
Physics 551 Homework 12

Due Friday 5 December 2014

1 Bessel equation

In class we saw that the regular solution of the Bessel equation
[

∂2
x +

2

x
∂x + 1−

ℓ(ℓ+ 1)

x2

]

Rℓ(x) = 0 (1)

is of form

lim
x→∞

Rℓ(x) =
1

x
sin

(

x−
ℓπ

2

)

. (2)

Let us see that this is the behavior expected, for large ℓ.

First, show that the substitution u(x) = xR(x) (or R(x) = u(x)/x) leads to a slightly

simpler differential equation
[

∂2
x + 1−

ℓ(ℓ+ 1)

x2

]

u(x) = 0 . (3)

This looks like a 1-dimensional Schrödinger equation with energy 2E = 1 and potential

2V = ℓ(ℓ + 1)/x2. Next, make the approximation ℓ(ℓ + 1) ≃ (ℓ + 1/2)2, which is valid

up to small corrections.

At what value of x is the classical turning point x0?

Show that the WKB approximation for the solution at x > x0 is

u(x > x0) ≃WKB

(

x2 − x2
0

x2

)

−1/4

sin
[

π

4
+
∫ x

x0

√

1− x2
0/y

2 dy
]

. (4)

Here π/4 is the phase factor associated with the turning-point (Airy function) matching which

we previously studied, and the integral equals (you will show!) the phase associated with the

WKB approximation in the large-x region. Evaluate this expression and show that it correctly

corresponds to the limiting behavior of the Bessel function

uℓ(x) →x≫1 sin(x− ℓπ/2) . (5)

2 Small hard sphere

A model potential for short-range repulsive interactions is the hard sphere potential,

V (r) =

{

∞ , r < r0 ,

0 , r > r0 .
(6)

Here we consider the low-energy case in which kr0 ≪ 1. The scattering cross-section is

dominated by the ℓ = 0 (“s-wave”) scattering channel, but for some purposes it is necessary

to understand what happens in higher ℓ “waves” as well. Here we explore this.
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1. Show (this is not hard) that the solution for the radial equation Rℓ(r > r0) is determined

by Eq. (1), with x ≡ kr, subject to the boundary condition Rℓ(x = kr0) = 0.

2. Show (also not hard–quote the relevant standard results from the theory of ordinary

differential equations) that the most general solution to Eq. (1) is

Rℓ(x) = C1jℓ(x) + C2nℓ(x) , (7)

where jℓ and nℓ are the standard solutions to the equation, the spherical Bessel and

Neumann functions.

3. Show that the boundary condition fixes the ratio

C2

C1
= −

jℓ(kr0)

nℓ(kr0)
. (8)

4. By considering the asymptotic large-x limits of jℓ and nℓ,

jℓ(x) →
1

x
sin

(

x−
ℓπ

2

)

, nℓ(x) → −
1

x
cos

(

x−
ℓπ

2

)

, (9)

show that the phase shift is given by

δℓ = − arctan
C2

C1
. (10)

5. Use the explicit expressions

n0(x) = −
cos(x)

x
, n1(x) = −

cos(x)

x2
−

sin(x)

x
, (11)

and the recurrence relation

nℓ+1(x) =
2ℓ+ 1

x
nℓ(x)− nℓ−1(x) (12)

to show that the leading small-x behavior of nℓ is

nℓ(x) = −
(2ℓ− 1)!!

xℓ+1
+O(x−ℓ) . (13)

6. Define the Wronskian of the solutions jℓ, nℓ to be

Wℓ(x) ≡ jℓ(x)∂xnℓ(x)− nℓ(x)∂xjℓ(x) . (14)

Consider ∂xW ; use the fact that jℓ and nℓ solve Eq. (1) to prove that ∂xW = −2W/x

and therefore W ∝ x−2.

