Consider a cylinder of gas of
density ρ , length  L  and cross-sectional area A.

A

L

The mass of this gas will be the density times the
volume;

m = ρLA (A10.1)

The force on this gas by a pressure  on one of its end
faces is just p times A, giving an equation;

F   = ma   ;  pA =  ρLA a (A10.2)

or

p   = ρL a (A10.3)

The acceleration in this equation can be translated into
a rate of change of volume flow rate by noting that the
volume flow rate is the velocity of the air multiplied by
its cross-sectional area.  Thus the rate of change of this
flow rate is the cross-sectional area multiplied by the
rate of change of velocity.  The rate of change of
velocity is , of course, the acceleration.  Thus

A a = Rate of change of flow (A10.4)

Rewriting the equation in terms of p, M and rate of
change of flow gives

p =  ρL × Rate of change of flow
A (A10.5)

On the other hand

p =  M × Rate of change of flow (A10.6)

Therefore

M =  
ρL
A (A10.7)
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To get the other equation for the Helmholtz oscillator
(that dealing with  the overpressure for a given flow
input to a container),  use the equation for the adiabatic
compressibility of a gas;

pVγ = Constant (A10.8)

From this, using simple calculus it can be shown that

dp
po

 = -γ 
dV
V (A10.9)

dp = − po γ 
dV
V (A10.10)

where po is the normal atmospheric pressure on the gas
in the container and dp  is the excess pressure
associated with the change in volume dV.  This is the
pressure that would be required to reduce a volume of
gas V by dV which would be equivalent to bringing an
outside volume of gas dV and putting it into a fixed
container of volume V.  Expressing this quantity of gas
as Q gives;

dp =  
po γ
V  Q (A10.11)

The pressure involved in the motion of the air is the dp
of this equation.  Putting this as the sound pressure p
gives

p =  
po γ
V  Q (A10.12)

On the other hand, 

p = 
Q
CA

(A10.13)

Therefore

CA = 
V
γpo

(A10.14)

Using the relationship giving the velocity of sound in
air;

c = √⎯ γpo
ρ  (A10.15)

gives the final form for the acoustic capacitance of a
volume of air;

CA = 
V
ρc2 (A10.16)
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CHAPTER 11

THE GENERATION OF MUSICAL SOUNDS

The normal modes of vibration in a musical instrument
are the origins of musical sounds in that instrument.
The frequencies of these normal modes and their
relative strengths determine the timbre of the notes
produced by the instrument and their patterns
determine the radiative properties of the sound from the
instrument.

However, a musical instrument left to itself is quiet; it's
normal modes of vibration merely represent the
possibility of producing music.  Music is generated
when this instrument is manipulated so as to generate a
particular set of it's normal modes.  The notes must
grow from nothing to a level sufficient to be heard as
component parts of the music.

The nature of the growth of the sound for notes from a
particular instrument, a property called the "attack" of
the notes, is a very important characteristic of the
instrument.  It is particularly important in identifying a
particular instrument as the source.  Demonstration
recordings in which the initial 50 ms of the notes have
been removed show the importance of preserving the
attack; in such recordings the instruments are almost
unidentifiable. Also, since the normal modes of
oscillation in a typical musical instrument grow to full
power in less time than it takes for the room
reverberation modes to grow to full power, most of
information concerning how the modes develop is in
the direct sound and the first few room reflections.

This is yet another reason why faithful reproduction of
the direct sound is very important  in a recording. How
the normal modes of an instrument develop is therefore
an important consideration in recording engineering.

The methods of exciting the normal modes of a system
can be usefully divided into three basic classes;
resonance, impulse and feedback.  These will each be
considered in turn with an overview at the end of how
they all interrelate in musical instruments.

11.1  The Excitation of Normal Modes by
Resonance.

One of the simplest ways to excite a normal mode of
vibration is by resonance.  This is the process by which
a system with a normal mode of a particular frequency
is excited by vibrating  the system with an oscillating
external force at or near that frequency.  This is an
important phenomenon in many musical instruments,
an example being the string instruments in which the
Helmholtz oscillator formed by the box of the
instrument and its holes is excited in resonance by the
strings of the instrument.

To examine the basics of excitation by this mechanism,
consider again the Helmholtz oscillator formed by the
old-fashioned Canadian beer-bottle, the "stubby".
This oscillator can be resonated by attaching a small
loudspeaker to its bottom with modeling clay and the
resonance can be observed by a small capacitance
microphone lowered into the bottle (see fig. 11.1).

When the output of an amplifier for a pure tone is fed
into the small speaker in this set-up and the output of
the microphone is displayed on an oscilloscope a
pronounced increase in the height of the displayed
waveform is seen when the tone generator hits the
frequency of the Helmholtz oscillation.  For the
standard "stubby" beer bottle, this frequency will be
216 Hz.

Above this frequency the waveform sharply diminishes
but as the frequency is increased there will also be
pronounced peaks at 1496, 2860, 3380, 3750 and 3950
Hz.  These frequencies, together with the Helmholtz
frequency, are the normal mode frequencies of this
system.

Microphone

Loudspeaker

165 mm

Figure 11.1  A system for investigating the
normal modes of air in a bottle by resonance.
The microphone output is led to a preamplifier
the output of which is displayed on an
oscilloscope.

In addition to being used to detect the response of the
system to different frequencies of a driving force, the
microphone can be used to investigate the vibration
pattern of a particular mode at its resonance.  Thus at
resonance on the Helmholtz frequency the microphone
shows practically the same response as it is moved
anywhere throughout the interior of the bottle.  This is
to be expected for the Helmholtz oscillation since it is
an assumption of the simple model of the oscillation
presented in Chapter 10 that the air entering the bottle
through the neck builds up a uniform pressure inside
the bottle.
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Another important feature of resonance can be seen by
noting the sound pressure inside the bottle compared to
that immediately outside it at the opening.  In the set-up
used here the sound just outside the bottle at resonance
cannot even be detected by the oscilloscope,  indicating
that only a small fraction of the energy stored in the
resonance is radiated away from the system in any  one
oscillation of the system.  This can be seen more
dramatically by observing the sound pressure inside
the bottle when the Helmholtz oscillation is exciting by
blowing across the neck.  When there is only a gentle
sound outside the bottle due to this oscillation, the
sound pressure inside the bottle is seen to overload the
microphone.  Since this microphone-preamplifier
combination is designed to operate at up to about
120 dB, this means that the sound pressure inside the
bottle as a result of the gentle blowing is ear-shattering.

However, at the resonance at 1496 Hz the microphone
shows a maximum response at the bottom and at the
top of the bottle but almost no response at all when it is
exactly half-way in the bottle.  Looking at the
waveform carefully with the oscilloscope triggered on a
synchronization pulse from the signal generator, it can
be seen that the pressure at the bottom of the bottle is
180o out of phase with that at the top of the bottle. This
is the response to be expected for a "half-wave"
resonance in the bottle since a capacitance microphone
responds to the sound pressure rather than the sound
air velocity and the sound pressure has a node in the
center of a closed pipe for the half-wave.   The probing
of the resonance with the microphone therefore proves
that the mode at 1496 is the "half-wave" mode and that
the hole in the bottle is not large enough for the bottle
to be regarded as an "open-ended" pipe.

Waveforms Pressure
pattern

Figure 11.2 The pattern of pressure
oscillations in the bottle shown in Fig. 11.1
when the 1496 Hz mode is excited.

It is perhaps interesting to note that the half-wave
resonance for a closed pipe of 14 cm length
(approximately the length of the interior of the bottle)
would be about 1230 Hz, indicating that the model of
the bottle as a closed pipe is only very approximate.

It is also perhaps interesting to note that while the
higher normal modes are being excited by resonance,
the simultaneous excitation of the Helmholtz oscillation
by the background noise in the room can be seen  as a
216 Hz ripple on the higher frequency mode.  This
again shows the independent character of the normal
modes; the excitation of one by resonance has no effect
on the possibility of exciting another at the same time.

For the resonance at 2860 there is seen to be nulls in
the pressure at two depths in the bottle, indicating a
"full wave" mode.   For the resonance at 3380 Hz there
is seen to be a null in the response anywhere along the
axis of the bottle but a maximum response at any depth
along the inside of the wall indicating a cross mode of
oscillation.

While excitation by resonance is a very good way to
detect the normal modes of a system and to determine
their frequencies and vibration patterns, what is of
interest here is how a normal mode grows when from
excited from an initially quiet state by resonance.

11.2  The Growth of Normal Modes when Excited
by Resonance.

A familiar example of resonance which occurs on a
time scale such that the growth can be easily observed
is that of an adult pushing a child in a swing by a
sequence of small pushes in synchronism with the
child's motion.  Gentle pushes will slowly build up an
amplitude of swinging to a level determined by the
adult as being appropriate; the stronger the pushes, the
faster the swinging motion develops and the higher the
eventual degree of motion.

In the case of resonance sound in music, the rate of
growth of the resonance is  important. The advantage
of using an oscilloscope to probe the sound level of a
normal mode is that the display is so fast that the
growth of the resonance oscillation can still be
observed.  In the case of the Helmholtz resonance of
the system shown in Fig. 11.1, it will be seen to be that
shown in Fig. 11.3.  This picture is obtained by
triggering the oscilloscope display on the start of the
signal in the bottle.

− Full ht.

Full ht.

Time - sec.
0 0.1 0.2 0.3 0.4

Figure 11.3 The growth of the Helmholtz
oscillation by resonance in the bottle of Fig. 11.1.
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This is seen to be like the saturation curve for the
growth of room reverberation studied in Chapter 4.  If
indeed it is similar to the case for room reverberation
then there will be an exponential decay with a particular
half-life after the source of the sound has been turned
off. This can be checked by timing a shut -off of the
tone generator with the oscilloscope display so that the
decay of the oscillation can be seen (see Fig. 11.4).

− Full ht. t     =  0.05 s
1/2

Full ht.

1/2 ht.

−1/2 ht

Time - sec.
0 0.1 0.2

Figure 11.4 The decay of a Helmholtz
oscillation excited by resonance in the bottle
shown in Fig. 11.1 after the tone generator has
been shut off.

It appears that the decay is indeed exponential with a
"half-life" of about 75 ms. The half-live for such
decays does not depend on the sound level before the
decay starts.  This in turn means that the time it takes
for a sound to reach a certain fraction of its final level
will not depend on the strength of the excitation.  All
that a higher excitation power accomplishes is a higher
excitation level.

11.3  The Oscillation Amplitude of Normal
Modes when Excited by Resonance.

The actual amplitude that is reached in the excitation of
a normal mode of oscillation by an oscillating driving
force with a frequency near the frequency of that mode
is an important subject in engineering.  In engineering
the object is often opposite to that of music, the
purpose being to prevent an oscillation from occurring
rather than to deliberately try to generate one.  For
example, a wind-created oscillating driving force
resonating with a normal mode of torsional oscillation
destroyed the famous Tacoma suspension bridge in
Washington state shortly after it was opened to the
public. A long freight train, such as in western Canada,
can develop dangerous longitudinal waves if an
inexperienced engineer applies an oscillating engine
force. For this reason, the physics of driven oscillators
can be found in any intermediate text in mechanics for
physics or engineering.

Again, the purpose of these notes is not to present the
underlying mathematics of the phenomenon but to give
the results in as understandable a form as possible for
someone being introduced to the phenomenon.  (An

outline of the mathematics is given in the appendix to
this chapter.)

Also, as in the rest of these notes, the starting point is
the simplest possible example.  Here that example is a
mass on a spring, a system that has only one mode of
oscillation.  Consider what happens as this system is
shaken by an oscillating force of constant amplitude
but at a successively increasing frequency.  To take a
concrete example, a mass hung on a vertical spring can
be given such a force by moving the point of support
up and down by hand at a fixed amount at various
frequencies  (see Fig. 11.5).
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Frequency of Force Oscillation

Fig 11.5 A set-up which will apply a constant
amplitude force of varying frequency to a simple
oscillating system.  The hand is moved up and down
with the same amplitude of motion at different
frequencies.  Since the force applied to a spring is
proportional to its stretch, the applied force due to the
hand motion is also of constant amplitude.  The
resonance curve that would result is shown on the
right.  For a typical mass on a spring, the hand
movement to get the mass to move up and down
through 20 cm has to be only about one millimeter.

An important result of the physics of such a system is
that, if the change of the frequency is carried out very
slowly, there will be a steady vibration of the mass at
the frequency of oscillation of the force (not the natural
frequency of the oscillator itself.)  Also, the amplitude
of this steady oscillation will change with the frequency
of the force; at very low and very high frequencies it
will be small but at the natural frequency of the
oscillator it will be very large.

When a system with a natural oscillation is vibrated at
the frequency of that natural oscillation, the system and
the driving force are said to be in "resonance" and the
resulting vibration of the system is at a maximum for
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that force. The actual amplitude at resonance will, of
course, depend on the magnitude of the oscillating
force but it will also depend on the frictional forces
resisting the motion.  The higher the friction, the less
will be the amplitude of vibration at resonance.  In the
example of the child on a swing, if the supports for the
swing ropes are rusty, it will take a larger oscillating
force to get a desired amplitude of swing.

One of the most common types of frictional force
encountered in oscillators is that in which the frictional
force is proportional to the speed.  This is the type of
frictional force involved in movement through air or
water at moderate speeds and is usually termed
"viscosity".  It is also the type of force encountered by
an electrical charge moving through a typical
conductor.  For such a frictional force, the amplitude of
an oscillator at resonance will be proportional to the
"resistance" of the system where this resistance is
defined as

r = 
Force

Velocity (11.1)

In the case of electricity, the resistance is defined as the
voltage divided by the electrical current.  Thus electrical
voltage is analogous to  mechanical force and electrical
current is analogous to mechanical velocity.

Turning to the specific example of a mass on a spring,
if the mass is suspended in air a very small oscillating
force will cause a very large motion at resonance.  In
fact, it will be very difficult to achieve a steady state
oscillation at resonance; the oscillation will continue to
grow until it is so violent that the limits of allowable
motion of the mass will be reached. If, however, the
mass is immersed in water, the motion at resonance will
be much more restrained and if it is immersed in thick
oil it will be still more restrained.  Typical behaviors at
resonance will be as shown in Fig. 11.6.

The mathematical relationship of the amplitude of a
driven oscillator to the dynamics of its motion is given
in the appendix.  Here only some of the features of the
results will be described.

11.4  The Q of Oscillators

A common method for expressing the amplitude gain
of an oscillator at resonance is by it's "Q" value where
Q refers to the "Quality" of an oscillator.  There are
several equivalent ways to define Q.  One of the most
intuitive is that of the amplitude of the oscillation at
resonance for a given amplitude of driving force.

11.4.1  Relationship of Q to Amplitude at Resonance

Consider an oscillation which when driven by an
oscillating force at very low frequency compared to its
natural oscillation frequency reaches an amplitude of
oscillation of Alow.  If an oscillating force of the same
amplitude but at the resonant frequency results in an
amplitude Ao then Q may be defined as

Q = 
Ao

Alow
(11.2)
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Figure 11.6 The steady-state amplitude of
vibration of a mass on a spring at different
driving force frequencies for different
environments of the mass.  The top curve is for
air, the middle for water and the lower for thick
oil.  Alow is the amplitude of oscillation that is
achieved for very low driving frequencies. The
curve for the mass in air would reach a peak of
about 100 Alow and would have a separation of
only 0.06 Hz between the low and high
frequency points that resulted in an amplitude of
70 Alow.

For the examples in Fig. 11.6, the Q for the mass in oil
would be about 3, for the mass in water about 6 and for
the mass about 100.  The Q of oscillating systems
involved in the mechanical generation of musical tones
will generally be in the range of 10 to several hundred.

11.4.2 Relationship of Q to Width of the Resonance
Curve

There is, however, an equivalent definition of Q which
generally allows an easier experimental determination
of its value.  This is related to measurements taken only
near the resonance itself.  It turns out to be of particular
importance when there is more than one mode of
oscillation of a system where the amplitude at low
driving frequencies cannot be related to any one
particular mode.

This definition of Q is related to the "width" of the
resonance curve.  It can be seen from the diagrams in
Fig. 11.6 that for heights on either side of the
resonance that are at the same fraction of the resonance
height, the frequency gap is greater for the lower Q
systems.   This effect can be expressed quantitatively
by noting the frequency interval between two points on
a horizontal line drawn through the curves at some
arbitrary fraction of the peak height and referring to
this gap as the resonance "width".

The actual fraction of the peak height taken for
defining Q by a resonance width is 1/√2 or about 70%.
For the curves of Fig. 11.6 the resonance widths so
defined are about 2 Hz for the mass in oil, 1 Hz for the
mass in water and 0.06 Hz for the mass in air.
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For the cases of the mass in oil and in air the Q can be
determined by noting the relative heights of the
resonance and the amplitude at low frequency (Alow).
These are seen to be 3 and 6 respectively. For these
cases, at least, Q is related to the resonance widths by
the simple formula

Q = 
fo
Δf (11.3)

where fo is the resonance frequency (6 Hz) and Δf is
the resonance width.

This is, in fact, the accepted definition of Q in terms of
resonance width. The particular fraction of resonance
amplitude taken to define the resonance width comes
from energy considerations. The energy of an
oscillation is reduced to 1/2 when the amplitude is
reduced to 1/√2.  The "A = 1√2" points are therefore
the "E = 1/2" points.   If the oscillation is connected
with the generation of a sound, then the intensity will
usually be directly related to the energy of the oscillator
and so the "E = 1/2" frequencies will become the
"minus 3 db" frequencies.  In electrical engineering the
frequency interval between the two "minus 3 db" points
in the response of a resonating system is often called
the "Bandwidth" of the oscillator .

 The determining of the Q  of an oscillator by
measuring the resonance frequency and the frequency
interval between the "1/√2" points is equivalent to the
determination by measuring the amplitude at resonance
and the amplitude at low frequencies.  This removes the
necessity of making sure that the amplitude of the
driving force on an oscillator is the same for very low
frequencies and for resonance (usually a difficult task
for such a large frequency range) and is therefore
usually a much more convenient method for
determining the Q of an oscillator.  Also, as pointed out
above, it can be used when there is more than one mode
of oscillation of a system.

As an example of the use of resonance width to
determine the Q  of a system consider again the
Helmholtz oscillator of Fig. 11.1.  Careful tuning of
the tone generator shows that the minus 3 dB points
are at 214 and 218 Hz.  From this and (11.3) the Q of
the oscillation is 54.

The effect the height of the resonance for a given
driving force when the Q of the resonance is altered
can be shown by placing a small sliver of thin cloth
across the opening of the bottle.  The effect of this is to
lower the resonance frequency a little to 213 Hz but,
more significantly, to lower the height at resonance by
about 50%.  In addition, the minus 3 dB points are now
seen to be 209 and 217 Hz for a resonance width of 8
Hz.  The Q of the oscillation is therefore 27, or about
half that for the unimpeded opening.  Thus it appears
that for a given driving force the amplitude at resonance
is proportional to the Q of the resonance.

11.4.3 Relationship of Q to  Rate of Energy Loss of an
Oscillator

It may be seen from the above that the Q  of an
oscillator is rather closely related to energy loss.  The
motion of the air through and around the small sliver of

cloth in the previous example takes more energy per
cycle than when the cloth was not there.   It turns out
that the same Q as defined by the ratio of amplitude at
resonance to the amplitude at low frequencies or the
ratio of the resonance frequency to the bandwidth can
be given yet another equivalent definition;

 Q = 2π × 
Energy stored in oscillator

Energy lost in one cycle  (11.4)

While this form of the definition of Q does not have
the same direct and intuitive connection as the others to
the nature of the resonance curve, it does have a more
direct connection to the basic dynamics of the
oscillatory motion and is therefore usually regarded as
the "fundamental" definition of Q.  An idea of its
importance may be obtained by noting that the power
(P) put into an oscillation is given by

P = Energy loss per cycle × frequency (11.5)

If the system is at resonance, then the frequency is fo
and by rearranging the equation for Q one gets the
energy stored in the system as

E = 
Q

2πfo
  × P (11.6)

The energy stored in an oscillator at resonance is
therefore proportional to the Q and the power and is
inversely proportional to the frequency of the
resonance.

The importance of this use of Q can perhaps most
easily be seen in the decay of an oscillation once all
driving forces have been removed.  Such a decay is the
exponential one pictured in  Fig. 11.4.  It can be shown
that the half-life of an exponential decay of an
oscillator is directly connected to the Q  of the
oscillator.  It turns out that the time constant (time for
amplitude to decay to 1/e of it's initial value) is Q/πfo
and this is related to the half-life by

t1/2 Amplitude = 0.693 τAmplitude = 
0.693
πfo

 × Q  (11.7)

(For a derivation of this equation using differential
calculus see the Appendix to this chapter.)

Thus the half life of the Helmholtz resonator with a Q
of 54 should be 56 ms.  This is indeed about the value
that was observed for the decay shown in Fig. 11.4.

The half-life for the energy will be half that of the
amplitude.  This is because the energy is proportional
to the square of the amplitude and so the energy goes
through two half-lives (to 1/4) while the amplitude has
gone through just one.  The equation for the energy
half-life and lift-time is therefore;

t1/2 Energy = 0.693 τEnergy = 
0.693
2πfo

 × Q  (11.8)

This is perhaps the most intuitive idea of all for the
concept of the Q of the oscillator; it is directly related
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to the half-life of an oscillation once all driving forces
have been removed.

The other factor in the half-life of an oscillation is the
frequency.  It can be seen that for two oscillations of
the same Q , the half-life of the higher frequency
oscillation will be less than that of the lower frequency
one.  This is, in fact, a common property of musical
instruments; higher frequency oscillations tend to die
away more quickly than lower frequency ones.

11.4.4  Relationship of Q to the Growth of an
Oscillation

The energy concept applied to the Q of an oscillator
also explains the growth of an oscillation which is
being driven by resonance.  If an oscillating system is
driven by an oscillating force at resonance, the energy
of the oscillation of the system will be seen to grow as
shown in Fig. 11.7
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Figure 11.7 The growth of a resonant
oscillation due to a constant amplitude driving
force.  The curve will be an inverted exponential
curve, called the "saturation" curve.  Here half-
life refers to the time it takes for a halving of the
difference from the final saturation level.

Again, this type of growth was considered in Chapter 3
in the growth of room reverberation. Repeating the
ideas in that chapter, it can be seen that the curve is just
an up-side down version of the exponential decay curve
where the exponential decay is now the decay of the
difference between the oscillation energy and its final
value.  This curve is another very common one in
science and is often referred to as a "saturation" curve.
The concept of half-life here refers to the time it takes
for the difference from the final "saturation" value to
decrease by half.

The half-life, and hence the "time constant", of the
saturation curve for the energy of a driven oscillator is
therefore the same as that for the exponential energy
decay curve that results when the driving force is
turned off. (This is proven using differential calculus in
the Appendix to this chapter.) Thus

t1/2 Energy (Saturation) = 0.693 τEnergy (Saturation)

= 
0.693
2πfo  × Q (11.14)

The time it takes for a driven oscillator to reach 1/2 of
its final energy is important in acoustics.  It is, of

course, the time it takes for the sound to reach to within
3 db of its final level.  For a Q of about 250 and a
frequency of 250 Hz, it can be seen that this will be
about 0.1 seconds.

