
Physics 551 Homework 1

Due Friday 12 September 2014

1 Hamiltonian need not be defined on all of Hilbert

space

Consider the Simple Harmonic Oscillator. The eigenstates of the Hamiltonian are labeled |n〉
and have energy

H |n〉 = h̄ω
(

n +
1

2

)

|n〉 ,

for n = 0, 1, . . ..

Consider the infintie series of (improperly normalized) states

|Sn〉 =
n
∑

m=0

1

m+ 1
|m〉 , ‖Sn‖2 ≡ 〈Sn| |Sn〉 .

Also define the distance between two members of this state as usual,

D2

Sn,Sm

≡
(

〈Sn | − 〈Sm |
)(

|Sn〉 − |Sm〉
)

.

Show that the series converges,1

lim
n→∞

Supm>nDSn,Sm
= 0 .

Therefore completeness requires that the state S∞ ≡ limn→∞ Sn exists. Find its squared norm

〈S∞ | |S∞〉. (There is a closed-form expression!)

Next, find an expression for the expectation value of the energy in the state Sn,

ESn
≡ 〈Sn |H |Sn〉 .

Show that, while each ESn
exists and is finite, that limn→∞ESn

diverges. (Here and throughout

this course, if you don’t want to make a rigorous proof, you are allowed to appeal to well known

mathematical results, provided they really are well known.)

Therefore there is a state S∞ which is present in the Hilbert space, but the Hamiltonian

is not well defined on this state.

2 Energies in the WKB approximation

Consider a particle moving in 1 dimension under the Hamiltonian

H = − h̄2

2m
∂2

x + ax4

1Sup means “Supremum,” meaning the smallest number which is at least as large as any member of a set.
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which is an anharmonic oscillator.

First, argue on dimensional grounds that the ground state energy is a pure number times

the dimensionful combination h̄4/3a1/3m−2/3.

Next, use the WKB approximation to estimate the energies of the ground and excited

states. To do this, use the result that the WKB estimate of the phase accumulated in crossing

the classically allowed region is (n+ 1/2)π. Here the classically allowed region is x such that

ax4 < E; and the phase accumulated is the WKB estimate
∫

√

2m(E − V )dx/h̄. Hint: you

may need the integral

∫

1

−1

√
1− x4 dx =

π1/2Γ(5/4)

Γ(7/4)
≃ 1.748038369528 . . . .

Compare your results to the exact energies,

n energy

0 0.668 (h̄4a/m2)1/3

1 2.394 (h̄4a/m2)1/3

2 4.697 (h̄4a/m2)1/3

3 7.336 (h̄4a/m2)1/3

4 10.244 (h̄4a/m2)1/3

5 13.379 (h̄4a/m2)1/3

6 16.712 (h̄4a/m2)1/3

3 Diatomic vibrational states

Atoms attract at large distance and repel at short distance. The Leonard-Jones potential

V (r) = −A

r6
+

B

r12

is a good model for the potential. The O2 oxygen molecule has a bond length (inter-atomic

spacing) of r0 = 120.75 picometers and a binding energy of V0 = 5.115 eV (electron volt).

Assuming the bond length and binding energy are determined by the classical minimum of

V (r), express A and B in terms of V0 and r0.

An 16O atom weighs 16 Atomic Mass Units (AMU). Use the WKB approximation to esti-

mate the number of angular-momentum 0, bound (vibrational) states of the oxygen molecule.

You may have to do one integral numerically or via Mathematica, and you will have to look

up what an eV and an AMU are in real units.

For extra credit, find the largest angular momentum ℓ for which a bound molecular state

exists. This may be a little tricky and might require some numerics.

4 Tunneling from a metal

Inside a metal, conduction electrons are in a (nearly) flat potential. They have a range of

kinetic energies, from 0 up to a maximum called the Fermi energy Ef .
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At the boundary of the metal the potential rises by Ef + W , where W is the “work

function” of the metal, equal to the energy which must be supplied to an electron to escape

the metal. Taking the boundary to be at x = 0, the potential is then −Ef −W for x < 0 and

0 for x > 0.
Now apply an electric field, so that, besides the step-

function, there is also a linear component to the po-

tential V = −eE x outside the metal. (Here E is the

electric field strength outside the metal; naturally there

is no E field inside the metal, so the potential is flat

inside.) Therefore, at some distance d = W/eE from

the metal’s surface, an electron with energy Ef again

becomes classically allowed.
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Consider the wave function of an electron of energy ε ≤ Ef , moving in the x direction

inside the metal and impinging on the boundary. Calculate the wave function, in the WKB

approximation, inside the metal, in the classically forbidden region, and in the classically

allowed region outside the metal. (The wave function should be an almost perfect standing

wave inside the metal, strictly shrinking in the forbidden region, and strictly a traveling wave

moving away from the metal outside – that is, there is no incoming wave from outside the

metal.)

Find the probability current leading away from the metal, as a function of the probability

density inside the metal, ε, W + Ef − ε, and eE. How does the rate of escape vary with

electron energy and with E-field, and can you explain this qualitatively?

[In this problem you should try to find the exponential factors, do not worry about factors

of order 2 from doing careful matching. In any case the potential is more complicated within

a few atomic lengths of the surface, which will correct your result by some large – but not

exponential – factor.]
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