Show from the large-x asymptotics, Eq. (9), that W = 1/x2.
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7. As the regular solution to Eq. (1), jℓ(x) ∝ x+ℓ at small x. Use the value you found for

the Wronskian, together with the small-x behavior of nℓ(x), to show that

jℓ(x ≪ 1) =
xℓ

(2ℓ+ 1)!!
+O(xℓ+1) . (15)

8. Combine all your results to find the leading small-x behavior for the phase shift δℓ.

Now let us apply this result. Consider scattering with kr0 < 1. Show that at leading order

(including only the ℓ = 0 phase shift), the scattering is isotropic. At next order – including the

ℓ = 1 phase shift – does the forward scattering (θ ≪ 1) increase and the backwards scattering

(π − θ ≪ 1) decrease, or vice versa?

Identical fermions must have an overall antisymmetric wave function. That means that

two fermions in a symmetric spin state (for instance, spin-1
2
particles in the Stot = 1 state)

must have an antisymmetric spatial wave function. Explain why ℓ must therefore be odd.

What ℓ value then dominates the scattering at small kr0, and by what power of k – and what

power of E – does the scattering shrink as k is made small?

3 Born approximation

In the Born approximation, the emission amplitude is given by

f(θ, φ) =
−m

4πh̄2

∫

V (r)e−i(~k′−~k)·~rd3~r , (16)

~k = kẑ , (17)

~k′ = k (cos θẑ + sin θ cosφx̂+ sin θ sinφŷ) . (18)

This arises at first perturbative order in V . In this problem we will explore what this has to

do with the partial wave expansion. We will do this by working in from both sides.

First, let us find the phase shift at first order in V . Write down the differential equation

obeyed by Rℓ(r), including the contribution of V , as

(

∂2
r +

2

r
∂r + k2

−
ℓ(ℓ+ 1)

r2

)

Rℓ(r) =
2mV (r)

h̄2 Rℓ(r) . (19)

Write the regular and singular solutions of the free equation (the one where the RHS is replaced

by 0) as J(r) and N(r) (which equal jℓ(kr) and nℓ(kr)).

Argue that the solution Rℓ(r) can always be written as

Rℓ(r) = cj(r)J(r) + cn(r)N(r) (20)

and that this form is in fact underdetermined; we can add the extra condition that

J(r)c′j(r) +N(r)c′n(r) = 0 . (21)
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(Argue this by counting freedoms and recalling that solutions to second order ODEs are

determined by a value and a first derivative.) Explain why the small-r boundary condition

is cn(0) = 0. For simplicity choose cj(0) = 1. Show that, perturbing to linear order in the

potential V , that cn obeys

c′n(r) =
2mV (r)

h̄2

J2(r)

W (r)
(22)

where W (r) = JN ′ − NJ ′ = 1/(kr2) is the Wronskian of the two solutions. By considering

the definition of δℓ in terms of the large-r behavior of the solution, show that

δℓ = lim
r→∞

− arctan
cn
cj

. (23)

Argue that at leading order, we do not need the linear correction to cj , so we can treat cj = 1

in the above. Finally, show that to linear order in the potential,

δℓ =
−2km

h̄2

∫

∞

0
V (r)r2J2(r)dr . (24)

Write down the expression for fℓ arising from this result (again to linear order in V ).

Now show that this is the same as the result Eq. (16). To do so, recall that

fℓ =
∫

∞

0
dφ
∫ π

0
sinθ dθ Yℓ0(θ, φ) f(θ, φ) , (25)

and use the expansion

ei
~k·~r =

∞
∑

ℓ′=0

√

4π(2ℓ′ + 1)Yℓ′0(θ, φ)i
ℓ′jℓ′(kr) , (26)

where the angles θ, φ are with respect to the ~k axis. Make the same expansion of e−i~k′·~r except

noting that the angles are now with respect to the k′ axis, which is at some angle with respect

to the ~k axis. Perform the angular integrals using identities for spherical harmonics, and show

that the resulting value of fℓ is the same as you find from Eq. (24). [[This may be tricky! You

may need the identity relating spherical harmonics in two coordinate systems separated by an

angle θ from each other:

Pℓ(cos θ) =
4π

2ℓ+ 1

m=ℓ
∑

m=−ℓ

Y ∗

ℓm(θ
′, φ′)Yℓm(θ

′′, φ′′) (27)

where θ′, φ′ and θ′′, φ′′ are the same physical point expressed in the two coordinate systems.]]

4