It is important to note that the time it takes for a sound
to reach its −3db point is proportional to the Q of an
oscillator.  Oscillators with very high Q 's at low
frequencies are therefore not very useful as musical
instruments because of the perceptible time it would
take for their sounds to develop.

It might seem strange that high Q, or high quality
oscillators take longer for their sounds to develop than
do low Q oscillators.  This is because, for the same
input power, they develop much more energy than do
the low quality oscillators and so it takes longer for this
energy to develop.

11.4.5  The Growth of an Oscillation Driven off-
Resonance

In many cases in instruments an oscillation created in
one part of an instrument may drive a normal mode but
not necessarily exactly in resonance.  An example
which will be discussed later in this chapter is when a
fundamental vibration with a strong set of harmonics
(such as the vibration of the reed of an oboe) has a
harmonic which is close to, but not exactly that of one
of the higher modes of the instrument.  The final
steady-state of such a system has already been
discussed; it is an oscillation with a steady amplitude,
the amplitude being reduced from that at a resonance
following the sort of resonance curves shown in
Fig. 11.6.  However, what is the growth pattern of the
sound of such a driven system?

An outline of the mathematics is given in the appendix
and only a few simple statements about the result will
be given here.  The amplitude of a simple oscillator
driven off-resonance will grow as shown in Fig. 11.8.
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Figure  11.8 The growth of oscillation in a
system driven off resonance by a constant
amplitude driving force.  The curve will be the
saturation curve for the oscillation leading to the
final steady-state oscillation at the driving force
frequency but modulated in a beating pattern with
its natural oscillation frequency. The beating dies
away with the same time-constant as that for the
decay of amplitude of the oscillator when it is left
alone after it has been excited.
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The curve will be the saturation curve for the oscillation
leading to the final steady-state oscillation at the driving
force frequency but modulated by a beating with its
natural oscillation frequency.  The interval between
amplitude maxima will therefore be the reciprocal of
the difference between the driving frequency and the
natural frequency of the oscillator.  For example, if the
driving frequency is 252 Hz and the natural frequency
is 250 Hz, then the interval between beat maxima will
be 1/2 sec.

The beating pattern dies away with the same time-
constant as that for the decay of amplitude of the
oscillator when it is left alone after it has been excited
(τ = Q/2πfo).  If the 250 Hz system being "resonated"
has a Q of 1000 then the decay time constant will be
about 0.6 seconds.

Again one can see the undesirability as musical
instruments of systems with very high Q's.  Such
systems could have decay times of the beating from
slightly off-resonance excitation which would extend to
seconds.  Such a wavering, uncertain development of a
musical tone would not be desirable.

11.5  Exciting a Multi-Mode System by Resonance

The concepts of resonance and Q of an oscillation are
easily extended to more complicated systems with
more than one degree of freedom of motion.  Here the
concept of normal modes, introduced in the previous
chapter, becomes very important.  A normal mode of
oscillation of a system is one in which all elements of
the system are oscillating at the same frequency and in
phase (or 180o out of phase, which is in phase with
negative amplitude).  Therefore it is possible for a
driving force applied at one point in the system to drive
all the elements in the system in resonance.  The
individual elements of the system may all have different
amplitudes of motion but for any one normal mode of
the system will have a definite amplitude for any given
application of the driving force.  Plotting the response
of the system for different driving force frequencies
will therefore give a resonance at each of the normal
mode frequencies.

A specific example of such a system would be a short
section of pipe as shown in Fig. 11.9 closed at the
bottom end and open at the top and driven by a small
speaker placed at the bottom.  For a pipe with the
dimensions shown, resonances will occur at 178, 450
and 750 Hz. These resonances will be on the three
lowest normal modes of the system, corresponding in
the ideal open-closed pipe model to the "1/4 wave"
fundamental, and the next two modes at three and five
times the frequency frequency.  That they are these
types of modes can be seen by lowering the
microphone into the pipe and noting the changes in the
sound pressure on the microphone for each of the
modes.  It will be seen that when the speaker is
emitting a tone of 178 Hz, the sound pressure will
increase considerably as the microphone enters the
pipe and will reach a maximum at the very bottom of
the pipe.  For the 450 Hz tone, the pressure will
increase as the microphone enters the pipe but will then
decrease and come to a sharp minimum with the
microphone about 22 cm from the bottom.  Thus this

mode exhibits the characteristics of the "3/4 wave"
resonance of an ideal pipe.
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Figure 11.9 The response to a driving force of a
typical system with a number of normal modes at
various frequencies. The response is measured in
terms of the sound pressure registered by the
microphone placed near the open end of the pipe
for the frequencies of pure tones played in the
speaker.  For the system shown, the resonances
occur at 178, 450 and 750 Hz.

As pointed out in the previous chapter, each of these
normal modes is independent.  This also means that
they will not only have distinct frequencies but also
distinct Q values, the Q values being determined by
how effectively the motions are coupled to energy
dissipating processes.  As an example, in the piano
there appear to be two modes of vibration involving
motions parallel to the sounding board and
perpendicular to the sounding board.  The motion
parallel to the sounding board does not transfer energy
as quickly to the board, and hence into the room, as
does the motion perpendicular to the sounding board.
The independent beating sound in each of the various
harmonics that is characteristic of a piano tone is
related to this phenomenon (see "The Coupled
Motions of Piano Strings", G. Weinreich, Scientific
American  240 (1), 118-127)

The results for the pipe in Fig. 11.9 show that it is not
very well approximated by the model of a simple 1/4
wave linear system; its mode frequencies are not in the
simple ratio 1:3:5 etc.  This is because the open end of
the pipe is not a simple termination of the pipe at no
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sound pressure.  There is indeed sound pressure at the
open end of the pipe or no sound would be radiated
from the pipe into the room.

The detailed mathematical solution in three dimensions
of even this simple geometry is very complicated and
usually not worth-while.  The normal modes of
systems are determined empirically by a scan of the
resonances with a variable frequency driving force.

11.6  The Excitation of Normal Modes by Impulse

11.6.1  The Excitation of Normal Modes by a Single
Impulse

In the previous chapter, normal modes of oscillation of
a system were introduced as properties of the system

which could be set up at the beginning by a proper
release of a system.  In the case of the two coupled
pendula, releasing the pendula with identical
displacements to the one side set up one of the modes
and releasing them with equal but opposite
displacements set up the other.  Giving only one an
initial displacement resulted in both normal modes
being introduced by equal amounts simultaneously and
it was stated that any initial condition of the system was
equivalent to a particular combination of the two
modes.  Here this concept will be extended to much
more general systems.

As examples of more general systems, consider a long
heavy rod, a rectangular plate and a circular disk (see
Fig. 11.10).  All can be suspended by threads so that
they can be relatively free to vibrate in their respective
normal modes.
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Figure 11.10 Three systems with normal modes that can be investigated by delivering impulses.  The diagrams
below are representative of the spectra that will be obtained by a spectrum analysis of the sounds that will be
picked up by a microphone close to the struck objects.
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By using a microphone and a spectrum analyzer to
look at the sound produced by the normal modes it is
possible to see the spectrum of normal modes
produced by any impulse to the systems.  If a hammer
is used to give the rod a sharp blow on its end the
normal modes can be observed in the spectrum. They
seem close to being harmonically related and result in a
somewhat high-pitched but musical tone.  The normal
modes induced by the impulse will also all decay
independently, the higher ones decaying generally
more quickly then the lower.  This tendency of higher
modes to decay faster than the lower modes has
already been discussed in terms of the Q 's of the
modes.

The important point to note here is that, by hitting the
rod in different places,  the system can be started with
different amounts of each of the modes.  This
difference would be seen on the spectrum analyzer and
would be heard as a difference in timbre of the struck
sound. The same phenomenon can be observed with
the other two systems, where the sound is much more
like noise because of the lack of any discernible
musical relationship between the various modes.
Hitting the plates at different points will produce
different spectra and hence different timbres of sounds.

However, there would also be quite a noticeable
difference in the timbre and the relative amount of the
normal modes when the steel hammer is substituted by
the heel of a shoe.  Now the timbre of the tone would
be much softer, high frequency normal modes being
not nearly as strong in the spectrum.

The point here is that different impulses to the system
correspond to putting in different mixtures of the
normal modes of the system.  The impulse itself can be
thought of as being made up of a particular recipe of
normal modes.

The Fourier transform (see Chapter 9) is of relevance
here.  By using such a transform any transient motion
was shown to be equivalent to a spectrum of pure
oscillations.  Similarly, any given geometrical state of a
system can be arrived at by adding up enough of the
right values of normal modes of oscillation with the
correct amplitudes and phases. The concepts are
essentially identical.

The significant points to be brought out here are the
qualitative connections between the type of impulse to a
system and the timbre or frequency spectrum of the
partials (normal modes of oscillation) produced.  In
general, the sharper the impulse (the shorter the
duration of the impulse), the more high frequency
modes that are excited.  Again this can easily be
understood in terms of the Fourier transform analogy;
the shorter the duration of a transient sound, the more
high frequency components it has.

However, there is another factor in determining the
content of high frequency partials in an impulse; that of
the degree of geometrical distortion created by an
impulse.  Consider, for example, a string which is
pulled aside by a soft finger stroke or  a small hard
plectrum (see Fig. 11.11).

The qualitative difference in the timbre of the notes
produced by these two initial displacements is fairly
obvious; the displacement by the finger would have

much smaller high frequency components then the
displacement by the plectrum.

Soft finger pluck Hard plectrum pluck

Figure 11.11 The displacement of a stretched
string by a smooth finger and by a hard
plectrum.  The larger circles under the smaller
ones are enlarged views of the center region of
the string.

As a further illustrative example, consider the piano,
one of the most familiar examples of a musical system
in which the normal modes of oscillation are fired up
by an impulse.  The timbre of the tone produced is
directly related to the content of high frequency normal
modes in the impulse.  This impulse can be altered by
either changing the speed of the hammer on contact
with the piano string or by changing the material and
curvature of the hammer itself.  Raising the speed of
the hammer by striking the key harder therefore not
only raises the level of the sound by putting more
energy into the piano string vibration but also changes
the timbre by introducing more of the higher frequency
normal modes of vibration.  This makes the piano
intrinsically different from the harpsichord where the
string is pulled aside and released by a plectrum in a
given geometrical displacement which does not depend
very much on how hard the key is struck.  It gives the
piano player the ability to drastically alter the timbre of
the tone by the way the keys are "stroked".

The other way the timbre of a piano note can be
changed is by changing the material and geometry of
the striking head.  For good pianos, the material in the
head is of extreme importance in achieving the quality
of the tone.  How this can be changed is obvious to
anyone who has heard a "honky-tonk" piano in which
thumbtacks are placed in the heads at the point where
they contact the strings.Such piano have the "tinny"
sounds associated with the presence of a lot of high
frequency partials in the initial attack of the notes.

To repeat, there is obviously an underlying similarity
between the Fourier transform and the spectrum of
normal modes of oscillation. The concept that any
disturbance of a system can be thought of as a
spectrum of normal modes of that system is essentially
a more powerful version of the Fourier transform.  The
Fourier transform deals specifically with the way some
single variable, such as pressure, changes with respect
to another variable such as time.  The concept that any
state of a system is made up of normal modes of
oscillation of that system is a more generalized concept
in which the variable describing a system, (again it
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could be the pressure throughout a system) is allowed
to vary with more then  one variable.  An example for
the pressure in a system would be variations, not only
in time, but in the x, y and z coordinates throughout the
system.

11.6.2  The Excitation of Normal Modes by
Successive Impulses

An important class of normal mode excitation in music
is that of excitation by a regular succession of
impulses.  An example of this is the excitation of the
normal modes of the vocal tract by successive impulses
from the larynx in the production of vowel sounds in
human speech.  For example, the vowel sound "ee" will
have spectra as shown in Fig. 11.12 for male and
female voices.

Center about 
1000 Hz

Center about 
3000 Hz

Typical male voice    

Center about 
1000 Hz

Center about 
3000 Hz

Typical female voice

Figure 11.12 Spectra of the vowel sound "ee"
for typical male and female voices.  The vertical
scale here would be db, with a range of about 30
dB for the spectra shown.  The two peaks in the
spectra are due to the relatively low Q normal
modes of the air in the vocal tract when it is
shaped so as to make the "ee" sound.  The
harmonic interval is the fundamental frequency
of the two types of voices (about 140 for men
and about 280 for women).

The spectra shown here exhibit the response of the air
in the vocal tract to the input from the larynx.  This
input is a series of sharp puffs of air which break
through the larynx when it is held taut and pressure is
applied to it from the lungs.  The pressure pulses in the
vocal tract just above the larynx by these puffs is
shown schematically in Fig 11.13.
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Figure 11.13 The pressure applied to the base
of the vocal tract just above the larynx by the
puffs of air that come through the larynx during
speech.  The period Δt between puffs is about
60 ms for men and about 30 ms for women.

Because of the sharpness of the pressure pulses into
the vocal tract they are rich in harmonics.  The normal
modes of air in the vocal tract are resonated by these
harmonics to produce the clusters of harmonics seen
around the frequencies 1000 Hz and 3000 Hz for the
vowel "ee".  In speech and music, these clusters of
harmonics in a sound spectrum  due to resonance of
normal modes are called "formants".

The formants are resonances of the normal modes of
the by the harmonics of the basic repetitive pulsed
input to the system.  This phenomenon can also be
demonstrated for the short stub of pipe open at one end
as shown in Fig. 11.9.  When the speaker in this
system is driven by sharp pulses at a steady repetition
frequency, the modes that have a frequency which is an
integral multiple of the pulse frequency will be excited
(see Fig. 11.14).
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Figure  11.14 The response of the closed-open
pipe to pulsed input from a speaker at its bottom.
The upper spectrum is for a pulse rate of 150 Hz.
Here the 450 and 750 harmonics of the pulser are
enhanced due to resonance with the normal modes
while the fundamental is, in fact, considerably
reduced. The lower spectrum is the result when the
pulser is tuned to the fundamental mode of the
pipe (178 Hz).  The harmonics of this pulse do not
significantly excite either of the other two modes.
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It can be seen from Fig. 11.14 that the fundamental of
a tone can often be one of the weakest components of a
musical sound if that fundamental is associated with
harmonics which resonate strongly with higher modes
of the system.

11.7  The Excitation of Normal Modes by
Feedback

So far, the generation of musical sounds in perhaps the
largest class of musical instruments has been ignored;
that is musical instruments which give sustained tones.
The generation of such sustained tones by resonance
avoids the issue.  How were the frequencies of the
driving agent generated in the first place?

To understand the principles of the generation of
sustained tones in musical instruments it is necessary
to understand one of the most important phenomena in
nature; that of the control of systems by feedback.

11.7.1  The Concept of Feedback

Feedback is a term which seems to have recently crept
into popular language so it should not be strange.
Professors ask for feedback from their students in a
course.  Customers give feedback to businesses so that
the businesses, in principle, can give better service.

"Feedback" as a term was first used by electrical
engineers in their development of control systems in
the 1930's.  The relevance of feedback to controlling
systems is fairly easy to understand.  If a system
deviates from a desired state, then knowledge of that
deviation is a very important part of any control
system.  The knowledge of the degree of deviation can
then be used to adjust some input to the system so that
the deviation is corrected.  For example, if the
professor is fed back information that what he is
saying is too mathematical for the students, then he
should try to lower the level of the mathematics.  In
another example, if a house is too warm, then the
heating should be lowered (the input heat is too high).

In automatic control systems, the input to correct a
deviation from the desired state of a system is
automatically derived from information about the
deviation.  This process forms what is called a
feedback loop (see Fig. 11.15).
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Parameter 
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Feedback
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External 
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Feedback 
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Figure 11.15 A schematic of an elemental
control system.  Knowledge of the output is
used to generate a "feed back" signal which adds
to the external input to determine the overall
input to the system.

The type of feedback necessary for control is called
negative feedback.  This does not mean that the
information fed back is always negative but that it is
used to create an input which we know will cause the
system to move in the opposite way to the deviation
that was measured.  Thus in the case of heating a
house, a positive deviation of the house temperature
from a set temperature would be used by the feedback
system to reduce the heating; a negative deviation
would cause the input heat to be raised.  The actions
due to the feedback are those which will cause the
negative of the deviation that was observed. Such
negative feedback control is the essence of automatic
system control. It is used extensively by biological
organisms to adapt to environmental changes.  For
example, when you sense a drop in external
temperature, (usually, and most reliably by temperature
sensors in the back of the neck) the body uses this
information to turn up the metabolic rate so as to
maintain the correct  body temperature.

Electrical engineers developed the theory of feedback
control so that they could design automatic control
systems for electrical and mechanical devices. This
theory is now finding many applications in the life and
social sciences from biology to economics.

11.7.2  Oscillations in Fed-back Systems

To understand some of the consequences of negative
feedback, consider one of the mysterious things that
can happen. This phenomenon is familiar to anyone
who has had to set up a public address systems or
loudspeakers to enhance the sound of a live concert.
The apparatus involved is simply a microphone
connected to an amplifier which puts the amplified
output of the microphone into a loudspeaker.

It is easy to see that this makes the elements of a
system with feedback.  The output of the microphone
is fed back to the microphone by the amplifier and
loudspeaker which put sound out into the room to fall
back on the microphone.  This is a system with a
feedback loop (see Fig. 11.16).

Amplifier 
   Input

Microphone

Speaker

Amplifier

Amplifier 
Output

Figure 11.16 A feedback loop created by a
microphone, amplifier and loudspeaker
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When such a  system is turned on and the gain of the
amplifier turned up, one often gets an earsplitting howl.
To prevent this howl the gain of the amplifier must be
turned down or the microphone must be shielded from
the loudspeaker output.  Having the microphone close
to the loudspeaker is almost certain to produce the
howl.

This phenomenon is usually explained by pointing out
that a sound out of the loudspeaker goes back into the
microphone and this sound is then reamplified by the
amplifier so as to put even more sound onto the
microphone and so the system explodes into a very
loud howl.

However, this sort of system would appear to be
positive feedback.  An output from the microphone is
amplified by the loudspeaker and fed back into the
microphone to produce more output, not less. Such
positive feedback will always produce explosive
results.  It is similar to the feedback situation in a stick
of dynamite.  A little explosion in a small piece of the
dynamite (which is actually hard to explode and
requires a very small very sharp explosion by what is
called a "cap" to get it going) will cause more dynamite
around it to explode and this in turn causes even more
dynamite to explode until the whole stick is rapidly
consumed.  In the positive feedback system of the
microphone, amplifier and loudspeaker, the system
rapidly goes to the maximum output that the amplifier
can give to the  loudspeaker.

But is this system always a positive feedback system?
Not necessarily. If the speaker is incorrectly "phased"
so that a positive output of the microphone to the
amplifier causes the speaker cone to actually pull in,
then the feedback is negative; a positive pressure at the
microphone causing the loudspeaker cone to produce a
vacuum which will tend to cancel the positive pressure.
In a system so phased and with adequate bass
response, this can actually be seen by observing the
motion of a bare loudspeaker cone as the microphone
is pushed rapidly towards it.  The speaker cone will be
observed to recoil away from the microphone.

Yet even such a system, when the gain is turned up, will
go into a fierce "feedback" howl.  How is this possible
in a system which is under negative feedback, the
essential element for the control of systems?

Before going into the answer to this puzzle, consider
another phenomenon.  If the connections of the
loudspeaker are changed so that they are correctly
phased (the loudspeaker cone moves out with increased
pressure on the microphone) there is then positive
feedback in the system. The result as the gain is turned
up would again be a feedback oscillation but now of a
very different frequency than the case for the negative
feedback. Such oscillations when the microphone is
very close to the speaker will usually be a very low
bass rumble whereas the feedback oscillations with
negative feedback for the same microphone placement
will be of a shrill howl.

That the frequency of the feedback oscillation is
different for the cases of positive and negative feedback
is a clue to the origin of both.  In an oscillating system
driven by feedback, the input to the system and the
feedback must be in phase for them to add up to an
explosive situation. For positive feedback, this can

occur at very low frequencies.  For negative feedback, it
can only occur when the delay in the propagation of
sound from the speaker to the microphone is one-half
cycle or an odd integer number of half-cycles.

There will be many high frequencies at which this can
happen.  The system picked out one of these from the
general background noise that the microphone is
picking up anyway and went wild with it.

What about the oscillation when the system was fed
back positively?  Why did the speaker cone not just
move over as far towards the microphone or as far
away from the microphone as it could and just stay
there?

The answer here is that the steady state condition of the
speaker cone pulled to its limits either in or out and
being held there presents no feedback to the
microphone.  A propagated pressure from the
loudspeaker to the microphone requires that the
speaker be moving.  This means that there has to be an
oscillation for positive feedback in this system. Again,
the system picks out some frequency for which this
feedback is most effective and goes wild with that
frequency. Again, all sorts of frequencies are possible
(a microphone placed close to the tweeter of a speaker
system with positive feedback will give a very shrill
howl and probably burn out the tweeter in less than a
second). What is required of such a feed-back
oscillation is that there be close to a number of whole
cycles of the oscillation in the overall delay of the
feedback.

Thus it seems that any system with feedback is capable
of breaking into oscillations, whether it is fed back
negatively or positively.  Does this mean that we
should not try to control any system by feedback?

The answer is of course no.  We can control systems
by negative feedback if we understand what we are
doing and are careful doing it.  This is why electrical
engineers found that they had to develop the theory of
feedback control to use it effectively.  This theory of
feedback control tells us not only how to control a
system while limiting oscillations to tolerable amounts
(it turns out that all practical control systems will have
some residual oscillation which is called "hunting")
but also what one has to do if one wants to deliberately
generate an oscillation of a particular frequency by
feedback.

Control theory will not be developed here; what will be
presented is merely an illustration of the principles.  As
a start to the subject, consider an example which may
have more relevance to your personal life than any
mechanical, electrical or musical system.  It is a system
clearly under negative feedback "control" and yet
which undergoes disturbing oscillations.

The example starts with what happened when the
Russians launched Sputnik in 1957.  This event
offered all the information needed by the U.S to
conclude that it's scientific and engineering capabilities
were badly in need of upgrading.  The specter of a
Russian satellite orbiting over the United States every
90 minutes or so while their rockets were blowing up
on their launching pads was very powerful feedback of
a deficient situation.  The problem was almost
immediately traced to a science and engineering
training system that was allowed to fall into decay after
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the end of the Second World War  12 years before,
while the Russians obviously put a lot of effort in
highly disciplined science and engineering training
programs.

The required response was obvious.  More scientists
and engineers had to be trained and so a lot of money
and resources were put into upgrading science
education in the United States.

Unfortunately, immediate  results did not show.  The
Russians advanced to orbiting animals and then men
and the American rockets were still not getting off the
ground with any significant payload.  The pressure on
the scientists and the engineers kept growing.  Stories
of demands for highly trained scientists and engineers
were widely circulated and any smart high school
student automatically chose science and engineering
for university study.

Finally, of course, results did come.  The massive
capabilities of the United States for action began to
show and the United States space program took off to
become one of the great achievements of mankind.

But then what happened?

When the spectacular achievements made it obvious
that America had regained its superiority, the massive
political support required for the immensely costly
space program began to dwindle and spending was cut
back.  Soon stories began to appear about PhD's in
electrical engineering having to take jobs as garage
mechanics.  It didn't take long to discourage students
from undertaking the rigors of the demanding science
and engineering programs.  Smart students were then
going into political science so that they could cope with
the apparent revolution of social priorities.

However, the pipeline was full of engineers and
scientists in training.  Even with the supply at the input
end drastically reduced, the output was still there trying
to get whatever jobs they could get.  Most went into
high school teaching or other jobs which made only
marginal use of their skills.  Finally of course, the
supply dried up.  What then do you expect started to
happen?

Right!  Stories of Japanese industry killing American
industry because of their superior engineering and
technology began to surface and it became harder to
get into electrical engineering and computer science
than it is into medicine at many of the better schools in
North America.

The system clearly has negative feedback control but
also it has a very disturbing oscillation.  How can this
oscillation be controlled?

Clearly one way to control it is to not apply any
feedback.  One of the reasons in seems that the United
States goes through such strong oscillations is the
strength of the feedback due to its massive
communications systems.  Reduce the strength of this
feedback and the oscillations should die down.  Reduce
the gain of the amplifier and the feedback howl will
disappear.  However, the danger with this method of
control is that the feedback may not be strong enough
to prevent a very undesired deviation of the state from
the desired one.  Some rigidly planned economies with
not enough feedback effect would seem to fall into this

category and the result is the tragedies that is witnessed
in the early 1990's in such systems.

A better response would be to take into account the
basic cause of the oscillation.  In the case of science
and engineering students, this cause was the time it
takes to train an engineer or a scientist.  This is about 7
to 10 years, and the fundamental reason it seems for
the approximately 15 year oscillation in the
system.What can you do about this?

Here one must understand the necessary relationship
between a driving force and the velocity of an
oscillation if one is to have the oscillation gain or lose
energy.  A force in phase with a velocity will increase
the energy of an oscillation while a force 1800 out of
phase with the velocity will decrease the energy of an
oscillation.  Thus to kill the oscillation of the
attendance of engineers in universities, the greatest
discouragement to enrollment should not come when
the number of unemployed engineers is the greatest but
when the number coming out of the system per year is
the greatest (i.e. the "velocity" of engineers out of the
system is the greatest).  Put in very personal terms, if
you want to be sure of a job when you graduate, go the
opposite way that everyone else is going!

In other words, one should be responding to the rate of
change of the supply rather than the supply itself!  The
force should be opposite to the velocity of the
displacement of a system rather than the displacement.

Now the relationship before the driving force and the
oscillation to be driven should be coming obvious.  To
get an oscillation going by positive feedback, that
positive feedback has to have a phase angle which is
leading or lagging the velocity oscillation by no more
than 900.  If it leads or lags by more than 900, then the
component of force "in phase" with the velocity is
actually negative and the oscillation will be damped by
the feedback.

Perhaps a good example to illustrate the principle is
that of  pumping up a swing by yourself.  If you think
about how you do this you might note that for
maximum effectiveness you put your effort in the
forward motion when you are moving forward at
maximum velocity at the bottom of the swing.  On the
return, you put your maximum backward effort when
you are at the bottom of your swing moving backwards
at your maximum rate.

Likewise, to kill your oscillation so that you can safely
step out of the swing, you apply these forces in reverse.
This takes some training.  In general, one is inclined to
try to kill an oscillation by applying  a maximum
reverse effort when the oscillation is at its maximum,
rather then when it is at its maximum velocity.  In the
example of the oscillations of long trains on the
prairies, it takes a great deal of training in simulators to
get engineers to increase engine power when the
locomotive is moving backwards at maximum relative
velocity to the train rather than when it has in fact
moved backwards as far as it will go.

Perhaps it is useful to note here that applying a force
opposite to the displacement rather than opposite to the
velocity is, in fact, the condition that leads to
oscillations in simple systems such as a mass on a
spring.
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To conclude, manipulating an oscillation in the way that
we want involves creating an effective feedback force
which has the correct phase relationship with the
velocity of the oscillation, taking into account the delay
in the effect of the feedback force due to any inherent
delays in the system.

This works well for systems in which there is only one
mode of oscillation of any importance.  However, in a
system with an infinity of possible normal modes of
oscillation such as air in a tube and with enough gain,
there is bound to be some oscillation which the system
picks up with the right feedback for the driving force to
have the correct phase relationship with the velocity so
as to send all the energy of the system into that mode
of oscillation.  This is the principle behind practically
all "acoustic" musical instruments with a sustained
tone, whether the sustained tone is achieved by bowing,
scraping, blowing or any other action.

11.7.3   The Factors Leading to the Selection of a
Particular  Mode for Feedback Oscillation

In the case of the feedback howls produced by a
microphone of a public address system placed too
close to a speaker, what determines the frequency at
which the system will oscillate?  In the more important
case for the subject matter of these notes, what factors
will determine the particular normal mode of vibration
of a musical instrument that will be selected by the
system for a feed-back generated oscillation?

Return to the example of the simple bottle as a
resonator. By blowing gently, the Helmholtz oscillation
will be produced.  Blowing harder will excite the next
lowest normal mode, the half-wave "fundamental"
resonance of a tube closed at both ends.  Blowing still
harder, usually only possible with a compressed air
source, would excite even higher modes.

There is another similar example of a system with
normal modes of oscillation that can be excited by
feedback; the whirling tube music maker that was
popular among physicists and other children in the
early 80's.  It is a hollow flexible tube about a meter
long, open at both ends and with an internal diameter of
about 2.5 cm.  When it is twirled around, one can get a
variety of fairly musical tones, the frequency of the
tone depending on the speed with which the tube is
twirled.  At low speed the tone frequency is low, at high
speed the tone frequency is high.

A remarkable thing about the tones generated in these
two instruments is the purity of their spectra.  They are
heard as clean flute-like tones which on a spectrum
analyzer show as only one line.  Why is it that of all
the modes of vibration possible in those systems only
one is fired up at any one time? In both cases, the
sound is produced by air rushing over the ends of the
openings of the systems exciting the normal modes of
the systems.  As the speed of the air increases, the
noise spectrum  shifts to have its center at higher and
higher frequencies.  Why in the example of the twirling
tube, does the tone progress sharply from the excitation
of one of the modes to the excitation of the next higher
mode?  Why isn't there a gradual change with the lower
frequency mode getting weaker and the higher
frequency mode getting stronger as the frequency

spectrum of the noise of the air rushing over the end of
tube rises with the speed?

To get an insight into the physics of this phenomenon,
consider again the open pipe.  If the small speaker at
the bottom of this tube is powered by an amplifier
driven by the microphone anywhere in the tube, then
one has a feedback situation which can lead to an
oscillation.

Amplifier 
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Amplifier
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SpeakerMicrophone

Figure 11.17 The system of Fig 11.9 in a
feedback situation.

When the microphone is placed at the bottom of the
tube near the speaker, and the gained turned up (very
carefully so as not to blow the speaker) a feedback
oscillation will break out.  The frequency of this
feedback oscillation will depend very much on the
phasing of the speaker to the microphone output.  If it
happens to be in phase then the feedback oscillation
will most likely be 450 Hz.  If it is out of phase, it will
likely be a high-pitched squeal of about 2000 Hz.

If now the microphone is drawn out of the tube to near
its entrance and the experiment repeated, again there
will be feedback oscillations with frequencies
dependent on the speaker-microphone phasing.  Now
the frequency will likely be 450 Hz with the speaker
and microphone out of phase and probably about 600
Hz with the in-phase connection.

How are these phenomena to be explained?

The 450 Hz oscillation with the speaker and the
microphone both at the bottom of the pipe is perhaps
expected.  The 450 Hz mode is the one most strongly
excited by the speaker in the resonance curve.  This
mode has a pressure maximum at the bottom of the
pipe and, since the microphone is sensitive to the
pressure of the sound, this pressure maximum will be
fed to the speaker in phase.  The speaker and the
microphone are therefore in positive feedback on this
mode and it is therefore excited.

The next oscillation that is easy to understand is that
which occurs when the microphone and speaker are out
of phase and the microphone is just inside the open
end of the pipe.  Here the pressure of the "3/4 wave"
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mode is out of phase with it's pressure at the bottom of
the pipe. When the speaker and microphone being out
of phase, puts the feedback back into phase and this
mode is again easily fired up.

But where did the weird oscillations at 2000 Hz and
600 Hz come from?

The 2000 Hz oscillation with the microphone and
speaker out of phase at the bottom of the pipe must be
a cross mode vibration in which the pressures at the
microphone and the speaker are out of phase with each
other.  The origin of the 600 Hz oscillation with the
microphone and speaker in phase and the microphone
near the pipe opening is not easy to diagnose but it can
be noted that it corresponds to a wavelength which is
very close to the microphone-speaker separation.

It is possible to set up a feedback oscillation on the
fundamental of 178 Hz?  It turns out that it is if the
microphone is placed at a position inside the tube
where it is insensitive to the pressure in the "3/4 wave"
mode at 450 Hz.  By turning up the gain very carefully
to get just the onset of a feedback oscillation, with the
microphone and speaker in phase it is possible to get a
178 Hz oscillation started.

The idea to be retained from all this is that the right
feedback conditions can allow a system to fire up on
one of its normal modes, the mode being fired up
depending on the nature of the feedback.  This is the
basis of tone production in many musical instruments,
particularly acoustic instruments producing sustained
tones.

 In most cases, the automatic feedback due to a normal
mode of oscillation in the instrument is also under
another kind of feedback control from the player.
Thus if the player finds that the tone is about to break
into another mode due to an incorrect manipulation of
the instrument, then that manipulation can be adjusted
so as to prevent this "mode-hop".  (A common
example of such a breaking into a wrong mode is the
"overblown" notes that can be achieved on a recorder.)

11.7.4   The Feedback Process in Air  Flow over
Surfaces

The feedback mechanism in the system of the speaker
in the tube driven by an amplification of the pickup
from a microphone is fairly obvious, it was the
amplifier connecting the microphone to the
loudspeaker.  What is the feedback process in the beer
bottle and the twirling tube?

The feedback process here is the basis of many of the
wind musical instruments. The basic phenomenon
involved is that air flowing over a surface creates a
vacuum which tends to pull the surface into the air
stream (see Fig. 11.18). This puzzling fact was first
investigated scientifically by Bournoulli and so the
effect bears his name.

If the surface that the air is blowing over can actually
move into the air and thereby force it to flow on its
other side, then there will now be a vacuum pulling the
surface back to its original condition (see Fig. 11.19).
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Figure 11.18 The force on a surface over which
a medium is flowing on one side but stationary
on the other.
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Figure 11.19 The action of a flexible surface
angled pointing into a wind.  In the top diagram
the surface is angled so that the air must move
over the top side.  The vacuum force this causes
moves the surface upward so that it appears as in
the lower diagram where the air is forced to
move over its bottom surface.  The reverses the
direction of the vacuum force.

Thus the situation whenever air flows over a moveable
surface is unstable and an oscillation can and probably
will result.  Common examples are the flutter of a flag
or a piece of paper in a wind.  Another example is the
vibration produced by blowing across a blade of grass
or a strip of paper stretched directly in front of the lips.

When the surface that the air is blowing over will not
move but the air could move to one side or the other,
the air motion itself becomes unstable.  This type of air
flow is called a Venturi oscillation and is the source of
noise when air flows over the edge of a surface. The
spectrum of the noise that is produced when air blows
over the edge of a surface is shown in Fig. 11.20.
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Figure 11.20 The general shape of the spectra
of  Venturi oscillations for two speeds of air
onto the edge of a surface.



The Physical Acoustics of Music114

At low velocities, the noise spectrum peaks at a low
frequency and the peak value is low.  At high velocities,
the peak is at a higher frequency and the peak value is
much greater.

Venturi oscillations about a fixed surface in open air
are therefore not musical but have random  frequencies
and hence appear as noise.  However, if a mode of
vibration at a definite frequency is excited by such a
collection of Venturi oscillations, a coherent Venturi
oscillation can be set up by feedback.

As an  example of how this can happen, consider the
Helmholtz mode of a bottle.  Suppose the initial air
flow is directed so that it is across the neck and not into
the bottle.  The result of this will be a vacuum which
pulls air out of the bottle.  Thus the air flow across the
bottle will generate a vacuum in the bottle which will
eventually balance the vacuum force of the air flow
across the mouth.  There will then be an unstable
situation in which the air, through a random fluctuation
in its flow, can be flipped to flowing into the bottle.
This air flow into the bottle will now quickly build up
pressure in the bottle until the flow pattern  is ready to
be forced  to the outside again.  If this occurs at a time
when the Venturi oscillation near the center of the
spectrum is about ready to flip to outside flow, this flip
will be enhanced by the pressure buildup. The Venturi
oscillation at the neck is enhanced by feedback from
the Helmholtz oscillation in the bottle. The driving
force of the oscillation is the vacuum produced by the
flow of air across the mouth of the bottle but the
frequency of the oscillation produced is governed by
the Helmholtz oscillation.  The Venturi oscillation
therefore settles on the Helmholtz frequency.

If the air flow is increased so that the natural Venturi
oscillation is centered on about 1500 Hz, then the "1/2
wave" normal mode of vibration of the air in the bottle
will set up a Venturi oscillation by feedback,  taking all
the energy from the Helmholtz oscillation.

This effect occurs in all blown instruments such as
flutes, whistles, recorders, beer bottles and "twirly
tubes".  The Bernoulli effect of the vacuum created by
any flow provides a feedback mechanism by which a
particular normal mode of oscillation of the air in an
enclosure can be excited.

11.8  Growth of Feedback Oscillations

Feedback oscillations have a particular pattern of
growth, different again from the resonance driven
oscillator already described.  This is because the power
going into the the oscillation is not constant as in the
resonance driven oscillator but grows exponentially
itself from some small "seed" disturbance.  The
beginning of a feedback driven oscillation is therefore
an exponentially increasing amplitude (see Fig. 11.21)

When the tone has increased in volume, dissipation
effects will begin to show and the saturation
characteristic of the oscillation will set in.  The overall
appearance will therefore be as shown.

The initial growth period of a feedback oscillation will
depend very much on the strength of the feedback.  If it
is just sufficient to get the oscillation going, it can be
very long.  If there is strong feedback, it can be very

short.  This is why sustained notes played with great
force so as produce loud sounds will generally also
have much steeper attacks than softer notes.
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Figure 11.21 The typical growth of a feedback
generated tone.

11.9  Normal Modes, Feedback, Resonance and
Harmonics

At this stage we are finally at a point where we can take
a broad overview of musical instruments and how they
produce musical sounds. The principle of percussion
instruments have already been discussed.  Energy is
put into the normal modes of these instruments by an
impulse and the timbre of the note produced is
determined by the nature of this impulse.  What is to
be concentrated on here are the principles of the
instruments that produce sustained tones by actions
such as blowing, spitting, bowing, scraping or stroking.

In general, the starting point is the excitation of a
normal mode in the system by a feedback loop.  In
some cases the complete feedback loop may be
difficult to analyze but one can be fairly certain that it is
there.  For example, in the playing of the trumpet the
feedback loop is the production of a pulse of sound by
the players lips "spitting" a pulse of air into the
mouthpiece of the trumpet.  This pulse of air causes a
pulse of sound to be propagated down the tube of the
trumpet until it comes to the bell where, because of the
sudden freedom from the walls of the trumpet tuber, it
releases in a spurt.  The sudden movement of the air
away from the trumpet bell causes a vacuum region to
form due to the momentum of the moving air.  The
pressure pulse that arrived at the bell therefore results
in an inverted, or vacuum pulse being reflected back
along the trumpet tube.

That means that a vacuum pulse comes back up the
tube to slam the players lips shut if, indeed they are still
open.  This vacuum pulse is then reflected back out the
tube by the closed end of the system as still a vacuum
pulse.  It is then reflected as a pressure pulse by the
bell of the trumpet and this pressure pulse returns
down the tube to tend to force the players lips open.  If
the player adjusts mouth air pressure and the lip
tension so that the lips are ready to deliver another
burst of air after the period taken for this quadruple
traversal of the tube length, then the arrival of the input
burst reflection as a pressure pulse at the lips will
trigger their opening and cause another burst of air to
enter the system.  This burst of air will occur on top of
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the pressure pulse that triggered its release and so a
positive feedback buildup of the pressure pulse will
occur.  This positive feedback is felt by the trumpet
player as a tingling of the lips that is not there when the
same effort is put into blowing a simple "raspberry"
(the harsh vibration produced by blowing air through
tightly closed lips which have nothing in front of
them.)

In the case of the violin, the bow scraping along the
string instantaneously forms a glue bond with the
string and drags it to one side.  At some point this glue
bond breaks and the string snaps back to near its
equilibrium position whereupon it again forms a glue
bond with the hair of the bow.  (This is why resin is so
important to a violinist).

Meanwhile the pulse formed by the last breakage of the
glue bond travels along the string and is reflected by
the string boundary.  The reflected pulse then comes
back along the string.  If it arrives at the bow just when
the bond between the bow hair and the violin string is
about to break again, then there is a positive feedback
situation where the reflected pulse helps the tension of
the deflected string to break the bond and release the
string.

So there is always some feedback mechanism to
determine the mode of oscillation that will be excited
and the strength to which it is excited.

If this were the only thing that happened, all one would
get are the sort of pure tones of the beer bottles and the
twirling tubes.  That is indeed about all that happens
with pure toned instruments such as the flute and the
recorder but many musical instruments with sustained
tones have very rich timbres with lots of high
frequency components.  How did these components
get into the system?

In general, an oscillation produced by feedback does
not result in a pure sinusoidal oscillation of the driving
element of the system. In the simplest case of the
oscillation of a speaker cone by feedback from a
microphone in a room, the motion of the cone is so
violent that it is usually just a flipping back and forth
from one extreme of its motion to the other.  The result
is a square waveform oscillation which is rich in
harmonics.  In the case of a trumpet players lips, the
feedback oscillation results in short spurts of air into
the bell. These spurts again are very rich in harmonics.
Similarly the feedback system in an oboe uses the
lowest frequency normal mode of the air in the body of
the oboe to snap the two reeds of the oboe open and
shut at the frequency of this mode.  Such an action
puts very sharp pulses of air into the oboe body at this
frequency.  This action is also very rich in harmonics.

If now there are higher normal modes of oscillation in
the musical instrument which match any of the
harmonics of the basic feedback oscillation, these
harmonics will be enhanced by the resonant action of
these modes.

Note that it is the harmonics that are enhanced, not the
normal modes of oscillation.  The harmonics do not
fire up the normal modes themselves.  Recall that when
a simple oscillator is driven by a force oscillating at a
frequency different from the natural oscillation
frequency, the oscillator vibrates at the driving
frequency, not its natural frequency.  Thus the partials

of the oboe are indeed harmonics of the fundamental.
This is true of all sustained tone instruments in which a
feedback oscillation creates a basic fundamental
oscillation frequency rich in harmonics which are
enhanced by normal modes of the system.

The richness of the tone now depends on how many of
the harmonics find matching normal mode frequencies.
For instruments such as the violin, the matching is very
good since all the useful higher modes of oscillation of
the string are very close in frequency to harmonics of
the fundamental.  In many instruments based on air
cavities, only clusters of harmonics will have resonance
enhancement by normal modes of the system.  One
such important musical instrument already discussed is
the human voice.  The basic oscillation frequency here
is the flapping of the vocal chords (more accurately
called the larynx) which has a frequency in men of
about 150 Hz.  However, this sharp pulsing open and
shut, like the tone of the oboe, is rich in harmonics.
The vocal tract above the larynx (including the nasal
cavity) has several important normal mode resonances
in the regions of 500 Hz, 1500 Hz and 2500 Hz.  At
these frequencies, the harmonics of the basic vocal
chord frequency will be enhanced.  These regions of
enhancement are the "formants" of speech and singing.
By modifying the shapes of our vocal tract, we can
modify the frequencies of the normal modes giving
these formants and even change their Q  so as to
enhance or reduce their effectiveness.  This
manipulation of our vocal tract while the vocal chords
are delivering pulses of air into the vocal tract is what
produces the vowel sounds such as "a", "e", "i", "o",
"u" and the various diphthongs.

Summarizing then, the production of sustained tones in
musical instruments generally involves;

1. A basic oscillation of some driver produced
by feedback from a particular normal mode
of the system, usually the lowest.

2. The harmonics which may be present in this
basic driving oscillation being filtered or
(enhanced) into formants by the other
normal modes of oscillation of the system.

APPENDIX

Derivation of Q from amplitudes of oscillation

The steady-state amplitude of an oscillating mass m
with a resistance r and a spring of spring constant k
when driven by an force of amplitude F and frequency
ω can be shown to be

A  =  
F

√⎯⎯⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ (ωr)2 + (ω2m − k)2
(A11.1)

For very low ω, this becomes simply

Alow  =  
F
k (A11.2)
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At resonance, ω2m = k and the equation becomes

Ao  =  
F
ωr (A11.3)

The definition of Q then gives

Q  =  
Ao

Alow
  =  

k
ωr  =  

ωm
r   (A11.4)

Derivation of Q from Bandwidth

The width of the resonance at the A/√⎯ 2 points is given
by solving the equation for A when

(ωr)2 + (ω2m − k)2 = 2(ωοr)2 (A11.5)

Noting that for narrow resonances, ω ≈ ωo  ;

(ω2m − k)2 = (ωοr)2 (A11.6)

ω2m − k   =  ±ωοr (A11.7)

ω2 − 
k
m  = ± 

ωοr
m   ;  ω2  − ωο2  =  ± 

ωοr
m   ;

(ω − ωo) ×  (ω + ωo)  =   ± 
ωοr
m  (A11.8)

Noting again that ω ≈ ωo,

ω − ωo  = ± 
r

2m (A11.9)

The frequency interval between the two solutions is
therefore

Δω = 
r
m (A11.10)

and the ratio of the resonant frequency to this
frequency interval becomes

ωo
Δω  =  

mωo
r   =  Q (A11.11)

Since the ratio for the radian frequencies ω is the same
as for the cyclic frequencies (f  = ω/2π)

Q  =  
fo
Δf (A11.12)

Derivation of Q from Decay Constant

The derivation of this relation follows from elementary
differential calculus. The rate of loss of energy is the
loss per cycle divided by the time for one cycle, which
is of course the period of the oscillation;

dE
dt  = − 

Loss of energy in one cyle
T (A11.13)

From the definition of Q and the fact that the period is
the reciprocal of the frequency, this rate of energy loss
can be expressed as;

dE
dt  = − 

2πfo
Q  × Energy stored in oscillator (A11.14)

The energy loss dE is from the energy E stored in the
oscillator so that the equation becomes the standard for
exponential decay;

dE
dt  = − 

2πfo
Q   E = − αE = − 

1
τ E (A11.15)

leading to the solution

E  = Eo e −αt = Eo e − t
τ (A11.16)

where 

τ  =  
Q

2πfo
(A11.17)

For an oscillator gaining energy from a source while
also losing it from its own motion;

dE
dt    = P  - 

2πfo
Q  × E

dE
dt   = P  - 

2πfo
Q   E  = P − αE

= P − 
1
τ E (A11.18)

leading to the solution

E = Eo(1 − e −αt)  = Eo(1 - e - 
t
τ ) (A11.19)

where 

Eo = 
QP
2πfo

  ;    τ = 
Q

2πfo

It is sometimes worthwhile to note that the amplitude of
such an oscillation does not follow a simple
exponential saturation curve but becomes
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A =  Ao√⎯⎯⎯⎯ (1 − e − 
t
τ )

Exercises and Discussion Topics

 1. If a system oscillates with a Q of 250,

   a)   If the frequency of the oscillation is 400 Hz,
what would be the "bandwidth" of a resonance of
the oscillation?

    b)  What would be the time constant for the
sound energy decay (the time for a decay to 1/e of
the energy) if the oscillation were excited by
giving the system an initial impulse?  What would
be the half-life?  What would be the "reverberation
time"?

2. For a sound source which matches in frequency
one of the normal modes of a room, sketch the
variation with time of the sound amplitude from
the moment the sound is turned on to when the
sound has died away after the source has been
turned off.  What is the connection between the
growth part of the curve and the reverberation
decay part of the curve?

 3. Explain how giving an impulse to a system which
has many normal modes of oscillation can give
different spectra of these normal modes depending
on exactly where and how the system is hit.  In
what way can the spectra be different and in what
way will they all be the same?

 4. Explain in terms of the normal modes that are
excited, why using a plastic plectrum gives a
brighter sound to a guitar than does a finger stroke
and why bowing a violin near the bridge will give a
sound with relatively more high frequency content
than bowing it nearer the center of the string.

5. What is "feedback" and why is it important to a
musician trying to get a sustained note on a
musical instrument with normal modes of
vibration?

6. Why will a system which takes part of its output
to create its own input generally oscillate even
though it may be connected in "negative feedback"
so that the output created from the input is of
opposite sign?  Why is this often a general feature
of systems which are to be kept under control by
such negative feedback?

 7.  What determines the frequency of the feedback
oscillation that will occur in a system with many
pronounced normal modes of oscillation?  What

will be the nature of that oscillation?  What will
determine whether the other modes will be of any
significance when this mode is fired up?

8. Explain the feedback process that occurs in
blowing a note into a  bottle or blowing a note in a
flute.  Why does overblowing a recorder generally
produce a discordant note?

9. What was the feedback process that blew down
the Tacoma bridge?

10.  Explain why the box under a tuning fork is
designed to be a resonator with  a frequency which
resonates with the tuning fork.

11. What is resonance in the technical sense of sound
vibration?  How is it related to the subject of
normal modes of vibration of a system?

12. What generally distinguishes the pattern of
frequencies of the normal modes of vibration of a
musical instrument compared with that of a non-
musical noisemaker?  Why are the higher modes
of vibration important even if only the lowest or
fundamental mode is being fired up by feedback?

13. What are formants in speech and music?  Relate
them to normal modes of oscillation of systems
and resonance of these modes.
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CHAPTER 12

THE CHARACTERISTICS OF MUSICAL INSTRUMENTS

The material of this chapter is in large part a
combination of the material in the books by Olson and
by Meyer, referred to in the handouts at the beginning
of the course.  To limit the volume of material, it will
concentrate on the acoustic instruments used in modern
western orchestral music.  However, it is hoped that the
material allows an understanding of the principles of
acoustics that can be applied to the broad range of
musical instruments from other cultures.

Olson is particularly good for his detailed descriptions
of the musical instruments of an orchestra (Chapter 5)
and the overall features of the tones that they produce
(Chapter 6). The growth and decay characteristics of
musical tones are presented in Fig 6.45 on page 238 of
Chapter 6.  Meyer has more complete material on the
starting transients of musical instruments.  The
particularly relevant sections of Meyer are the detailed
subsections of Chapter 3 dealing with the starting
transients of specific instruments in turn.

As to general acoustic properties, modern mechanical
(as distinct from electrical) musical instruments can be
grouped into broad categories. Meyer groups them into
Brass, Woodwind and Strings.  Olsen groups them
into Strings, Wind and Percussion. In these notes the
classification scheme of Olsen will be followed but the
order of presentation will be altered so that the
instruments with the conceptually simplest operations
will be considered first.

12.1 Percussion Instruments

12.1.1 General Features of the Class

As the name implies, these instruments produce
musical tones as a result of a hit upon a vibrating
system.  The direct sound from these instruments is
therefore characterized by a sudden onset of a note
with a subsequent decay.  The maximum loudness of
the direct sound is therefore at the very beginning of
the note (i.e the very first oscillation cycle of the note).
This gives a sharp time signal for the note leading to
the predominate use of such instruments in
establishing a rhythm or beat to the music.

The principal concern with recording percussion
instruments is then to make sure that there is adequate
direct sound compared to the reverberant sound.  This
is because of the importance of the first few
milliseconds of sound from a percussion instrument.
In a large orchestra, this can be difficult because the
percussion instruments usually  placed at the back of
the orchestra and so will be considerably farther from
microphones than will be what are regarded as the
more important  instruments such as the first violin
and, possibly, a piano.

 When a percussion instrument is struck, the initial
displacement of the vibrating parts by the blow sets up
a particular combination of the normal modes of the
instrument. The timbre and loudness of the resulting

tone is determined by the particular combination of
normal modes that are achieved by the blow.

The combination of normal modes that are set up by a
blow to a percussion instrument is determined by a
variety of factors including the hardness of the
hammer, the hardness of the point of the system being
struck, the position of the point being struck and, of
course, the swiftness of the strike.  A particular
percussion instrument can therefore sometimes
produce a wide variety of sounds, depending on the
particular needs of the music.

From the material of the preceding chapter, the
following can be considered to be general rules:

1. A strike with a hard object will set up more of the
high frequency modes, resulting in a brighter
timbre, than a strike with a soft object.

2. A sudden, sharp strike will not only set up higher
excitation levels for all the modes but will also
favour the higher frequency modes.

3. In many instruments, such as a drum, the
excitation level of a particular mode can be varied
by varying the point of impact upon the
instrument.  In general, the closer the impact is to a
rigid support of the system, the more the high
frequency normal modes will be favoured.

4. Since the normal modes are independent, they will
all decay with their own particular time-constants.
Some of the modes will have a high Q then their
frequency neigbours and therefore tend to last
longer.  However, since the decay time also varies
with the reciprocal of the mode frequency the
higher frequency modes will generally decay
faster than the low frequency modes.  The timbre
of a note from a percussion instrument will
therefore usually become more mellow as it dies.

The partials in tones from percussion instruments are
the normal mode vibrations and these are not
necessarily harmonics of the frequency of the lowest
mode.  If the frequencies of at least one significant
higher normal mode is close to being harmonic to the
lowest mode, or if only the lowest mode is significant
in the sound, then the instrument is referred to as
having "definite-pitch".  If not, then the instrument is
referred to as having "indefinite pitch".

12.1.2 Definite-pitch Percussion Instruments

The definite-pitch musical instruments used in a
modern western orchestra include the tuning fork,
xylophone, marimba, glockenspiel, celesta, chimes,
bells and kettledrum.

(a) Tuning Fork

The tuning fork is a massive bar bent into the form of a
"u" so that the two ends can vibrate against each other
(see Fig. 12.1).
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Figure 12.1 A typical music tuning fork.

A rigid support shaft is attached to the bottom of the
"u" and fixed to a wooden box.  This allows there to be
a large amplitude of motion of the ends, and hence a
large amount of stored energy, with very little motion
of the point of support.  The system therefore has a
very high Q , the highest of any of the musical
instruments.  Also, the rigid point of support at the
center suppresses all other modes of vibration except
those of very high frequency which decay very quickly.
A very short time after the instrument is hit, the tone
therefore becomes very pure. The instrument is
therefore not used as an instrument to actually make
music but, as its name implies, to check the tuning of
playing instruments.

To most effectively couple the mechanical vibration of
the fork to the air in the room, and therefore get the
loudest sound into the room, the box is rectangular and
open at both ends and designed to have its lowest air
mode at the frequency of the tuning fork.  This mode
will be the "half-wave" mode which will have a
pressure maximum at the center of the box. The center
of the box therefore becomes a high impedance point
for the air resonance.  This improves the coupling of
the  very high-impedance oscillation of the fork to the
air in the box (see Chapter 13 on Acoustic Impedance).

(b) Xylophone

The xylophone consists of a number of metal or
wooden bars lying horizontally on soft material, the
points of support being at nodal points for the lowest
transverse mode of oscillation of the bars (see Fig.
12.2).  The notes are generated by hitting the bar with
a soft hammer and under the bars there is usually a
pipe resonator for each bar tuned to the frequency of
the lowest mode of the bar.

The design of the xylophone is obviously to enhance
the lowest mode of vibration and so give a very pure
tone.  However, as with any struck instrument, there
will be higher frequency modes induced by the impact
of the hammer.  The effect of the design favouring the
lowest mode is therefore to have these higher modes
decay very quickly, usually in only a few cycles or
several tens of ms.   This gives the zylophone its

particular form of attack; a short, but fairly soft,
transient followed almost immediately by a pure tone.

Bar

Open pipe
resonator

Hammer

Figure 12.2 A configuration of a xylophone.

Xylophones have frequency ranges of two or four
octaves, the usual frequency range being C3 to E7
(130.8 to 2637 Hz).  The marimba is very similar to the
zylophone but with a larger frequency range, F2  to F7
(87.3 to 2794 Hz).

Other instruments that are based on a struck vibrating
bar are the glockenspiel and the bell lyre.  These are
smaller than the xylophone typically from C3 to C6
(130.8 to 1046 Hz) and do not have resonating air
columns for amplification.  The bell lyre is the hand-
held version used in marching bands.

Another relative of the xylophone is the celesta which
is actuated by hammers connected to a keyboard as in a
piano. This instrument incorporates mechanical
dampers which cause the vibration of a particular bar to
cease after the key for that bar is released.  The range
of the celesta is typically C4 to C8  (261.6 to 4186 Hz)
.

(c) Chimes and other bells

Chimes, sometimes called "tubular bells", are related to
the zylophone in that the basic oscillation is the
transverse oscillation of a uniform bar.  However, in
chimes the "bars" are hollow tubes and they are
suspended vertically from their ends.  This allows a
different set of normal modes to be excited then in the
xylophone.  In particular it allows significant amounts
of the higher frequency modes to be sustained for a
short time.  Chimes therefore have a richer timbre than
the xylophone and have a characteristic more like that
of bells.  To excite these higher modes of oscillation,
the hammer is usually harder than that used in the
xylophone class of instruments.

Bells are typically of metal formed into an inverted cup.
They are essentially the two-dimensional versions of
the tuning fork in that instead of a bar formed into a
"u" it is a circular plate formed into a cup. The higher
modes of oscillation are therefore  analogous to those
of a circular plate shown in Chapter 10. The thickness
and shape of the metal is formed so that one or two of
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the higher modes have frequencies which are close to
harmonics of the frequency of the lowest mode, i.e. the
pitch of the bell.  This gives the characteristic tone of a
musical bell.

The carillon is a collection of bells in which the pitches
are selected to form a musical scale.  The individual
bells can be excited by various mechanisms, sometimes
electromechanical and sometimes in a keyboard
arrangement.  However, because of the large number of
higher modes that are not harmonic to the
fundamentals, the simultaneous ringing of many bells
can produce a discordant sound.

(d) Kettledrum

The kettledrum, sometimes called the timpani, is
formed of a leather skin stretched over a hollow
hemispherical bowl.  The shape of the bowl and the
density and tension of the stretched skin is set so as to
give a musical relationship between the frequencies of
the various modes of vibration of the system.  In this
way the kettledrum differs from other drums where
such a musical relationship is not usually maintained
and the instruments are therefore classified as being of
indefinite pitch and of limited musical use.

A mechanism operated by a pedal is used to adjust the
tension of the stretched skin very quickly and
accurately so that a musical scale can be played with
just one instrument. There are two standard sizes of
timpani, the smaller producing tones ranging from B 2
to F3 (116.5 to 174.6 Hz) and the larger from F2 to C3
(87.3 to 130.8 Hz).

 12.1.3 Indefinite-pitch Percussion Instruments

Indefinite-pitch percussion instruments used in modern
orchestral works include triangles, drums, tambourines,
cymbals, gongs and castenets.

(a) The Triangle

The triangle is a steel bar of varying cross section bent
to form a triangle (Fig. 12.3)

Figure 12.3 The configuration of a musical
triangle.

The hammer (called the beater) is also usually of metal.
The result of a hit is a complex mixture of transverse,
longitudinal and torsional vibrations, giving a sound
which is very rich in high frequency content and with a

very sharp transient.  It is for this reason that the
instrument is used primarily to mark rhythm and to call
special attention in a musical passage.

(b) Drums

Drums come in roughly three classifications, bass
drums, military drums and snare drums.  A related
instrument is the tambourine.  All of these instruments
are formed by stretching a leather skin over a structure
forming an air cavity but with no particular attention
being paid as to whether the various vibration modes of
the system are harmonically related.

Bass drums are used to mark time in music and to
augment the general output of sound, particularly in
low frequencies and in out-door instruments.  They
have the familiar pill-box shape, identical skins
stretched over each end of a short cylinder, and range
in size from about 60 cm to over 3 m in diameter.

The military drum is similar to the bass drum except
that it is smaller and is formed from a cylinder which
has a greater length to diameter ratio than for the bass
drum.  This gives the instrument more high frequencies
components then the bass drum and gives it the
characteristic "marching" timbre.  Transients in the
sound of this drum can be much more pronounced
than in the bass drum.

The snare drum is essentially a miniature version of the
bass drum but with a set of catgut strings attached to
the side of the drum which is not struck by the batons.
The strings are designed to be touched by the leather
membrane when it vibrates, resulting in a buzzing
sound.  The tone of a snare drum is brilliant and crisp,
indicating a complex transient in the attack of the note.

The tambourine is also a miniature version of the bass
drum but with a very short cylinder which is more like
a ring than a cylinder and with only one side covered
by a stretched membrane.  It is essentially a noise-
maker with small disks of metal added to the outside of
the ring to enhance the effect of the instrument.  Its
sound will have a very complex waveform with very
transient characteristics.

(c)  Cymbals and Gongs

A set of cymbals is formed of two disk of brass each
with a concave section at the center.  The vibration
patterns of each disk are therefore very much like that
of a circular disk but, unlike in the case of the bell, no
attention is paid to having the various modes of
vibration harmonically  related.  The instrument is
therefore one of indefinite pitch.

Sometimes a single cymbal is mounted on a drum so
that the drummer can play it in conjunction with the
drum performance by using a drum-stick.  Usually
however, they are played in pairs, the sound being
made by striking the two disks together.

In any case the result is an extremely complex pattern
of vibrations in the disks.  In the hand-held version the
actual sound pattern radiated into a room can even be
further complicated by the relative placement of the two
disks by the performer  after the note has been struck.

The gong is related to the cymbal in that it is a basically
a metal disk struck by a hammer.  Compared to a
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cymbal however, it is usually very large and the
hammer is very heavy and has a soft head.  This
produces a set of very low frequency modes of great
power.  However, the modes are again not harmonically
related and the initial sound from the instrument is
often referred to as a loud roar.  However, because of
the tremendous power of the instrument the sound can
last a long time.  After a long time only the most
powerful low frequency mode is left and so the sound
from the instrument gradually progresses from a loud
roar to a pure tone.

(d)  Castenet

The castenet is essentially a three-dimensional version
of a set of cymbals in that it is formed of two
approximately hemispherical shells clapped together to
form a sound.  It therefore also has a great deal of
complexity in its modes of vibration.

However, castenets are formed of wood instead of
metal and are much smaller and are hand-held.  They
therefore produce much less sound than do cymbals
and have a very different timbre, this timbre not only
being due to the properties of wood compared to metal
but also being influenced by resonances in the air
cavity formed between the two hemi-spherical shells.

Because of their small size, the radiation patterns of all
the modes from a castenet are very simple, essentially
uniform in all directions.

12.2 String Instruments

12.2.1 General Features of the Class

The vibrating string is the basis of some of the oldest
musical instruments.  These instruments were very
important in the development of music itself.  This is
because generally humans find a great attraction to
sounds that simultaneously contain harmonics of a
fundamental tone, i.e. contain parts that are "in
harmony". In musical terms they are sounds that
contain "partials" that are harmonically related to the
fundamental.  The availability of instruments that
provided such sounds therefore considerably expanded
the range of musical possibilities and it was discovered
very early that the vibrating string provided such
sounds.

The vibrating string is one of a very few, select,
systems which has its higher mode frequencies close to
being harmonics of the fundamental. It is extremely
rare in nature to find an object which has this property,
despite the fact that practically all objects will make
some sound when struck and many will produce
ringing sounds.  This is the reason for the vast number
of indefinite-pitch type percussion instruments in the
music of the human race and the relatively late
development of percussion instruments of the definite-
pitch type. These instruments typically required eons
of development of the human skills necessary to craft
the devices into a form where the higher modes of
oscillation had frequencies which were multiples of that
of the lowest  mode.

This was not so for two very simple systems; the
stretched string and a long hollow tube.  These systems

then form the basis of some of oldest musical
instruments. Because of the ease of understanding the
mechanisms by which a stretched string is put into
vibration, this form will be considered first.

(a) The Frequencies of a Stretched String
-If some simplifying assumptions are made about a
stretched string, the frequencies of the various modes
of vibration of that string can be easily calculated.
These assumptions are:

1. The string has uniform linear density along its
length, i.e. each millimeter of its length will have
the same mass.

2. There is a uniform tension along the string.

3. The string has no resistance to bending, i.e. it is
perfectly flexible like a loose extremely fine chain.

4. Other than the tension, there is no force on the
string aiding or resisting its motion.

5. The string is firmly fixed so that there is no
motion whatsoever at its two ends.

If all these conditions are met, then the string will have
normal modes of oscillation (the "standing waves of
Chapter 10) which are transverse vibrations of
frequency

fn  =  
n
2L √⎯ T

m (12.1)

when n is an integer designating the mode number (1
being the fundamental or lowest mode), L is the string
length (in meters), T is the tension in the string (in
Newtons, where 1 Newton is approximately the weight
of 100 gm) and m is the linear density of the string in
kg per meter (1 kg/m = 10 gm/cm).

From (12.1) it can be seen that, since L,T and m are all
constants of the string, the frequencies are
proportional to the integer n.  They are therefore
harmonically related.

Thus if the conditions listed above are all met, then a
vibrating string will have harmonically related modes of
vibration.  Of course, for any real string they will not
be met absolutely but for strings that can give vibration
frequencies in the range that is of interest in music,
they can be easily met to a very high degree.  The
practical conditions are:

1. The string must be strong and capable of a high
tension with very little mass  so that the ratio of T
over m  in (12.1) is large enough for the
frequencies to be in the musical range of interest.

2. The string must be uniform over its length.

3. The string must not provide any significant
resistance to bending.  This condition is met for a
string which is very thin compared to its length.

4. The string must have very low frictional forces to
its transverse vibration.

5. The points of support at the ends must be sharply
defined and very rigid.

In practical wires used for such strings, it is possible to
achieve normal mode frequencies for n up to about 8
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which are no more than 0.1% different from the
harmonics of the lowest mode.  This would be typical
for a violin string but for a piano where more sound
power is required and the string is heavier and
therefore thicker, the deviations for the n = 8 mode can
be as high as 1%.  However,  deviations from the
harmonics at these high modes are usually not of
significance because the higher modes decay very
quickly.  Since it takes some time for the pitch of a
tone to be established (see the material on the Fourier
transform of Chapter 9) the harmonic relationships of
the partials of a tone are not perceived until the higher
frequency components have significantly diminished.

However, while the tonal qualities of a vibrating string
must have been noted very early by prehistoric man it
did not become the basis of musical instruments until
the development of systems for coupling the string
motion to the surrounding air.

(b) Coupling a Vibrating String to Surrounding Air

The basic method by which the motions of a vibrating
string are coupled to air is through a "sounding board".
This is a  large surface area, usually of wood, to which
is firmly attached a structure which defines one end of
the vibration patterns  of the wires (see Fig. 12.4).

String

String Support Tie-down

Tie-down &
Tension Adjustment
Device

Frame

Sounding Board

Figure 12.4 A schematic representation of a
sounding board system for coupling the motion
of a vibrating string to air.  The system shown is
a simplified version to that used in a piano.

As a consequence of this coupling, the modes of
vibration of the sounding board itself come into play.
To have a good coupling of the string motion to the
board there must be a dense spectrum of normal modes
of the board covering the frequencies of the modes of
vibration of the string.  A large board will normally
have such modes.  Also, of course, a large board is a
very efficient radiator of sound from its vibrating
modes (see the Chapter 13 on acoustic impedance).

However, for many stringed instruments, particularly
those that are hand held, a large board is undesirable.
A smaller, lighter board is then used and accompanied
by a box behind the board.  Such a box will have, in
addition to the vibration modes of the sounding board
under the strings, modes of vibration of its back
surface and of the air in the box.  To use all these

modes, the back surface is connected to the sounding
board by a wooden post, thereby even further
increasing the possible modes of vibration, and the air
in the box is coupled to the surrounding air by one or
more holes in its surface.  (Of course, one of the most
prominent air modes of such a box will be the
Helmholtz oscillation.)

The radiating pattern of a typical stringed instrument
will therefore be that of the various modes of the
system which resonate with the string modes.

There are basically three types of stringed instruments,
the plucked string, the struck string and the bowed
string.  When a stringed instrument is plucked or
struck, it has many of the characteristics of a definite-
pitch percussion instrument. This sub-class of stringed
instruments will be discussed first.

12.2.2 Plucked and Struck String Instruments

Examples of ancient plucked string instruments are the
lyre, lute and zither.  Examples of modern plucked
string instruments are the guitar, mandolin, banjo and
ukelele, harp  and harpsichord. The principle examples
of modern struck string instruments are the dulcimer
and, of course, the piano, perhaps the most prevalent of
all musical instruments in the western world.

The difference between activating a stretched string by
plucking or striking is in the manner in which the initial
normal modes are excited.  In a plucking action, the
various levels and phases of the initial modes are those
that add up to give the shape of the string just before it
is released (see Fig. 11.11).   By plucking the string at
a point near the center the fundamental and all
subsequent odd numbered modes can be favoured.  By
plucking the string near one of the tie-down points, the
higher frequency modes can be favoured. By gripping
the string more securely at any particular point before
releasing, the level of all the modes can be raised.
However, if the string is always plucked at the same
point and by the same implement, the timbre of the note
will not change a great deal with the level of the note
produced.

When as string is struck, the primary effect on the
string is to give it an initial velocity rather than an initial
displacement.  The initial modes that are excited are
therefore those that have velocities which add up to the
velocity induced by the strike.  Thus an impact with
greater velocity will tend to favour the higher frequency
modes.  The timbre of a struck string will therefore
noticeably change with the strength of the strike, an
effect which is of great importance in the piano where
the timbre of the notes can be appreciably altered by
the "touch" of the pianist.

The consideration of particular plucked and struck
stringed instruments will start with what is usually
considered to be the guitar family

(a)  The Guitar Family of Instruments

The guitar family of stringed instruments originated
with the lyre of ancient Greece.  A simplified sketch of
its configuration is shown in Fig. 12.5
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Figure 12.5 Sketches of the lyre and the lute.

The lyre is not only regarded as the forerunner of the
guitar family but for all stringed instruments in that it
incorporates the essential features of the stringed
family.  In addition to a structure for supporting the
vibrating strings and putting them under the correct
tension, it has a sounding board in the form of one side
of a box and holes in the box to couple the air
vibrations within the box to the surrounding air.  The
length of a particular string under vibration could be
controlled by pressing the string against a fingerboard
immediately behind it, very much like in a ,modern
violin.

Because of the relatively small cavity of the box, and
other features of the instrument, the sound level
produced by the lyre was not very great by modern
standards.  However, because the general noise level in
society was considerable lower at the time of the lyre
than in modern times, not as much sound power was
required in a musical instrument.  Remember that this
was the age when actors could entertain audiences in
large open amphitheaters with, of course, no electrical
amplification of their voices.

The lute is regarded as the more immediate forerunner
of the guitar in that the box has a larger cavity and the
device has frets which the player can use to limit the
vibrating lengths of the strings.  It was developed about
1000 years ago.

The use of frets instead of the soft tissue of a finger to
define the vibrating length of a string allows the higher
frequency modes in the string to last considerably
longer and gives a brighter tone to the instrument
compared to the lyre.  Also the structure of the
instrument, particularly the large round cavity and
larger holes gave more efficient coupling of the string
vibrations to the surrounding air and hence a louder
sound.

However, the sound level from a lute was still much
lower than that from the modern members of the guitar
family.  Compared to the lute, these instruments have
heavier strings and a stronger body allowing the same
tone frequencies as in the lute to be generated with
much more power and richer timbres.

Of the modern instruments, the mandolin has
essentially the geometry of the lute except that it has

only four strings, tuned to G3, D4, A4 and E5 (196,
293.7, 440.0 and 659.3 Hz).  The frets are set so that
the fundamental vibrations resulting from the string
being pressed against two adjacent frets in succession
will be one semi-tone apart.

These strings are stretched over a bridge, as in a guitar
or violin, giving a much better coupling of the string to
the sounding board formed by the flat surface of the
box. This gives the instrument much more sound
power than lute. The instrument is plucked with a pick
or plectrum rather than by the fingers and so the tone is
rich in higher frequency modes.

The modern guitar is obviously a further development
of the lute in that the resonating box is even larger than
for a mandolin and the strings are longer and heavier.
Consequently the fundamental frequencies of the
strings are much lower than for the mandolin.   It has
six strings tuned to E2, A2, D3, G3, B3 and E4 (82.4,
110, 146.8, 196, 246.9 and 329.6 Hz respectively) and
frets to produce tones at half-tone spacings.

The strings of a guitar can be plucked by using bare
fingers or a plectrum.  By plucking softly with a finger
in the center of the free length a relatively soft pure
tone can be produced.  By striking with the finger nails
near the bridge a tone which is very rich in harmonics
can be produced (see Fig. 11.11).  Thus a sudden and
very great change in timbre can be achieved using the
instrument, a feature which is characteristic of the
guitar.

There are some other commonly played stringed
instruments of the guitar family; the ukulele, the
Hawaiian guitar and the banjo.  The ukulele is
essentially a small version of the ordinary guitar  with
only four strings.  The Hawaiian guitar has a unique
arrangement for limiting the vibrating lengths of the
strings by using a sliding metal fret. The higher
frequencies and the sliding tones that can be produced
while a strong high frequency content give this form of
the guitar its unique sound.  It typically has only four
strings.

The banjo is another four-stringed instrument.  It
produces its unique tones by forgoing a resonating box
and using a membrane stretched over a relatively small
round rim as a sounding board. There is no covering
on the other side of the rim so there is no resonating air
cavity.

Because of the  structure and shape of the banjo, the
high frequency modes of the strings are much more
efficiently coupled to the surrounding air than are the
low frequency modes. The timbre of the tones
produced are therefore rich in high frequencies.  The
four strings are tuned to C3, G3, D4 and A4 (130.8,
196, 293.7 and 440 Hz).

(b) The Piano Family of Instruments

The ancestor of the piano can be considered to be the
zither.  This instrument of antiquity is still played in
modern times. It is made up of a set of strings of
varying composition stretched horizontally side by side
over the top of a flat hollow box.  The edge of the box
forms a frame over which the strings are stretched  and
the box itself forms a sounding board.  The box has a
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very large hole to help in coupling the sound in the box
to the surrounding air.

The modern instrument consists of 32 strings of which
four are located over a fretted board.  These strings are
used to play the melody while the remaining 28 strings
are used for accompaniment.  The stings are played by
plucking with a ring-type plectrum.

Because of the small size of the zither and the weight
of the strings, it is not a very loud instrument,
particularly compared to the piano.  The range of the
strings is also limited.  The four melody strings of a
modern zither are tuned to C3, D3, D4 and A4 (130.8,
146.8, 293.7 and 440 Hz) and the accompaniment
strings range from C2 to A 4 (65.4 to 415.3 Hz).

The harp can also be considered a forerunner of the
piano in that it consists of a set of heavy strings
stretched over a massive frame and covering a wide
range of fundamental frequencies (from C1 to G7, or
from 32.7 to 3136 Hz).

In the case of the harp the strings are mounted
vertically and are played by plucking or stroking with
the fingers.  The lower section of the harp, which
supports the lower ends of the vibrating strings, is
widened to form a sounding board. However, while the
massive strings can contain a great deal of vibration
energy, the relatively small sounding board, compared
to that of a piano, does not couple the string motion
very effectively to the surrounding air. Thus the sound
of a harp is much gentler than that of a piano but, on
the other hand,  can last much longer.

Because it is instrument plucked by fingers, the harp is
a very mellow instrument with not very much of the
high frequency modes being excited.

A more immediate ancestor of the piano is the
harpsichord.  This instrument has a large number of
steel strings stretched over a frame, the strings lying in
a horizontal plane.  A particular string is plucked by a
leather or fibre plectrum which is actuated by the press
of a key associated with that string. The shape and
arrangements of the keys are that of the grand piano.
The range of the keys of a typical harpsichord is from
G1 to F6 (49 to 1397 Hz).

Because of the mechanical plucking arrangement, the
sound of a harpsichord is characterized by having very
little variation in intensity and timbre of its notes
compared to that of a piano.  Also, the overall intensity
of the sound produced by the instrument is
considerable weaker than that of a piano. While this
makes it more attractive to some people as a musical
instrument, it makes it of considerably less versatility in
musical works.

Another forerunner of the piano is the dulcimer.  It
resembles a piano without legs and is played by hand-
held hammers, one in each hand. More variation in
intensity and timbre can therefore be achieved than in
the piano.  It is also perhaps significant that this was
one of the first forms of struck stringed instruments.

As mentioned earlier, the piano is perhaps the most
predominant modern musical instrument.  There are
many good books written on the piano, its mechanism
and the sounds it produces.  The amount of
development which has gone into the modern grand
piano has resulted in a very complex and very subtle

instrument.  The efficiency which which a grand piano
can transform human finger power into sound is truly
amazing.  No attempt will be made here to fully
describe this important instrument but only to
summarize its important features.

The piano is basically a large number of steel strings of
various thickness, densities and construction (some are
wires wrapped by other spiral wires to increase the
strung mass without diminishing its flexibility)
stretched over a heavy steel frame.  A very large sound-
board is used to couple the vibrations of the strings to
the surrounding air.  The strings vary in fundamental
frequency all the way from A0 (27.5 Hz) to C8 (4186
Hz).

The normal modes of the strings are activated by felt
hammers connected to keys laid out in the familiar
piano key-board arrangement.  One key activates two
or three strings simultaneously to increase the intensity
of the sound.  The strings for any particular note can
be tuned to give beating effects. Because of the massive
strings, the higher frequency modes, as already
mentioned, deviate noticeably from being harmonics of
the lowest mode.  Furthermore, the suspension of the
strings is such that the plane of vibration of a particular
mode rotates in time, each mode rotating at a different
rate.  The coupling of the mode motion to the sound-
board is much more effective when the vibration is in a
plane perpendicular to the board then when it is parallel
to the board. This causes a bobbing up and own of the
perceived intensity of each the normal modes, each
mode bobbing up and down independently.  All of this
makes the piano tone one of the most subtle sounds in
the musical world and, of course, one of the most
difficult to tune for optimal performance.

The importance of the piano as a musical instrument
also contributes to problems in recording its music.
Because it is heard so often by so many people, the
subtleties of its tones are appreciated by a great number
of people.  It is therefore important that a recording be
very faithful to its sounds

The major problems with recording a piano's sound
stems from its large size and the large size of its
radiating surfaces; the sounding board and, in a grand
piano, the reflecting lid used to direct the upwardly
propagating sound of the sounding board horizontally
towards the audience.  The size of these surfaces gives
even the low frequency components of the sound a
very directional characteristic.

However, this directional characteristics of a grand
piano can be used to some advantage.  Provided a
microphone is placed within the main radiating fields
of the lid and, possibly, the floor underneath the piano,
the room radius will tend to be much larger than for an
isotropic source and so the microphone can be safely
moved far enough away from the instrument to receive
a balanced sound from all of the piano's radiating
components.

12.2.3 Bowed String Instruments

The bowed string instruments are the first in this
sequence of considerations to represent a sustained
tone generator.  To generate any sustained tone from a
human effort there has to be some sort of feedback
effect which causes the energy put into the system by
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the human to be transformed into energy of oscillation.
This is because the frequency of sound oscillations are
far beyond that which can be produced directly by
human shaking of the instrument.

The basic feedback mechanism at work in bowed string
instruments  has been presented in sec 11.8 of Chapter
11.  It depends critically on the property of resin which
gives it a very high static friction and a very low kinetic
friction.  It other words, resin is sticky.  This means
that when a resined bow has been pressed against a
string, a sort of glue joint forms.  As the bow is
pressed sideways, perpendicular to the string, the string
will accompany the bow  for a while until the force
required to displace the string breaks the glue joint.
The string now flips rapidly back to its rest position
and, because of its momentum, a little beyond.  It then
comes to rest and a new glue joint forms with the
resined bow.

This sequence would normally be repeated with
varying release times and intensities as the various
regions of the bow, with varying amounts of glue etc.
pass over the string.  However,  the first release causes
a travelling wave to go along the string to the far end
where is is reflected back towards the bowed end.  The
result is that when it returns to just under the bow, this
reflected wave can trigger a break of the glue joint.  The
pulse caused by this new break will add to the pulse
that caused it, resulting in an increase of the
disturbance on the string.

Thus it is seen that the basic conditions for a feed-back
oscillation are met. The previous pulses cause a new
pulse which is added to the old ones and the resultant
oscillation grows.  It can also be seen that what is
achieved is a sawtooth oscillation of a very definite
frequency; that of the lowest mode of oscillation of the
string.

In chapter 9 it was shown that a saw-tooth oscillation is
very rich in all harmonics.  If then, there are modes of
the system which have frequencies equal to these
harmonics, then these modes will resonate at these
harmonic frequencies.  This is the reason for the
richness of the timbre of bowed string instruments.

A common characteristic of any sustained tone
generated by feedback is that the perceived sound level
in a room will grow in a complex fashion.  First there
is the starting transients; the initial pulse of sound from
the first release of the string from the glue of the
resined bow.  Then there will be subsequent pulses of
relatively uncertain periods (times between pulses)
while the reflected pulses on the string are weak and
not yet capable of reliably causing a fresh break of the
bow-string glue joint when they pass under it.
However, as the pulses travelling up and down the
string grow, they will settle into a definite pattern and
the frequency of the glue joint break will resolve into a
definite pitch.

At this point the tone will rapidly grow in intensity until
a point is reached where the  maximum possible
amplitude of oscillation is reached for the particular
bowing action used.  The sound level from the
instrument will then level off as shown in Fig. 12.6.

In most musical instruments producing a sustained
tone, the sound reaches to within 3 dB of the sustained
level within less than 0.1 seconds.  However, by then

another phenomenon has set in; the growth of the
reverberant sound in the room.  In a typical concert hall
this will also take about 0.1 second to reach to within 3
dB of its finally sustained level.  (For a concert hall
with a reverberation time, or time for a 60 dB decrease,
of 2 second , the time for a 3 dB change would be 1/20
of that or 0.1 see chapter 4.)
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Figure 12.6 The general growth pattern of a
feed-back oscillation.

Thus most of the power in the pitch defining
components of a tone in the direct sound from an
instrument grows at about the same time as the
reverberant sound in the room. The pitch and timbre of
both the direct and the reverberant sound therefore
develop together, becoming much louder than the
original starting transient.

However, in a good listening environment, the initial
starting transient can be clearly heard in the direct
sound because it is not masked by the sustained tone
which has not yet grown.  This is particularly true for
solo instruments where the passage between notes is
not masked by sounds from other instruments..

Within these considerations the individual members of
the modern bowed string instruments will be described.
These are the violin family; the violin itself, the viola,
violoncello and the double bass (contrabass).

(a) The Violin

The violin is an instrument with 4 strings tuned to G3,
D4, A4 and E5 (196, 293.7, 440 and 659 Hz). In a
general sense its construction is similar to that of the
guitar except that it is smaller.  However, in the shape
of the resonating box, the cross section and the type of
wood used for the sounding board and the back plane,
and even in the shape of the air holes, much more
attention is paid to achieving a broad spectrum of
modes of oscillation in the system to give the proper
timber to the sound in the room.

The violin is the most common of the bowed string
instruments.  This is because its frequency range fits
into the middle of the musical spectrum and in any
well-balanced symphony orchestra has, by far, the most
players of any of the instruments in the orchestra.
Typically there will be 35 violins, 12 violas, 10
violoncellos and 8 contrabasses.
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The modern concert violin, like the grand piano, is a
marvel of human craft.  There is great complexity and
subtlety of its tones and in their development following
an initial bowing motion, and these subtleties and
complexities are  individual to any great performer.
Because the violin is heard so often by people who
favour classical concerts, as for the piano, the subtleties
of its tones are appreciated by a great number of
people.  It is therefore important that a recording be
very faithful to the violin.

However, the violin does not seem to present as many
problems in recording as does a piano.  This is because
the instrument is considerable smaller and its direct
sound is therefore not as directional as from the piano.
Also, because of the slower growth of the full sound,
the ratio of direct sound to reverberant sound is not so
important.  The starting transient of a violin with softly
attacked notes can be as long as 300 ms.  For sharply
attacked notes the main sound power will have a
starting transient of from 30 to 60 ms, depending on
the note that is played.  This compares with a "starting
transient" for the room reverberation of about 100 ms.

However, in a sharply attacked note there will be a
much shorter transient for the high frequency
components and so the direct sound must still be given
prominence, particularly for the lead violinist.

The frequency spectrum of the sounds from a violin,
particularly that of the upper strings, is very rich in
harmonics.  In fact, except for the lowest string, the G
string, the strongest partial in a tone is not the
fundamental.  The frequency spectra of the tones from
the higher strings peak at 3 to 4 kHz and have
significant components at 10 kHz. Even in the G string,
there are frequency components at 8 kHz which are
only 25 dB down from the fundamental.  This is, of
course, the 40th harmonic of the fundamental of that
string!

However, while the fundamental and the lower tones do
not make up a very large part of the overall sound of a
violin, they are very important in establishing the pitch
of a tone.  They must therefore be faithfully recorded.
Since the high frequency components and the low
frequency components have vastly different radiation
patterns (see Chapter 6), microphone placement for a
solo violinist can be a difficult decision to make.

(b) The Viola

The viola is somewhat like a large violin.   It is played
in the same manner as a violin and has about the same
shape.  It just has heavier strings and a larger body.
The strings are tuned to C3, G4, D4 and A4 (130.8,
261.6, 293.7 and 440 Hz).  Thus it is close to being a
violin with all the frequencies reduced by about 30% or
about a musical interval of a fifth.  It therefore fills in a
different part of the musical spectrum, towards the bass
compared to the violin.  In a way its function relative to
the violin is similar to that of the left hand versus the
right hand in piano playing; that of a support for the
melody of the violin.

However, the viola has a high enough register to have
significant musical works composed for it in its own
right.  The same care taken with recording the violin
should then taken with the viola.

While the sound of a viola is very similar to that of a
violin transposed down about 30%, taking a recording
of a violin and playing it as 70% speed will produce a
sound which is noticeable different from a viola.  This
is because to make the instrument manageable its
dimensions are less than is 1.5  times those of a violin.
(1.5 is the factor that would bring about a 33 %
reduction in all frequencies.)  In fact it is only slightly
bigger than a violin, being about 66 cm long compared
to the violin which is 60 cm long.

The viola is therefore not exactly a scaled up violin and
its radiation patterns are slightly different. Also, relative
to the violin it has an even higher fraction of its sound
power in the higher harmonics compared to the
fundamental.

(c) The Violincello and the Contrabass.

 The violoncello is again similar to the violin but even
larger than the viola.  Its strings are tuned to be exactly
one octave down from the viola. Because the
violoncello (commonly called the "cello") is played
between the knees and not on the shoulder, a much
larger box can be used.  There is a therefore a
considerable jump in size, to an overall length of 117
cm, from the viola to the cello.

The directional and tonal characteristics of a cello are
therefore very much like those of a violin with the
frequencies all scaled downward by an octave and a
fifth (to about 33% of those of the violin).

A similar step occurs to the contrabass.  The four
strings of this instrument are tuned to E1,, A1, D2 and
G2 (41.2, 55, 73.4 and 98 Hz).  This is over two
octaves down from the violin.  The length of the
contrabass is 198 cm, about the proper ratio to maintain
acoustic proportions with the violin.  Its timbre and
radiation patterns will therefore be very similar  to that
of a violin for notes transposed down two octaves.

However, the cello, and particularly the contrabass, do
not usually present significant recording problems
since they are not used for the principal parts of
musical works but a bass accompaniment.

12.3 Wind Instruments

12.3.1 General Features of the Class

Wind instruments are made up a sound production
device incorporated into a resonating air column, with
provision for radiation of sound from the resonating
column into the surrounding air. They are all of the
sustained tone type.  They are all therefore based on
acoustic feedback from the resonating column to the
sound production device.  Their tone growth will
therefore generally follow the pattern of Fig. 12.6
shown in the context of the growth of sound from
bowed string instruments.  From a physics point of
view, the main difference between a wind instrument
and a bowed string instrument is that the travelling
wave used for the feedback to the sound producing
element is in air rather than along a string.

However, the modes of vibration of the resonating air
column will generally not be as close to being
harmonics of the lowest mode as in the case of a
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stretched string.  Furthermore, the basic sound
producing element will not usually produce oscillations
with a sawtooth waveform as in a bowed stretched
string. The tones produced by wind sinstruments will
therefore have very different timbres than that of the
bowed string family of musical instruments.

Winds instruments are often classified into two types
based on the material from which they are made; brass
and wood.  The musical justification for this is the
distinctive difference in timbre of instruments made
from these two vastly difference materials.  However,
from a physics point of view, an alternate classification
is perhaps more appropriate; that in terms of the basic
sound producing element of the instrument.  This is the
classification used in Olsen and which will be used
here.

The basic sound producing element of all wind
instruments may be called a "reed".  In this meaning, a
reed is any small stiff surface over which air flow will
tend to set up oscillations, either in the air flowing over
the reed, in the reed itself, or in both.  Air flow over any
reed produces sound due to the Bournoulli effect,
considered in Section 11.7.4.

Within such a classification scheme there are several
distinct types of musical instruments; the air reed,
where only the air flowing over a reed vibrates, the
single reed in which only one reed vibrates against a
solid surface, and the double reed in which two reeds
vibrate against each other.  These three distinct types of
reeds will be considered in turn, starting with the type
that is perhaps easiest to understand; the double reeded
instruments.

12.3.1 Double Reed Wind  Instruments

As in all wind instruments, the basic sound production
mechanism in a double reeded wind instrument is the
Bournoulli effect. The so-called "Bournoulli Principal"
is that air under flow creates a vacuum proportional to
its velocity.  This can be thought of as a tendency for
moving air to suck other things into its path, including
solid surfaces. Among other things, it is the basis of
modern airplane wing design (Fig. 12.7).

Figure 12.7 The profile of a modern airplane
wing.   It is deliberately designed to have a
greater curvature on the top surface than the
bottom so that the air over that surface has to
move at greater velocity than that over the bottom
surface.  This produce a lift, even when the
bottom surface is horizontal as shown. This
minimizes the drag force compared to the lift
force.

By having the wing curved so that there is a longer path
length over the top surface than the bottom, the air
flowing over the top surface has a longer way to go

than the air flowing over the bottom surface.  It
therefore must travel at greater speed over the top than
over the bottom.  The air flowing over the top therefore
creates a greater vacuum than that flowing over the
bottom and so produces a lift on the airplane wing.

In the case of a double reeded wind instrument, air flow
between two identical flat reeds causes a vacuum in the
air between the two reeds (Fig. 12.8).

Vacuum force

Vacuum force

Figure 12.8 The profile of a typical double
reed in a wind instrument.  The reed in their
relaxed state are typically separated by a small
gap. Air flow through this gap results in a
negative pressure causing the reeds to be pulled
together to close the gap.

If the reeds are flexible, the vacuum caused by the air
flow will pull them together.  This, of course, closes the
gap and reduces the air flow and therefore the vacuum
force.  The reeds therefore move apart again.

Clearly, an oscillation will be set up.  Furthermore, if
the air flow is strong enough and the reeds flexible
enough, the reeds can be made to completely shut off
the air flow for a short period of time.  Thus the flow
of the  air from the end of the reed combination can be
made into extremely sharp pulses, leading to an
oscillation which is very rich in harmonics.

Thus both the frequency of the oscillation and its
timbre depends on a variety of factors including the
elasticity of the reeds, their mass and the strength of the
air flow.  Part of the set of skills of a double reed wind
instrument player, in addition to blowing and tonguing
techniques, is the use of a sharp knife to shave the
reeds and proper moisture treatment to achieve a
desired timbre from the instrument.

The attack of a double reeded instrument is
distinguished by a particularly well-behaved
exponential development to a saturation level as shown
in Fig. 12.6.  This is because any initial starting noises
due to tonguing to get a particular note started are
filtered out by the body of the instrument which
completely encloses the reeds.  The tones also develops
fairly quickly compared to an instrument of the string
family in the same register of frequencies.  This is
because the stored energy in the air column of  a wind
instrument is considerable less than that of a vibrating
string and so the Q of its normal modes is less.  A
lower Q  results in not only a faster decay after the note
is finished but also a faster rise in the energy of the
resonator (see Chapter 11).
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The principal modern orchestral double reed wind
instruments are the oboe, the oboe d'amore, the
bassoon (& contrabassoon), the sarrusophone and the
English horn.

(a) The Oboe

 The oboe has a range of almost three octaves, from
B 3 to G6 (233 to 1568 Hz).  It's resonator is a long
slightly conical tube, closed around the reed at the
mouthpiece end and slightly flared at the mouth. The
overall length of the instrument is slightly over 60 cm.
Asd in all wind instruments, the effective length of the
air column for resonance purposes is adjusted by
opening and closing holes in the side of the column.

Because of the sharpness of the air pulses entering the
resonating column from a double reed, the spectrum of
sounds from an oboe is very rich in harmonics.
However, the actual harmonics that are radiated from
the instrument are determined by the normal modes of
the resonating pipe.  These produce several formants in
the oboe sound, a sound which has been characterized
as that of the vowel "a", with strong broad formants
centered on about 1100, 3000 and 5000 Hz and a
smaller one as high as 10 kHz.

Despite the presence of many harmonics, the starting
transient of an oboe, as pointed out earlier, is well
behaved;  all the harmonics developing together with
the basic oscillation to which they are associated.  The
starting transient for a tongued note can be as short as
40 ms, even for the lowest not and as short as 20 ms
for the highest note.  However, by gentle blowing the
the notes can have a starting transient as long as
100 ms.

(b) The Bassoon & Contra Bassoon &
Sarrusophone.

The bassoon is essentially a very large oboe with the
resonating column doubled back on itself to make the
instrument manageable.  In this way a resonating
column  of overall length 2.4 m is achieved in an
instrument which is only about 125 cm long.

The range of  a bassoon is B 1 to E 5 (58.3 to 622 Hz),
or about 2 octave down from the oboe.  Its radiation
properties for its tones are therefore very similar to
those from an oboe transposed up two octaves.
However, the formants, corresponding the the "a"
vowel sound,  are not transposed all the way down to
two octaves but occur at about 500, 1200, 2000 and
3500 Hz.

The contrabassoon is an even larger version of the
oboe. Its resonating tube is folded several times to get
an overall length of almost 5 meters into a length of
about 125 cm.  Its fundamental range is B0 to F3 (30.8
to 174.8 Hz) or about one octave below the bassoon.
Its sounds and radiating properties are therefore very
similar to that of the same tones transposed up one
octave to a bassoon (or transposed up three octaves to
an oboe).  The formants of the contra bassoon are
about one octave down from the bassoon being at
about 250, 450, 700 and 2000 Hz.

The sarrusophone is very similar to a bassoon in
configuration but is made of brass and has a slightly

greater flare at the mouth.  This gives it a more
"brassy" character than the bassoon but otherwise its
acoustic properties are very similar. It comes in various
sizes but the most common form is somewhat
equivalent to the contrabass type having a range of D 1
to B3 (34.6 to 247 Hz).

c) The English Horn & Oboe d'Amore.

The English horn is very similar to the oboe (it's
fingering is even the same) except that it has a hollow
spherical bulb with a small opening at the mouth of the
instrument.  This considerably changes the timbre of
the sound and introduces another lower formant,
making the "a" vowel sound slightly darker than that of
the oboe.  Also, the resonances are at a lower slightly
lower frequency than for the oboe, the sounds
produced being somewhat like an oboe transposed
down one-fifth (to 2/3).  The Oboe d'Amore (or
heckelphone) is similar to the English horn except that
it is transposed down from the oboe by only a third (to
4/5).

12.3.2 Human Voice (vocal-cord reed)

The basic sound production mechanism in the human
voice has similarities to that of a double reed wind
instrument.  A rough sketch of the human voice
production system is shown in Fig. 12. 9.

Vocal Cord

Larynx

Nasal cavity

Mouth

Figure 12.9 A sketch of the important
components of the human voice system.

The vocal chords of a mammal resemble a double reed
in that air is forced trough a slit in a membrane which
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is stretched by muscles.  The vocal tract into which the
air pulses from the vocal cords enter forms a
resonating cavity which, like in the double reed
instruments, is closed around the double reed and open
at the far end.

However, in the case of the human vocal tract the
resonating cavity is very complex and its normal modes
can be altered considerably by the placement of the
tongue, the opening of the mouth and the amount of air
directed through the nose.  It can therefore be "tuned"
to give specific formants leading to different vowel
sounds.

12.3.3 Lip Reed Instruments

Lip reed instruments are also related to the double reed
instruments in that the lips which are pressed together
form a double reed.  Also, the lips are pressed tightly
against a mouthpiece leading to a resonating cavity so
that the resonating cavity is closed around the sound
source. The other end of the cavity is open to let sound
radiate into the  surrounding air.

The principle modern lip-reed instruments are the
bugle, the trumpet, the cornet,  the French horn, the
trombone and the tuba

12.3.4 Single Mechanical Reed Instruments

Single reed instruments differ from double reed
instruments in that only one reed is allowed to vibrate.
They may be thought of as devices in which one of the
reed of a double reed instruments doesn't move.  Their
tonal characteristics can therefore be very similar to
double reed instruments.

However, the single reeds of musical instruments are
often of metal for durability and reliability in
mechanically excited instruments. The tonal
characteristics can therefore be very different from that
from reeds made of other materials.

The principle single reed wind instruments are the
clarinet, saxophone, bagpipe, harmonica, accordion
and free-reed organ.

12.3.5 Air Reed Instruments

Air reed instrument differ from single and double reed
instruments in that none of the surfaces  that a stream
of air is directed over moves.  However, the air stream
is set up so that it moves itself instead.

Another significant difference for air-reed instruments
is that the basic sound source is not enclosed by the
resonating system but forms part of the radiator.

The principle air-reed wind instruments are the whistle,
fife, recorder, flageolet, ocarina, flute, piccolo and flue
organ pipe.

12.3.6 Pipe Organ

The pipe organ is a combination of mechanical and air
reeds devices.

Exercises and Discussion Topics.

1. Select a class of instruments of your choice and
discuss the general mechanisms by which sound
is produced in the instruments and radiated into a
room.  Relate the general properties to a specific
instrument of your choice within that class.
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CHAPTER 13 

 

ACOUSTIC IMPEDANCE 

 

The subject of this chapter is how pressure 
oscillations in a device couple to the air in a room.  
This has two aspects; the propagation of sound away 
from a source and the reverse, the production of 
oscillations in a device by sound waves falling on it.  

Both aspects are important in recording engineering.   
The first is that of a source, such as a musical 
instrument, propagating sound into  the surrounding 
air in a room.  The second is that of sound waves in 
the room interacting with a device such as the human 
ear or a microphone so as to transmit energy into that 
device and thereby produce a discernible signal.  The 
subject therefore has relevance to the overall problem 
of how a musical instrument gets to be heard, or 
picked up by a recording microphone. 

13.1  The Absorption of a Wave 

13.1.1 The Absorption of a Transverse Wave 

As an introduction to the principles involved, first 
consider the general problem of absorption of wave 
energy.  This can be demonstrated by a torsional 
wave apparatus made up of steel rods suspended and 
clamped at their centers onto a steel spine (see 
Fig. 13.1).    

Appearance of 
Ends of Rods  

Figure 13.1   Apparatus for demonstrating 
wave motion.  It is made up of steel rods 
suspended by being clamped to a steel spine 
running through their centers, the steel spine 
itself loosely suspended on a support structure. 
The wave is actually a torsional wave along the 
spine but the resulting  motion of the ends of the 
rods when viewed along the rod lengths, gives a 
vivid picture of transverse wave motion. 

Since the whole assembly is suspended by loose 
supports for this spine, torsional waves can easily be 
introduced by giving a twisting motion about the 
spine to one of the end rods. If such a transverse wave 
is allowed to reach the end of the rod system it will be 
seen to reflect back along the system; 

 

Figure 13.2   The reflection of a transverse 
wave in the rod system. The upper two pictures 
show the reflection that would occur with the 
right-end rod free for a pulse created by a sharp 
up and down movement of the rod to the far 
left.  The lower two pictures show the 
reflection that would occur for the same pulse 
with the far right rod clamped. 

When the far right rod is free to move, the reflected 
pulse will be appear like the incident pulse.  When the 
far right rod is clamped, the reflected pulse will be 
inverted.  However, in both cases the pulse is 
completely reflected and any energy it represents is 
retained and sent back along the system. 

Because the incident and reflected wave are the same, 
no energy is taken out of the system when the pulse 
reaches the end.  This should not be surprising.  If the 
last rod is completely free there is no force acting on 
it from the right. Therefore the motion of the rod 
takes no work.  If it is clamped so that it cannot 
move, it also cannot take out energy.  This is because 
work is the product of both force and movement and 
if either is zero, the work is zero. How then, can the 
wave energy to be taken out of the system?   

This is an important point for signals being 
propagated by waves.  For the wave to deliver a 
signal to a receiving system, at least some of the 
energy of the wave must be deposited in that 
receiving system.  For maximum signal, all the 
energy must be so delivered, with no reflected wave.  
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There is a simple device that will take the energy of a 
wave out of this torsional vibration system.  It is a 
small nylon piston loosely fitting in a plastic tube and 
connected by a stiff wire to the end rod of the system 
(Fig. 13.3). 

Attachment
Point

A
B

C

Wire

Piston

Cylinder

A

B

C

Reflected Waves

Incident Wave

 

Figure 13.3   A device for taking the energy 
out of the torsional vibration system.  The 
effects on a wave arriving at the end rod to 
which this device is attached is shown for 
various positions of the device. 

The particular property of this system that makes it a 
wave damper is that the resistive force of the device 
is proportional to the velocity of the piston.  This is 
because the resistance is due to the viscosity of the air 
forced to flow around the piston and for the modest 
velocities involved in this apparatus, resistive forces 
due to viscosity are proportional to velocity. 

By moving the point of attachment of the upper end 
of the damper wire to the end rod, a point can be 
reached where a wave reaching the end rod gives 
practically no reflection. What determines the 
position of this point? 

The position of the damper at which there is no 
reflection of the wave must be the position at which it 
reacts on the last rod just as would the next rod in the 
system if the system did not end.  The question then 
becomes; how then does a rod in the system interact 
with the preceding one? 

The interaction of one rod on the next is through the 
twist in the spine between the two rods (Fig. 13.4).  If 
both rods have turned the same amount, then there is 
no net twisting of the spine and hence no torque.  
However, if one rod has turned more than the other 
(the rod to the right in the Fig 13.4), then the effect of 
the preceding rod is to twist that rod backwards from 
its forward motion.   

Twist of Spine

Torque applied to 
rod B by rod A

A

B

y  

x

(Proportional to Twist of Spine)

Slope of Waveform  = 
y
x  

Figure 13.4   The connection between the 
torque applied by the spine and the slope of the 
waveform in the torsional wave apparatus.  The 
torque is proportional to the twist of the spine 
which is proportional to negative y which is, 
in turn,  proportional to the negative slope of 
the waveform. 

The twist of the spine (difference in the angle of turn 
from one rod to the next) shows as a displacement 
upward of the end of one rod relative to the next. The 
twisting torque of the spine on the rod to the right is 
proportional to the twist of the spine.  Looking at the 
ends of the rods, the twisting torque on the rod to the 
right will be therefore be proportional to the negative 
of the slope of the waveform.  

It can also be seen that the velocity of the end of a rod 
is proportional to the negative of this slope (Fig 13.5).   

Motion of 
Wave

Motion of 
end of Rod

 

Figure 13.5   The connection between the 
slope of the waveform and the velocity of the 
end of the rod (and hence of the angular 
velocity of the rod). Note that the velocity of 
the rod downward is the greatest when the 
slope is the greatest positive.   
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It is seen in this figure that where there is no slope 
from one rod to the next there is no velocity of the 
rod end due to the wave motion.  It is also seen that or 
a forward side of the wave where the slope is 
negative, the velocity of the rod ends will be upward.  

Since the velocity of the end of a rod is in turn 
proportional to the angular velocity of the rod there is 
a final overall relation between the torque applied to 
the next rod in the system and the angular velocity of 
the next rod.  It is 

Torque  = Constant  Angular Velocity (13.1) 

This can be rearranged to give 

 
Torque

Angular Velocity   =  Constant    

  Wave Impedance   Zwave (13.2) 

The constant which represents the ratio of torque to 
angular velocity is called the "impedance" of the 
wave system where impedance is usually written as Z. 
If then the damper is attached so that it also applies 
this impedance, then it will have the same effect on 
the last rod as would a continuation of the system and 
no wave would be reflected.  

By increasing the distance of the damper from the 
spine, the velocity of the damper due to the angular 
velocity of the rod is increased and the torque 
resulting from the resistive force of the damper is 
increased.  The ratio of torque to angular velocity due 
to the damper is therefore increased.  By varying this 
distance, the impedance presented by the damper can 
be tuned to be equal to that for the rods in the wave 
action and there is then no reflection. 

It should now be understandable why the reflections 
when the damper is not tuned are as shown in 
Fig. 13.3.  When the damper does not apply sufficient 
torque,  the last rod does not meet sufficient 
resistance to its motion.  It then overshoots and 
produces a reflected positive pulse.  If the damper 
applies too much torque, then the motion of the last 
rod is insufficient for the wave and a negative pulse is 
reflected. 

The ratio of the amplitudes of the reflected wave and 
the incident wave can be  determined by noting the 
ratio of torque to velocity which must exist at the 
termination.  Considering first the simpler case of the 
reflection from an open end, there can be no torque at 
the end and so the reflected wave and the incident 
wave must add to give zero torque (Fig. 13.6a).  The 
opposite extreme of a clamped end requires that the 
incident and the reflected wave add to give zero 
velocity.  The result is that their torques then add.  
The required displacement waveforms are no 
inversion for the open end and inversion for the 
clamped end. 

This requirement, that the ratio of torque and velocity 
that results from adding the incident and the reflected 
waves must be equal to the actual impedance of the 
termination, can also be used to calculate the ratio of 

the amplitudes of the reflected and incident waves for 
the general case.  The result is  

 
Aref.
Ainc.

   =  
Zwave  Zterm.
Zwave + Zterm.

  (13.3) 

When  Zterm. = Zwave, the ratio is, of course, zero.  
This means no amplitude of reflected wave. 

 

Displacement 
Profile

Velocity Profile 

Torque (- Slope) 
Profile

 

Figure 13.6a   The displacement, torque 
(negative slope) and velocity profiles for the 
incident wave and the reflected wave when the 
end of the torsional vibration apparatus is left 
loose.  Note that as they run together, the 
torques of the two waves subtract but the 
velocities add. 

Displacement 
Profile

Torque (- Slope) 
Profile

Velocity Profile 

 

 
Figure 13.6b  The displacement, torque 
(negative slope) and velocity profiles for the 
incident wave and the reflected wave when the 
end of the torsional vibration apparatus is 
clamped.  Note that as they run together, the 
torques of the two waves add but the velocities 
subtract. 

Taking the extreme case of Zterm. = 0 (open ended 
system) gives the ratio as 1, while taking the other 
extreme of Zterm. =  gives a ratio of 1.  Thus it is 
seen that the equation gives us the correct values for 
the three simple cases that could be analyzed without 
mathematics. 

The energies in the incident and the reflected waves 
will be proportional to the squares of their 
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amplitudes.  The formula for the fraction of wave 
energy reflected is therefore 

 
Eref.
Einc.

   =  
Zwave  Zterm.
Zwave + Zterm.

2
  (13.4) 

The formula for the ratio of reflected wave amplitude 
to incident wave amplitude for an impedance 
mismatch at the end of a wave system can be derived 
from considering that the ratio of the combined 
torques and velocities due to the two waves must be 
the termination impedance; 

Torqueinc. + Torqueref.
Ang. Vel.inc.. + Ang. Vel.ref..   =  Zterm. (13.5) 

The angular velocities in the incident and the 
reflected waves are related to the torques by 

 
Torqueinc.

Ang. Vel.inc.   = Zwave ;    (13.6) 

  
Torqueref.

Ang. Vel.ref.   =   Zwave (13.7) 

(The negative sign  for the case of the reflected wave 
is because the reflected wave is travelling 
backwards.) 

Combining these equations to eliminate the angular 
velocities and rearranging gives 

 
Torqueref
Torqueinc.   =  

1  Zinc.Zwave
1 + Zinc.Zwave

     

 = 
Zwave  Zterm.
 Zwave + Zterm.  (13.8) 

Finally, since the ratio of the torques is equal to the 
ratio of the wave amplitudes,  

  
Ainc.
Aref.   = 

Zwave  Zterm.
 Zwave + Zterm.  (13.9) 

 

13.1.2  The Absorption of a Sound Wave 

 

The same criteria that apply to the absorption of a 
wave in the torsional vibration apparatus also apply to 
the absorption of a sound wave in air.  If, for 
example, the sound wave is to be absorbed by a wall 
then that wall must offer the same impedance (ratio of 
force to velocity) as that which exists in the sound 
wave.  Taking the simple case of a square meter wall, 
then the force exerted by the sound wave is just the 
sound pressure in the wave.  The ratio of this pressure 
to the air velocity in the wave was given in Chapter 3 
and, for air at normal atmospheric pressure and 20oC, 
is 413 Pa-s/m.  For the wall to completely absorb the 
sound it must therefore have an impedance to 

movement such that 413 N moves it at 1 m/s.  If it has 
a higher or lower impedance, some of the sound 
energy will be reflected. 

The ratio of pressure to velocity in a sound wave in 
an open medium is called the "Characteristic Acoustic 
Impedance" of the medium (sometimes it is called the 
"specific acoustic impedance") and is usually 
designated as rA.  It is called "characteristic" because 
it is based on fundamental properties of the medium.  
Different media have different characteristic acoustic 
impedances.  For example, the characteristic acoustic 
impedance of helium at normal atmospheric pressure 
and 20oC is 172 Pa-s/m. From the physics of wave 
motion in any medium it can be shown that the 
characteristic acoustic impedance for a medium is 
given by 

  rA  =  c (13.5) 

where  is the density of the medium and c is the 
wave velocity in that medium. 

One of the most important cases of an impedance 
mismatch in sound transmission is that which occurs 
when sound in air is propagated into water.  This is a 
situation which occurs in animal hearing where sound 
waves in air are used to excite sound waves in the 
cochlea so that the hair cells on the basilar membrane 
can produce signals to send to the brain.  The cochlea 
is filled with a fluid which has an acoustic impedance 
very similar to water. 

The acoustic impedance of water is about 1,500,000 
Pa-s/m, about 3500 times that of air.  Taking Zterm. as 
the impedance of the water, the fraction of sound 
energy reflected at an interface between air and water 
becomes  

 
Eref.
Einc.

   =  
Zair  Zwater
Zair + Zwater

2
   

  =   
(1 - 3500)2

(1 + 3500)2   =  0.99886 (13.10) 

The fraction of energy which actually gets into the 
water is therefore only 0.00114 or about 0.1%.  This 
corresponds to a 30 dB loss in sound level. 

The intricate mechanism making up the middle ear is 
designed to overcome this problem. It is essentially 
an impedance transformation device. It is so well 
designed that in the range of frequencies over which 
the human ear is most sensitive (from about 2500 to 
4500 Hz) the efficiency of transmission of sound 
energy to close to 100%.   People with a functioning 
cochlea but no functioning middle ear will hear room 
sounds by bone conduction of sound waves through 
the head.  Here the impedance mismatch is even 
greater than that for air to water resulting in about a 
40 dB loss relative to that for a person with normal 
hearing. 

 As a finish to this section. consider again the 
problem of sound absorption in a room.  The concept 
of impedance matching tells us that a perfect acoustic 
absorber is one which has the same characteristic 
acoustic impedance as air.  One such absorber of 
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course is more open air.  An open window therefore 
is a perfect acoustic absorber. 

However, open windows do not make practical 
acoustic absorbers for modern buildings.  In fact, they 
will probably let in more sound then they let out.   A 
more practical acoustic absorber would be one made 
up of wall material which has the same characteristic 
impedance as air.  What this means is that this 
material must have a porosity to air flow which 
allows air to flow into it at a rate which is in 
proportion to the pressure forcing this flow.  
Furthermore, the proportionality constant must be 
such that the velocity of air flow is close to 1/413 
meter per second for each Pascal of pressure causing 
this flow. 

The amount of air flowing into the sound absorber 
will actually be very small.  This can be seen by 
calculating the air motion for a 100 dB sound at 1000 
Hz.  A sound level of 100 dB corresponds to a sound 
pressure of about 2 Pa giving a air velocity p/ A of 
only about 5 mm/s.  The motion that would give this 
flow velocity at 1000 Hz is microscopic; 

 v = 2 fA 

A   =  
v

2 f    =   
0.005

2   1000   =  0.7 micron (13.7) 

A micron is about the smallest size that can be seen in 
the most powerful optical microscope. If a sound 
absorbing material has the right surface porosity to 
absorb these small motions, its surface can appear 
quite solid to the eye. 

13.2 Acoustic Impedance in Standing Waves 

13.2.1  The Ratio of Pressure to Velocity in a 
Standing Wave 

In a travelling sound wave, the ratio of pressure to 
velocity is a constant 413 Pa-s/m for air in a normal 
room.  However, for sound in a container such as a 
typical musical instrument, the relationship is not so 
simple.  This was seen for the normal modes of 
vibration of air in a pipe in Chapter 10.  Is the concept 
of acoustic impedance of any use in dealing with the 
phenomenon of normal modes in systems? 

As an introduction to this subject, consider again the 
pressure and velocity patterns of the lowest mode of 
vibration of air in a closed pipe shown in Fig. 10.9 
and repeated in Fig. 13.7 without the lines indicating 
the positions of the air in the pipe during the motions. 

 

 

 

 

 

 
Figure 13.7  The motions involved for one half-cycle of  the first standing wave mode of vibration of the air 
in a closed pipe.  Successive diagrams downward represent successive instants in time.  The diagrams are 
repeated side by side so that one set can be used to indicate the velocity patterns and the other to indicate the 
pressure patterns (both shown as shaded lines on the diagrams).  The diagrams on the bottom give an 
overview of the velocity and pressure patterns for a complete cycle.  
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As in the travelling wave in open air, the pressure 
patterns and the velocity patterns will be related.  If 
all the pressures are doubled, all the velocities will be 
doubled.  Furthermore, since the standing wave can 
be thought of as two travelling waves moving in 
opposite directions, the ratio of the maximum 
pressure that can be achieved by the overlap of these 
two waves and the maximum velocity that can be 
achieved must still be the ratio of the pressure and the 
velocities in the two individual travelling waves or 
413 Pa-s/m. 

However, the ratio of pressure to velocity at particular 
points in the system is variable.  At the center of the 
pipe it is zero, at the ends of the pipe it is infinity, and 
at all other points it is somewhere in between. At 
points 1/4 of the length of the pipe in from the ends it 
is actually the same as the ratio of the maximum 
pressure (at the ends) to the maximum velocity (at the 
center) or the same as that for open air.  Thus for the 
center half of the pipe the impedance of the air is less 
than that of open air and for the other half it is 
greater. 

Furthermore, the pressure and the velocity are not in 
phase, as they are for travelling waves.  For the left 
half of the pipe the pressure leads the velocity by 90o 
while for the right half of the pipe it lags the velocity 
by 90o.  What are the consequences of the pressure 
and the velocity being 90o out of phase? 

Consider first a more common example of doing 
work by pushing on an object. If, for instance, you 
push on something it must move with the push for 
you to be doing work on it.  If it moves toward you as 
you push on it, that object is doing work on you and 
the work that you are doing becomes negative. 

Suppose that you are pushing on an object in an 
oscillatory fashion and that the object responds by 
oscillating with its velocity 90o out of phase to your 
applied force.  The graphs for your force and the 
velocity will be as shown in the right hand side of  
Fig. 13.8. 
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Figure 13.8  Force, velocity and power curves 
for force and velocity in phase and 90o out of 
phase.  The power for in phase motion is 
always positive.  For 90o phase the power 

alternates equally between being positive and 
negative.   

If you follow the progress of the work you are doing 
it turns out to be alternatively positive and negative.  
Starting out with your force at a maximum positive 
manner and the velocity zero but growing, for one 
quarter of a cycle you are doing positive work.  The 
object is moving in the direction you are pushing it. 
However, after this quarter cycle your force reverses 
(you pull on the object) and your work becomes 
negative.  This is because the object is doing work on 
you by moving away from your pull, i.e. giving back 
the work you put into it).   

After this quarter cycle of negative work, the velocity 
now reverses to be back in direction again with your 
pull.  Your work therefore becomes positive again 
(you are now pulling and the object is moving 
towards you).  After this quarter cycle, your force 
turns positive again while the object is still moving 
towards you.  Your work is therefore again negative, 
cancelling out the work you did in the third quarter 
cycle. Thus in a complete cycle you do no net work. 

This is, of course, the basic nature of systems with a 
steady oscillation.  Energy is being continuously 
transferred from one element to another.  In the case 
of a spring pulling on a mass, the energy goes from 
the spring into the mass and back, twice in each 
oscillation cycle. 

The question then becomes, how do you get net 
energy into an oscillation? The answer is to have your 
force not at 90o phase relative to the the velocity of 
the motion.  The most effective way for the force to 
transfer net energy to the oscillation in each cycle is 
to have the force and the velocity exactly in phase.  In 
the left half of Fig 13.8, the force is always in phase 
with the velocity.  Now when the force switches over 
from being positive to negative, the velocity switches 
over so that the energy input always stays positive.  

Returning now to a sound wave, the velocity being in 
phase with the pressure is the necessary condition for 
the wave to be doing work on the air.  We can now 
visualize the sound wave propagation as the 
overpressure of one particular region of air pushing 
away the adjacent air with a velocity in phase with 
the overpressure and thereby doing work on that 
adjacent air.  This adjacent air in turn does work on 
the air adjacent to it and so the wave propagates. 

This gives a new perspective on the direction of 
propagation of a wave.  If we take a given direction 
as being a forward direction for velocities (say to the 
right) then for waves travelling in that direction the 
pressure and the velocities will be in phase.  This 
corresponds to energy being propagated to the right. 
If however, the pressures and the velocities are 1800 
out of phase, then the work done in the "forward" 
direction will be negative.  The wave will be 
delivering work from the right, not transferring it to 
the right.  Such a wave would actually be moving 
from the right to the left. 

Thus the phase relationship between pressure and air 
velocity in a travelling wave determines the direction 
of propagation of its energy.  In phase means 
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propagation in the direction for which air velocity is 
defined as being positive.  Out of phase means 
propagation in the opposite direction.  

Phases relationships halfway in between these two 
extremes, i.e. at ± 90o, must mean no propagation in 
either direction.  This is, of course, the condition of a 
standing wave.  

Thus there is a definite relationship between the 
pressures and velocities in a standing wave, the 
principle one being that they are always 90o out of 
phase with each other.  To express the ratio of 
pressure to velocity as an impedance in such a 
situation the special term of "Reactance" is used. 

13.2.2 Acoustic Reactance 

From the above it is concluded that in a standing 
wave the pressure and velocity are at 90o phase 
relative to each other and so no net energy is 
propagated in an oscillation cycle. Yet there is a 
definite ratio between pressure and air velocity at any 
point in a standing wave; the amplitude of the 
pressure oscillation is still proportional to the 
amplitude of the velocity oscillation.  To distinguish 
this ratio from that of the ratio when the pressure and 
velocity are in phase, the term "reactance" is used; the 
term "resistance" being used when the pressure and 
velocity are in phase.  The reason for the term 
reactance is that a system in which the force and 
velocity are at 90o phase relative to each other 
absorbs no net energy in a cycle, giving back any 
energy it receives.  it "reacts". 

Unlike resistance, reactance can be positive or 
negative depending on the relative phase of the 
pressure and velocity oscillations. The convention 
used for the sign of a reactance in general is that if the 
force on a system leads the velocity by 90o, the 
reactance is said to be positive; if the force lags the 
velocity by 90o, the reactance is said to be negative. 
Simple common examples are an oscillating mass and 
an oscillating spring.  When one oscillates a mass, an 
applied force generates an acceleration which takes 
some time to generate a velocity.  The force therefore 
leads the velocity. The reactance of a mass is 
therefore positive.  On the other hand, a spring will 
move initially with no force.  The force only develops 
after there has been velocity for some time and the 
spring becomes compressed.  The force therefore lags 
the velocity and the reactance of a spring is negative. 

The acoustic impedance of the air in the lowest 
standing wave mode in a closed pipe is therefore 
positive reactance for the left-hand half of the pipe 
and negative reactance for the right-hand half (for 
positive directions to the right).  What this implies is 
that, looking to the right from the left half of the pipe, 
the reactance of the air in the system is due to the 
mass of the air that is being moved in the standing 
wave.  When looking to the right from the right hand 
half, the reactance is like that of a spring; the pressure 
is due to the air piling up against the walls of the pipe 
and springing back.  Looking to the left, of course, 
the reactances are reversed. 

13.2.3  The General Concept of Acoustic Impedance 

Two categories of sound impedances have been 
introduced; resistive and reactive.  Resistive 
impedances are when pressure and velocity are in 
phase and represent propagation or dissipation of 
energy.  Reactive impedances are when pressure and 
velocity are 90o out of phase with each other and 
represent storage and return of energy to a driving 
element. 

In general, there can be any phase relationship 
between acoustic pressure in air and the air velocity 
associated with it; nor just zero and plus and minus 
90o.  The relationship between  pressure and velocity 
will in general be expressed by a phasor diagram with 
an arbitrary angle  between the two phasors. 

For such a situation, the pressure phasor can be 
thought of as being made up of two orthogonal 
components, one along the velocity phasor and one 
perpendicular to it.  This is shown in fig. 13.9. When 
the component of the pressure phasor parallel to the 
velocity phasor is divided by the velocity phasor, one 
gets the resistive part of the impedance of the air.  
When the pressure phasor component perpendicular 
to the velocity phasor is divided by the velocity 
phasor, one gets the reactance of the air.  
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p
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Figure 13.9 The relationship between the 
pressure and velocity phasors in a general 
acoustic impedance.  The resistance R and the 
reactance X are defined as shown. 

Thus the ratio of pressure to air velocity at any point 
in air can be thought of as being made up of a 
combination of resistance and reactance.  Such a 
combination  is called a "complex impedance" and 
can be represented as in fig. 13.10 where R represents 
the resistive impedance and X the reactive impedance.  
Here Z represents the total impedance and, in 
acoustics, is the ratio of the amplitude of the pressure 
oscillation to the amplitude of the velocity oscillation.  
The angle  between Z and R  is the phase angle 
between the pressure oscillations and the velocity 
oscillation in the air. 
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Z
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X

 R = Z cos  

X = Z sin 

Z  =    R   + Z2 2

   

Figure 13.10 The relationship of resistance and 
reactance to complex impedance.   

Thus, if we know the resistance and the reactance of a 
point in air, we can calculate the ratio of the pressure 
oscillation amplitude to the velocity oscillation 
amplitude by calculating Z from R and X and we can 
calculate the phase angle between the pressure and 
the velocity by evaluating the inverse tangent of X/R.  
(Note for example, that if X is negative then the phase 
angle will be negative, indicating that the velocity 
oscillation leads the pressure oscillation in phase.)  

13.3  Acoustical Impedance and Acoustical Power. 

13.3.1  Acoustic Impedance vs Characteristic 
Acoustic Impedance 

Up to now in these notes, the concept of acoustic 
impedance has been used to discuss the ratio of 
pressure to air velocity in air at a point in a sound 
system.  However, this is not what is normally meant 
by the term "acoustic impedance", a concept that was 
invented to deal with acoustic power in systems.  The 
ratio of pressure to air velocity is, strictly speaking 
the "characteristic" or "specific" acoustic impedance 
and is of not much use in problems dealing with 
acoustic power. 

The usefulness of the concept of impedance in power 
problems lies in the connections between force, 
velocity and power in mechanics or voltage, current 
and power in electricity.  These are simple stated. 

 

In mechanics 

 Power = Force  velocity  (13.8) 
  

In electricity    

 Power = Voltage   current (13.9) 

 

If there is a proportional relationship between force 
and velocity (such as actually occurs in many 
mechanical systems) or between voltage and current 
(as occurs in many electrical conductors), then the 
power equations can be rewritten as below. 

 

Rmech.  =  
Force

velocity   ;      Power = Rmech.  velocity2  

 

giving the usual form of the equation for mechanical 
power; 
  P = Rm v2 (13.10) 
 

Relec.  =  
Voltage
 current    ;      Power = Relec.  current2    

giving the usual form of the equation for electricity; 

 
 P = R I2 (13.11) 
The reason that the characteristic acoustic impedance 
is not much use in power problems is that the product 
of pressure time velocity is not power but intensity; 

 

 Pressure velocity  =  
Force
area    velocity 

   = 
Force  velocity

area      =    
Power
area    

 = Intensity (13.12) 

 

To get an equation connecting acoustic power to 
acoustic pressure we need an acoustic "current"; 

 

 Pressure  acoustic current =  Power   (13.13) 

 

It is easily seen that we can get an acoustic current 
from the air velocity by multiplying it by the area 
over which the air has this velocity; 

 

 Power    =    Intensity  area  =   

 =   Pressure  velocity  area   

 =  p U  (13.14) 

 

where p is the pressure and U is the acoustic current 
defined as velocity times area. 

The acoustic current U is simply the volume flow rate 
(in cubic meters per second) of the air in the sound 
wave.  If now there is a ratio of p/U which we can 
call the acoustic resistance RA, then the acoustic 
power becomes 

 

 Acoustic Power = RA U2 (13.15) 

 

The unit for acoustic resistance is called the "acoustic 
ohm" (in analogy with the electrical ohm which is the 
ratio of voltage to current).  

As an example, consider a sound wave travelling 
along a tube of 1 cm2 cross-section (about 11 mm 
inside diameter).  The pressure to velocity ratio will 
still be as for the wave in open air but the volume 
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flow rate will be v  10-4 m3.   The acoustic resistance 
will therefore be 

 RA = 
p

v  10-4   =  
rA

10-4    

 =  4,130,000 ohm (13.16) 

The acoustic resistance for a pipe of 10 cm2 cross-
section (about 36 mm inside diameter) would be only 
413,000 ohm, leading to the reasonable result that the 
larger diameter pipe has less acoustic resistance than 
the smaller diameter tube. 

In should be noted that the unit used here for acoustic 
impedance is the modern SI acoustic ohm which has 
the units Pa-s/m3. Many textbooks, and some 
publications, particularly American, still use the older 
"centimeter-gram-second" or cgs acoustic ohm which 
has the units dyne-s/m5.  The connection between this 
unit and the newer one is that a device with an 
acoustic impedance of one cgs acoustic ohm will 
have a resistance of 105 Si acoustic ohms (i.e. the cgs 
acoustic ohm is much bigger than the SI acoustic 
ohm). One reason that many workers prefer the older 
cgs unit is that the acoustic impedance of many 
devices of importance (such as the human ear) gives 
very large numbers in SI units.  For example, the 
human ear at 1000 Hz has an acoustic impedance of 
about 400 cgs ohms but an impedance of 40,000,000 
SI ohms.  However, when dealing with engineered 
devices such as loudspeakers, the SI unit is much 
more practical since it gives answers for power which 
are in the familiar unit of watts whereas the cgs 
would give answers in units of erg per second. 

The concept of complex impedances involving both 
resistances and reactances introduced for the specific 
acoustic impedance can now be transferred to true 
"acoustic impedance" in acoustic ohms.    As with 
specific acoustic impedance, there can be, in general, 
any phase relationship between acoustic pressure and 
the volume flow associated with it in a sound system.  
The relationship between  pressure and flow will 
again be expressed by a phasor diagram with an 
arbitrary angle  between the two phasors (fig. 
13.11).  The only difference from the case for 
characteristic acoustic impedance is that the two 
orthogonal components of pressure are now along and 
perpendicular to the flow phasor U instead of the 
velocity phasor v. 
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Figure 13.11 The relationship between the 
pressure and air flow phasors in a general 
acoustic impedance.  The resistance R and the 
reactance X are defined as shown. 

 
Again, the ratio of pressure to air flow in any acoustic 
system can now be thought of as being made up of a 
combination of resistance and reactance.   As with the 
characteristic acoustic impedance, this complex 
impedance can be represented as in fig. 13.10 where, 
again, R represents the resistive impedance, X the 
reactive impedance and Z  the total impedance, which 
is now the ratio of the amplitude of the pressure 
oscillation to the amplitude of the flow oscillation.  
Now the angle  between Z and R in fig. 13.10 is the 
phase angle between the pressure oscillation and the 
flow oscillation. 

Repeating, the difference between this acoustic 
impedance and the previous "characteristic" or 
"specific" acoustic impedance is that the true acoustic 
impedance deals with the ratio of the sound pressure 
on a system to the overall flow of air through that 
system and hence with overall power while the 
specific acoustic impedance deals with the ratio of 
pressure to air velocity at a specific point in a system 
and is related to sound intensity at that point. 

Acoustic impedances are used in acoustic power 
problems of systems as follows.  The power is, as 
shown above, the product of the in-phase component 
of the pressure and the air flow rate; 

 Acoustic Power = p U cos  (13.17) 

This can be simply related to the resistive part of an 
impedance and the air flow rate; 

 P = U2 
p
U  cos   = U2 Z cos   

  = U2 RA  (13.18) 

One way of looking at this is by considering the 
resistance and the reactance of a system to be in 
series (fig. 13.12). 

R X
U

A  

 
Figure 13.12 The electrical equivalent of a 
complex acoustic impedance.  The resistance R 
and the reactance X are regarded as being "in 
series", meaning that the air flow U is regarded 
as flowing through one component of the 
complex impedance and then the other. 

In this picture the same U (the acoustic "current") 
flows through the resistance and the reactance.  The 
flow through the reactance involves no net work in a 
cycle and all the acoustic power is therefore 
dissipated in the resistance. 
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A simple example of the use of the complex acoustic 
impedance of a system is the Helmholtz resonator of 
Chapter 10.  Here the acoustic reactance has two 
parts; that due to the inertance M and that due to the 
acoustic capacitance CA.  By analogy with an inductor 
where the electrical reactance is L, the acoustic 
reactance of an inertance is  

   X  =  M.    (13.19) 

Also in analogy with the electrical reactance of a 
capacitance, the acoustic reactance of an acoustic 
capacitance is  

  X  =   
1
CA

 .  (13.20) 

At resonance the reactance of the inertance and the 
reactance of the capacitance balance.  Therefore at 
resonance; 

 M  =  
1
CA

    ;    = 
1

MCA
  (13.21) 

13.3.2  The Acoustic Power of a Vibrating Disk; An 
Example of the use of Acoustic Impedance 

As an illustration of the general technique of applying 
the acoustic impedance concept to acoustic power 
problems, consider the problem of the sound power 
radiated by a circular disk moving in and out of an 

infinite flat baffle (fig. 13.13).  This is one of the 
most important general problems in acoustics.  It is 
easy to see the relevance of this in loudspeaker design 
but the problem also has relevance to the leakage of 
sound through orifices and the radiation patterns of 
musical instruments such as trumpets and horns. 

 

Figure 13.13 Schematic of the vibrating disk in 
an infinite baffle. 

The problem is of such general interest that graphs 
are available which allow one to estimate the acoustic 
impedance to any diameter disk oscillating at any 
frequency in any acoustic medium.  This is done on 
one graph by scaling the frequencies and the disk 
dimensions together and expressing the answer in 
terms of the characteristic impedance of the medium 
involved (fig 13.14). 

 

Figure 13.14 The acoustic resistance  rA ' and the acoustic reactance xA '  in normalized units of a piston of 
radius R  set in an infinite plane baffle.  (The normalized units are explained in the text.)  



Acoustic Impedance 

 

141 

The normalized units are obtained by dividing the 
actual acoustic impedance by the specific acoustic 
impedance of the medium and multiplying by the area 
of the piston.   The scales on the graph are normalized 
so that the graph is good for all frequencies of sound 
and all media. The horizontal coordinate is the wave 
number of the sound multiplied by the piston radius 
which is equivalent to the piston circumference 
divided by the wavelength of the sound.   The vertical 
scale is acoustic ohms divided by the density of the 
medium and the velocity of sound in the medium for 
a unit area of the piston.   

Thus to get the actual acoustic impedance from this 
graph one must multiply the coordinate by the 
velocity of sound and the density of the medium and 
divide by the area of the piston. The horizontal scale 
is ratio of the circumference of the piston to the 
wavelength of the sound. (At normal room 
temperature and pressure (20oC and 100 kPa), the 
density of air is about 1.2 kg/m3 and the velocity of 
sound in air is 340 m/sec.)  

As a specific example showing  the use of the graph, 
consider the problem of the acoustic impedance that 
air presents to a disk of 20 cm diameter (such as 
would approximate a loudspeaker cone) moving back 
and forth by a total extension of 1 cm (an amplitude 
of vibration of .5 cm) at a frequency of 100 Hz (fig. 
13.15).  

1 cm

20 cm

 

Figure 13.15 A schematic of a loudspeaker 
emitting a low frequency tone. 

The first number that is needed is the coordinate on 
the horizontal axis of the graph.  This is in units of kR 
where k is the "wave number" or 2 /  for the sound 
to be produced.  For 100 Hz,  is 3.4 m and the 
horizontal coordinate on the graph therefore becomes 
2   0.1/3.4 for R = 0.1 m.  This is 0.18 or 0.2 to an 
accuracy good enough for an acoustic calculation. 

The vertical coordinate of the graph for rA ' at this 
point is about 0.02.  This means that the acoustic 
impedance the air presents to the motion of this disk 
is only 0.02 to that which air would normally present 
to a plane wave passing through it. 

To evaluate the actual acoustic impedance that the 
disk sees we therefore have to calculate the acoustic 
impedance presented by the same area of air to a 
plane wave.  This would be 413/ R2 or 413/   0.01 
giving a result of 13,200 ohms.  The actual acoustic 

impedance to the vibration of the disk is therefore 
13200  0.02 or 264 ohms. 

To use this to calculate the acoustic power radiated 
into the air by the disk, we need to know one other 
thing; either the pressure seen by the disk or the air 
flow created by the disk.  We do not know the 
pressure seen by the disk since the acoustic resistance 
calculation tells us that the relationship between 
velocity and pressure is not the same as for a plane 
wave in air.  However, we can say that the moving 
disk must move the air directly in contact with it at a 
velocity equal to that of the disk itself.  This gives a 
flow rate equal to the disk velocity times the disk 
area. 

The disk velocity can be calculated by noting the 
amplitude and frequency of the motion.  The peak 
value of the velocity will be given by 

 v = A  =  2 fA  =    m3/s (13.22) 

The peak value of the volume flow rate U will be 

 U = v  area =     R2   

 = 0.01 2   0.1 m3/s  (13.23) 

This allows the use of the equation; 

 Acoustic Power = U2 RA (13.24) 

Putting in the values for U and R gives the acoustic 
power:  

 Peak Acoustic power = 0.12  260   

 =  2.6 watts. (13.25) 

This is the peak acoustic power, which occurs when 
the acoustic current is at a peak value.  The average 
acoustic power, which is the quantity that we are 
normally concerned with, can be shown to be just one 
half the peak power for a pure single frequency of 
oscillation such as we have assumed here (see 
appendix).  The average sound power radiated from 
the disk will therefore be 1.3 watts. 

This would perhaps not seem to be a very great 
power.  However,  calculate what such a sound source 
would do in an average room.  The equation for the 
intensity of a sound source in a room is, from the 
considerations of room reverberation; 

  I   =   
TNc

13.8V  (13.26) 

where T is the room reverberation time, N is the 
sound power of a source in watts, c is the velocity of 
sound and V is the room volume.  This gives, for a 
room which would have a reverberation time of about 
1 second for this frequency and a volume of 10  
8  3 or 240 m3, a sound intensity level of ; 

 I   =  0.13 Watt/m2   = 111 dB. (13.27) 
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This would be a thunderous sound!  It would make 
you thankful that the acoustic impedance seen by the 
disk is lowered by a factor of 50 for otherwise the 
sound level would be 50 times higher or about 130 
dB. 

However, a careful look at the graph tells you that the 
acoustic impedance seen by the disk can approach 
that of a plane wave in open air at higher frequencies.  
Specifically, consider the point for kR = 2, which 
corresponds to a frequency 10 times greater or 
1000 Hz.  Here the acoustic impedance seen by the 
disk would be 13,200 ohms.  The same flow rate 
through this impedance would of course now take 
less amplitude at this frequency (the velocity of a 
vibration is proportional to the frequency of the 
vibration).  The amplitude of the motion of the disk 
would now have to be only 0.5 mm  for a total 
excursion of only 1 mm. 

What this is telling us is that a 20 cm disk vibrating 
back and forth a total extent of only 1 mm at 1000 Hz 
in an infinite baffle will radiate 62.5 watts of sound 
into a room, causing a sound level in a room such as a 
normal lecture room of about 130 dB. 

That sound level is well beyond the threshold of real 
pain and would cause almost instant physical damage 
to the ears. Why then do people buy 100 watt per 
channel stereo sound systems? 

First of all, they are not buying 100 watt per channel 
of sound power into the room.  For reasons of 
avoiding mechanical resonances in the speaker itself, 
the typical modern loudspeaker system is deliberately 
designed to have an efficiency of seldom greater than 
1 %.  Thus 100 watt per channel sound systems 
deliver only about 1 watt per channel of sound power 
into a room. 

Still, that leaves about 110 dB of sound intensity with 
only one channel operating (or about 113 dB with two 
channels operating) for a moderately sized lecture 
room. For a room such as a typical living room of 
volume 75 m3, even an acoustically "dead" one with a 
reverberation time of only 0.5 seconds, the sound 
level with both channels operating would be 118 dB. 

100 Watt per channel stereo systems would therefore 
seem a wasteful luxury. Yet many people buy them 
with good justification.  The reason for this cannot be 
found in the sustained sound levels from a record but 
rather in the peak sound powers during transients.  In 
fact, systems rated at 100 watt per channel do not 
deliver 100 watts of average power per channel.  
Rather the rating applies to the peak power the system 
is capable of delivering. 

Because of the nature of power averaging, the peak 
power in music with sharp transients can reach as 
high as 100 times the average power.  (See appendix 
on average power vs peak power.)  To properly 
reproduce the transient sound, this peak power must 
be delivered. 

This means that in musical sounds which have an 
average intensity of 95 dB, which is about the 
maximum that would ever be desired by a normal 
listener, there can be transients corresponding to 
115 dB of intensity. These transients need not be 
perceived as a loud noise.  If they are very short in 

duration, they are perceived as only a sharp click and 
may not even show up on a VU meter or a sound 
level meter used to measure sound levels in a room. 
100 watt per channel stereo systems are perfectly 
justified when one wants faithful reproduction of such 
transients.  

Returning to the acoustic impedance presented by air 
to a vibrating disk, for low values of frequency (kR 
much less than 1 or the wavelength much greater than 
the circumference of the disk) the reactance is much 
greater than the resistance.  What this means is that 
the pressure exerted by the disk is much greater than 
just that to move the air through the resistive part of 
the impedance and thereby create sound in the room.  
However, due to the large reactive part most of this 
pressure is out of phase with the disk velocity.  It is, 
in fact leading the velocity.  At kR = 0.1 the pressure 
will be leading the velocity by about 86o.   

A pressure (or any force) leading a velocity indicates 
that a mass in being accelerated.  At low frequencies, 
a loudspeaker cone therefore is putting most of its 
force into accelerating and decelerating the air around 
it rather than radiating power out into the room.  A 
loudspeaker at low frequencies is therefore very 
inefficient in coupling its motion to the air in the 
room to produce sound.  

On the other hand a vibrating disk at high frequencies 
(kR >1 or the wavelength less than the circumference) 
becomes very effectively coupled to the air; the 
impedance the air presents is that of a plane wave.   

What this means is that , in fact, a plane wave will 
radiate away from the disk.  The sound from the disk 
is therefore beaming forward; a highly undesirable 
feature in a loudspeaker.  For this reason loudspeaker 
cones are never made of rigid flat disks that vibrate 
uniformly over their whole surface at high 
frequencies but are made of flexible material so that 
at high frequencies, only the center region takes part 
in the vibration.  Loudspeaker cones are therefore 
deliberately made to be relatively ineffective sound 
power radiators at all frequencies. 

13.3.3  Acoustic Impedance in a Trumpet 

Another use of the acoustic impedance presented by 
air to a vibrating disk relates to instruments with bells 
such as a trumpet.  As previously mentioned in 
Chapter 11, the reflection of an input sound of the 
mouthpiece from the bell back to the mouthpiece is a 
very important feedback mechanism for allowing the 
player to hold a note and to build up the sound 
intensity of the note.   

The wave of sound produced inside a trumpet at the 
mouthpiece propagates along the tube of the trumpet 
very much as a simple plane wave in a small tube.  
The impedance of the air in this tube is very high 
because the tube is very small.  For example, for a 1 
cm diameter tube the acoustic impedance would be 
414/ R2 where R =  0.005 M.  This gives about 5.3 
million acoustic ohms. 

At the mouth of the trumpet, the tube expands.  If this 
expansion is gradual enough, the sound wave remains 
almost planar and the acoustical impedance drops 
slowly.  If this is done at a slow enough rate, there 
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will be no reflection from the impedance change.  
(This is the principle of the horn which makes it a 
very effective radiator of sound.) 

If the trumpet has a bell of say 15 cm diameter, the 
impedance of the sound wave when it reached the bell 
would be down by the ratio of the area of the 
beginning of the tube to the area presented by the 
bell.  This would be a factor of 225 which is equal to 
the square of the ratio of the radii.  The acoustic 
impedance would then be about 25,000 ohms. 

However,at the bell there is a sudden change. Now 
the sound wave is presented with the  impedance seen 
by a vibrating disk as discussed in the previous 
lecture.  The impedance of this disk will depend on 
the frequency of the sound that has arrived at the bell.  
If this frequency is high enough, then we are on the 
part of the impedance graph where the impedance is 
the same as that for a plane wave in open air.  There 
is no impedance change as the sound leaves the bell 
and so no reflection.  The horn becomes a very 
efficient radiator of a plane wave going straight 
forward.  This is again why horns are very good 
radiators of high frequency sounds in a forward 
direction. 

However, to develop a note this is no help at all.  The 
player needs the reflection for feedback to build up a 
resonance.  Thus, notes with a high frequency 
fundamental are practically impossible.  Once a 
resonance has been built up with the players lips, the 
sound produced may have many high frequency 
harmonics which are very efficiently radiated by the 
bell but the fundamental upon which the sound is 
based must not have a good impedance match at the 
bell.  (A good impedance match means no reflection 
back from the bell.) 

The graph of fig. 13.14 can be used to valuate the 
frequencies involved.  For a R of 7.5 cm, and a kR of 
2 where, from the graph, it can be seen that the 
impedance match with open air is perfect,  k = 
2/0.075 or 26.67.  This gives a wavelength of 2 /k or 
23.6 cm.  The frequency for this wavelength is 
340/0.23 or about 1500 Hz. 

Thus, it would be practically impossible to play a 
note with a fundamental at  1500 Hz on this trumpet. 

This is of course faster than anyone could vibrate 
their lips anyway.  However, let us see how the 
situation changes as we go down in frequency.  At 
750 Hz, the value of kR would be about 1 for an 
acoustic impedance, according to the graph, of about 
0.4 that for open air.  From the equation for the 
fraction of sound energy reflected at an impedance 
mismatch; 

 
Eref.
Einc.

   =  
Zwave  Zterm.
Zwave + Zterm.

2
  (13.29) 

the fraction of sound reflected is 

 
Eref.
Einc.

  = 
1  0.4
1 + 0.4

2
   =  0.18 (13.30) 

Thus, at this frequency we would expect about 18% 
of the sound arriving at the bell to be reflected back to 
the players lips. 

Going down in frequency to half again at 375 Hz, we 
get a value of kR of about 0.5 and an acoustic 
impedance of 0.12 of that for a plane wave.  The 
fraction of sound energy now reflected back to the 
players lips from the bell is; 

 
Eref.
Einc.

  = 
1 - 0.12
1 + 0.12

2
    

  =  0.62   =  62% (13.31) 

Thus, playing the lower notes on a trumpet is much 
easier than playing the high notes. 

There is a great deal of technique involved in getting 
high notes on a trumpet, in addition to having a "good 
lip".  One of the techniques involved is directing the 
pulses of air from the lips towards the side of the 
mouthpiece.  It seems that this helps to build up the 
resonance in the mouthpiece itself, thereby relieving 
some of the demands made on the reflection from the 
bell.  In fact if one looks at the dimensions of the 
standard trumpet mouthpiece, and estimates the 
Helmholtz resonance frequency, one get values in the 
range of those near the top of the trumpet range. 

13.3.4  The Q of a Helmholtz Resonator 

As a final example of an application of the concepts 
of acoustic impedance, consider the question of the Q 
of a Helmholtz resonator.  Here it is necessary to 
introduce yet another equivalent definition of the Q of 
an oscillator; that of the ratio of the reactance to 
resistance in the oscillator 

   Q  = 
X
R  (13.32) 

Here the reactance is that of the inertive part of the 
oscillator (the mass in a mechanical system, the 
inductance in an electrical system or the inertance in 
an acoustic system).  For the Helmholtz oscillator of 
Chapter 10 (frequency = 214 Hz) this becomes 

 M = 236 Pa-s/m3  ;   

 M  = 2   214  236   

 = 317 k Ohm (13.33) 

For the resistive part it can be noted that the air 
moving back and forth at the opening of the neck of 
the bottle is equivalent to the motion that would be 
created by a piston.  For a diameter of 16 mm and a 
frequency of 220 Hz, kR on the impedance diagram 
for a disk becomes 

 kR = 
2  x 220 x 0.008

340    = 0.033 

rA '  for this kR is about 0.0005.  RA  for 16 mm dia of 
open air, is  

 
413

 x 0.0082   = 2 x 106 Ohm.   
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RA for the neck of the bottle is therefore about 103 
Ohm.  The theoretical Q for the bottle as a Helmholtz 
resonator is therefore 

   Q  = 
317000
1000    =  317 

This is higher than what was obtained experimentally 
in Chapter 11.  There must therefore be other energy 
dissipating factors then just the radiating sound wave 
which reduce the Q of the system.  One of these 
would be the viscosity of the air in the neck of the 
bottle.  

13.4 Analysis of Systems Using Acoustic 
Impedance 

The concept of impedance is a very powerful tool for 
analyzing oscillating systems.  This is the principle 
reason it is so important in electrical engineering and 
why it has been brought into the subject of acoustics.   

In general systems can be broken down into three 
parts; a source, a reacting system and a receiver.  The 
performance of this overall system is then analyzed in 
terms of the individual impedances of the source, the 
system and the receiver (fig. 13.16) and the nature of 
any signal put into the source. 

  

  
SystemSource Receiver

 

 

Figure 13.16 A schematic of a complete 
system. 

From Chapter 9 the nature of any input from the 
source can be described by the amplitudes and phases 
of the Fourier components of its input.  By knowing 
the impedances of the system for these components, 
the overall performance of the system can be 
understood. 

What is needed, then, are the impedances of the 
source, system and receiver for the various 
frequencies.  This is often expressed in a graph which 
gives the locus of the head of the impedance phasor 
for the various frequencies.  Typical graphs for a 
system are shown in fig. 13.17. 

The diagram at the top is fairly standard;  the 
impedance always has positive resistance and positive 
reactance.  In electrical systems this would mean that 
at all frequencies the system is resistive and 
inductive.  In acoustic systems it means that the 
system is resistive and inertive (primarily reacting 
through its mass).  The diagram beneath is perhaps 
puzzling.  The reactance going negative at the low 
frequencies (below about 1400 Hz) is easy to 
understand; it means that at low frequencies, the 
capacitance of the system is providing the principal 

reactance.  Above 1400 Hz, the inertance (or 
inductance) takes over.  However, what about the 
resistive component going negative at about 4000 
Hz?    

1000 Hz

2000 Hz

3000 Hz

X

R0

Stable 
system

1000 Hz

2000 Hz

3000 Hz
X

R0

4000 Hz

5000 Hz

6000 Hz
7000 Hz

Unstable 
system

 

Fig 13.17  Typical graphs for the impedance 
of two types of systems at various frequencies.  
The heavy curve is the locus of the head of the 
phasors representing the impedance for the 
various frequencies.  Frequency then becomes a 
parameter along the length of this locus.   

A negative resistance corresponds to the pressure 
across a device being in phase with the velocity in the 
sense that when a velocity occurs, a pressure occurs 
that will drive that velocity.  (The pressure being in 
phase with the velocity up to now has been 
considered to be an externally applied pressure; the 
pressure being generated by the system being 
opposite to this and thereby generating "resistance".   

A negative resistance therefore means that the system 
aids flow through it.  This means that energy is not 
dissipated but enhanced.  This, of course, is the 
consequence of positive feedback in a system. 

The diagram to the right is therefore that of a typical 
fed-back system.  It can be seen that, given the right 
input source impedance to match the system 
impedance, the system will oscillate at a frequency 
somewhere in the negative resistance side of the 
diagram. 

The graph for the impedance of an acoustic system 
will generally vary with the point in the system 
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chosen for the input.  Thus connecting sources to 
different points in the system can give different feed-
back oscillation frequencies. 

Exercises and Discussion Topics 

  

1.   Describe the motion of air as a sound wave with 
a pure tone is passing through it.  What is the 
relative phase of the pressure oscillation and the 
velocity oscillation?  What is the relationship 
between the pressure and velocity amplitudes?  
What changes between pressure and velocity 
when a wave goes in the opposite direction?  
Distinguish clearly between the actual air 
velocity and the wave velocity of the sound.  

2. How does pressure and velocity in sound wave 
oscillations lead to the transmission (or 
absorption) of energy by a sound wave?  What 
is the connection between intensity, pressure 
and air velocity in a sound wave?  

3. What is meant by the term "characteristic 
acoustic impedance" of air?  Is it resistive or 
reactive?  Why is it a useful concept?  What are 
the connections between intensity, pressure, 
velocity and characteristic acoustic impedance?  

4. The density of hydrogen is 0.09 kg/m3 and the 
velocity of sound in hydrogen is 1270 m/s.  
How does the acoustic impedance of hydrogen 
compare with that of air?  

5. The density of water is 1 kg/liter and the 
velocity of sound in water is 1500 m/s.  How 
does the acoustic impedance of water compare 
with that of air?  Discuss the problem of getting 
sound waves in air to vibrate the fluid 
surrounding the basilar membrane  (so that you 
can hear the sound) using these figures.  

6. a)What does a hard reflecting surface do to the 
pressure and the air velocity in a sound pulse 
when it bounces off that surface?  What is 
happening at the instant the sound pulse is being 
reflected?  

     b)What does a opening in the confining walls of 
a tube do to the pressure and air velocities in a 
sound pulse arriving at that opening?  What is 
happening at the instant the sound pulse is at the 
opening?  

  7. What is the relative phase between the pressure 
oscillations and the velocity oscillations in air 
near a hard sound reflecting surface?  What is 
the relative phase near an opening in a cavity? 
Justify your answers by short statements.  How 
else does the relationship between pressure and 
velocity oscillations change in going between 
these two extremes?  

8. Using the figures of problem 5, what would be 
the percentage of sound energy reflected from 
perpendicular incidence of a sound wave in air 
onto water?  

9. The density of steel is 7900 kg/m3 and the 
velocity of sound in steel is 5000 m/s.  What 
percentage of the sound energy is reflected from 

perpendicular incidence of a sound wave from 
air onto steel?  

    

10. What is meant by the term "acoustic 
impedance"?  What is the difference between 
resistive acoustic impedance and reactive 
acoustic impedance (i.e. acoustic reactance)?  
What are the two kinds of acoustic reactance?  
Why is sound intensity related to "characteristic 
acoustic impedance" while sound power is 
related to simply "acoustic impedance"?  What 
part of the acoustic impedance determines the 
sound power?  

11. a)Sketch a graph of the acoustic impedance as 
seen by a source at various points in a 
horizontal completely closed tube when the 
source is driving sound waves to the right at the 
fundamental resonant frequency of the tube.  

    b)Repeat part a) for a horizontal tube which is 
open at both ends.  

 12. A child's eardrum is measured to have an 
acoustic impedance of 45 MegOhm with an 
impedance phase factor of 30 degrees. What is 
the acoustic resistance and the acoustic 
reactance?  Is the eardrum behaving as a mass 
to be moved or as a pierced opening?  

 13. Where would you place a high impedance 
sound source in a tube with an open end so that 
it will excite all normal modes of oscillation of 
air in the tube?  Explain in one sentence why.  
Where would you place the source to eliminate 
the second mode above the fundamental?  What 
other modes would you eliminate by placing the 
source at this point?  

  14. Describe the general features of the acoustic 
impedance of the air surrounding a vibrating flat 
surface as the vibration frequency increases 
from very low to very high.  Why would it be 
predominantly reactive at low frequency and 
predominantly resistive at high frequency?  

15. a) Given the acoustical impedance chart of fig. 
13.14, what will be the acoustic impedance a 
loudspeaker made up of a flat plate 25 cm in 
diameter vibrating at  60 Hz?  What would it be 
at 600 Hz?  

    b) What would be the acoustic power radiated if 
the amplitude of the speaker movement was 1 
cm (1 cm to both sides of it's equilibrium 
position) at 60 Hz? 

 c) What would be the amplitude of the speaker 
movement for the same air flow rate at 600 Hz?  
What would be the sound power radiated by the 
speaker at this frequency and this amplitude of 
movement? 

 d) What would be the decibel level of 
reverberant sound in a room of 10 meters by 6 
meters by 2.5 meters with a reverberation time 
of 1.2 seconds for these two frequencies? 

16. Why are very high peak power levels 
sometimes necessary in sound systems in order 
to satisfactorily handle transients? 
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Answers 

 

4) 0.277 times; 5) 3600 times;  8) 99.89% 9) 99.996% 
12) Resistance = 39 Mohm, Reactance = 22.5 Mohm 
13) 250 15) a) 840, phase angle 86o, 8060, phase 
angle 47o b) 2 Watt peak, 1 Watt average c) 1 mm, 
200 Watt peak, 100 Watt average d) 113 dB, 133 dB 

 

 

APPENDIX 

 

PEAK POWER VERSUS AVERAGE POWER 

 

The power involved in any electrical or acoustic 
device is always given by the equations; 

 Power =  p U   (Acoustical) 

or     

 Power =  V I    (Electrical) (A13.1) 

This power is constantly changing as the pressure and 
air flow change in a sound or as the voltage and the 
current changes in an electrical circuit.  The perceived 
intensity of a sound is related to the average intensity 
of the sound or indirectly, to the average power 
output of the sound source.  The average power 
involved in an oscillation is therefore a matter of 
some importance. 

It will not be proved here but for a pure sound of one 
frequency, the relationship between the average 
power and the peak power is quite simple; the 
average power is just half the peak power. This can 
perhaps be believed from the graphs shown in fig. 
A13.1. In that figure the situation discussed in this 
chapter where there was 8 m3 of sound air flow 
through a 4 m2 area and a sound pressure associated 
with this flow of 826 Pa (very high values but 
suitable for the trial calculation to be given here).  
Suppose that these flows and pressures were actually 
peak values in the sound oscillations. The result of 
these pressure and flow values would be a power 
level in the sound of as also shown in the diagram. 
The average sound power would be half the peak 
value or 3304 watts. 

When dealing with average powers in oscillating 
systems, it is convenient to define values of the 
oscillating parameters which will give average power 
when used into equations.  For example, in sound it is 
convenient to define values of the pressure and air 

flow which will give the  average  power when used 
in the equations; 

 Average Power = RA U2 
eff  (A13.2) 

and    

 Average Power =  
p2

eff
RA

  (A13.3) 
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Figure A13.1 Pressure, air flow rate and power 
for a sinusoidal oscillation through a resistance. 

Taking the case in fig. A13.1, a power of 3304 watts 
in an acoustic resistance of 103.5 ohms would require 
an effective  flow rate given by  

  3304 = U2 
eff  103.5   

  Ueff = 5.65 m3/s (A13.4) 

This flow can be thought of as the effective flow 
through the resistance.  The relationship between this 
value and the peak value of 8 m3/s can be seen to be; 

  
Ueff

Upeak
   = 

5.66
8    =  

1
2

  (A13.5) 

This "effective" flow rate is generally referred to as 
the RMS (for Root Mean Square) value of the flow 
rate.  The term comes from the fact that what you are 
averaging when you average the power is the square 
of U.  The square root of this average of the square is 
called the "root mean square."  Thus for a simple pure 
sound of one frequency  the RMS value of the 
acoustic current will be the peak value divided by the 
square root of 2. 
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The same considerations can be applied to the 
pressure.  To get an acoustic power of 3304 watts into 
an acoustic resistance of 103.5 ohms will take 

   3304 =  
p2

eff
103.5    

   peff  =  585 Pa (A13.6) 

Again this may be thought of as an effective pressure.  
Its value is seen to be related to the peak pressure by 
the same sort of equation as for the acoustic air flow; 

   
peff

ppeak
   =  

1
2

  (A13.7) 

This "effective" acoustic pressure is also called the 
RMS acoustic pressure for the same reason that the 
effective acoustic flow is called the RMS flow.  
Again, for a pure sound of only one frequency, the 
RMS value of pressure is the peak pressure divided 
by the square root of 2. 

We can now freely use these RMS values of pressure 
and sound air flow to calculate average acoustic 
powers.  In the case we have here; 

 

Average power  =  
p2

eff
RA

    

   =  
5852

103.5   =  3304 Watt 

   =  U2 
eff  p    

   =  5.652  103.5  =  3304 Watt 

   =  prms Urms   

   =  585  5.65  =  3304 Watt 

    ( 13.8) 

In the case of acoustic pressure, the effective or RMS 
pressure is so important that when one refers to the 
acoustic pressure one is generally  referring actually 
to the RMS pressure, without even saying the "RMS".  
Thus, if we have a sound intensity of say 1 watt per 
m2, we can calculate the acoustic pressure from the 
relation; 

   I  = 
p2

413   

   p = 413 I    ( 13.9) 

for I = 0.01 Watt/m2 (100 dB),  p = 2.03 Pa 

Since the intensity we are usually referring to is the 
average acoustic intensity, the pressure that we 
calculate is actually the RMS acoustic pressure.  For a 
pure tone sound of just one frequency, the actually 
pressure would have peak values of ± 2 times this or 
±2.88 Pa. 

A similar situation occurs in electrical power.  The 
so-called "110 Volt" system used for house wiring 
has a voltage swing from +155 Volt to -155 Volt.  
The "110 Volts" actually refers to the RMS voltage of 
this voltage swing.  Similarly for the electrical current 
drawn.  If a device such as an electric iron draws 10 
Amperes of current it is actually drawing about 14 
Amperes at peak.  The "10 Amperes" refers to RMS 
or effective Amperes. 

In the case of very complex oscillations, typical for 
sound, there are no such simple relationship between 
peak values and the RMS values.  The RMS values of 
the pressure is now determined by measuring the 
average intensity by some metering device and 
calculating the RMS pressure that would give such 
intensity by the equation; 

  prms = 413I  ( 13.10) 

In such an RMS determination there can be very high 
spikes which do not contribute very much to average 
power.  Consider as an example which can be easily 
calculated, a pressure which goes to 10 Pa for 1 ms 
and then stays at 1 Pa for 99 ms.  A graph of this 
variation would be as shown in fig. A13.2 

0

10 Pa

1 Pa

1 ms

100 ms

p     = 1.4 Pa  rms

 

Figure A13.2 A graph of a sudden pressure 
pulse. 

Calculating the average intensity for this period using 
the equation I = p2/413, we get for 10 Pa an intensity 
of 102/413 or 0.242 watt/m2 for 1 ms.  We then get an 
intensity of 1/413 or 0.00242 watt/m2 for 99 ms. 

The total energy delivered in the 100 ms is therefore 
0.242  0.001 + 0.00242  0.099 or 0.000481 
Joules/m2.  The average intensity is 0.000481/0.1 or 
0.00481 watts/m2. 

Converting this back to an RMS intensity, we get; 

 prms = 413  0.0048    

 =  1.4 Pa (A13.11) 

Thus the RMS pressure is only about 1/7 th of the 
peak pressure. 
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More important from the point of view of audio 
playback systems, the accurate reproduction of this 
transient peak would require that the system be able 
to deliver about 50 times as much peak power as 
average power. 

This is the reason that good sound systems are 
capable of delivering much more power than is 
required for simply  sustaining high levels of sound in 
a room.  They need the power for the occasional 
transient which will make high demands on the 
system for accurate reproduction. 

In the above the acoustic power was calculated from a 
knowledge of the acoustic current. A similar concept 
is used for acoustic power related when the pressure 
applied to a system is known.  Here, however, the 
connection to the resistance is not so simple if the 
impedance is complex; 

 Power = pU cos q  =   

 
p2

Z    cos  = p2 
R
Z2    (A13.12) 

To get a simple form for the equation connecting 
power to pressure, the concept of "admittance" is 
sometimes used; 

 Y  =  
U
p    = 

1
Z  (A13.13) 

The components of admittance are "conductance" and 
"susceptance"  related to the admittance in the same 
way that resistance and reactance are related to 
impedance (fig. A13.3) 
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Figure A13.3  The graphical relationship 
between conductance,  susceptance and 
admittance. 

The conductance is the ratio of the current in 
phase with the pressure to the pressure and the 
susceptance is the ratio of the component of 
current 90o out of phase with the pressure.  In 
this concept, the current is divided into two 
parts (in the impedance concept the pressure is 
divided into two part; that across the resistance 
and that across the reactance.) 

The acoustic power is then all due to the current 
through the conductance, the current through the 
susceptance taking no net energy in a complete cycle.  
The power dissipated by the system is then; 

 P = p U cos  =  p 2 
U
 p  cos    

 = p2 Y cos  = p2 G (A13.14) 

 

 

 


