
Physics 551 Homework 3

Due Friday 26 September

The early problems again refer to the scaled Simple Harmonic Oscillator

i∂t |ψ〉 = h |ψ〉 , h =
1

2

(

ξ2 + p2ξ
)

, pξ = −i∂ξ (1)

and its raising and lowering operators

a† ≡ ξ − ipξ√
2

, a ≡ ξ + ipξ√
2

(2)

obeying the commutation relations
[

ξ , pξ
]

= i ,
[

a , a†
]

= 1 . (3)

1 Energy fluctuations

Consider the coherent state |α〉 = C(α) |0〉 and the squeezed state |ζ〉 = S(ζ) |0〉, with the

same definitions for the operators as in the previous homework set. Consider general complex

values for the parameters α and ζ .

Compute directly 〈α|h |α〉, 〈α|h2 |α〉, 〈ζ |h |ζ〉, and 〈ζ |h2 |ζ〉. Use these to determine the

uncertainty in the energy, for each case (coherent and squeezed), as a function of α or ζ .

Hint: although α, ζ are complex, the expectation values are time independent. Is there a

more convenient choice of time to evaluate them? It may be easiest to work with h = (ξ2+p2ξ)/2

rather than expressing it in terms of a, a†; and use how ξ, pξ “move past” the operators

C(α), S(ζ) as derived in the last homework set.

extra credit: compute 〈h〉 and 〈h2〉 for a squeezed coherent state, with α, ζ generic (so in

particular there is no time when they are simultaneously real).

2 How to get a coherent state

Consider the time dependent Hamiltonian which arises when a simple harmonic oscillator is

subject to a time-dependent external force F (t):

H(t) =
ξ2 + p2ξ

2
− F (t)ξ . (4)

Suppose that there is no force before some time t0, so F (t < t0) = 0; and assume that the

system begins in the ground state |0〉 at time t = t0. Show that, at time t1 > t0, the system

will be in the coherent state eiφ(t) |α(t1)〉, with

α(t1) =
i√
2

∫ t1

t0

ei(t−t1)F (t) dt , (5)

and φ(t) some time-dependent phase which you should also compute. Hint: show that the

proposed explicit expression solves the Schrödinger equation with the time dependent force.
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3 Parity and eigenfunctions

Consider quantum mechanics in one dimension under a confining potential, that is, V1(x)

which diverges to +∞ as → ∞ or x→ −∞. The spectrum of eigenvalues of the Hamiltonian

H1 = − h̄2

2m
∂2x + V1(x) =

p2

2m
+ V1(x) (6)

is discrete and the states are properly normalizable.1

When a continuous real function changes sign, it must pass through zero. The point where

it equals zero is called a node. In this problem we will show that the n’th energy eigenstate

has n − 1 nodes, and that, if V (x) = V (−x) so that there is a parity symmetry, that the

eigenfunctions are alternately even and odd under parity.

If you get stuck on any subproblem, just ASSUME the result is true and tackle the re-

maining subproblems.

1. Write the equation satisfied by an energy eigenfunction uE(x) with energy E. Show

that, if uE(x) is a solution, then u∗E(x) is also a solution, with the same energy. Use this

to show that all eigenfunctions may be taken to be purely real. (This should be easy.)

2. Show that, if H1 = p2/2m+ V1(x) and H2 = p2/2m+ V2(x) with V2(x) ≥ V1(x) for all

x, then 〈ψ|H1 |ψ〉 ≤ 〈ψ|H2 |ψ〉 for any normalizable finite-energy state |ψ〉 (it need not

be an energy eigenstate of either Hamiltonian). That is, a state’s energy is always lower

under H1 than under H2.

3. Use this result to show that the ground state energy under H1 is lower than the ground

state energy under H2.

4. Suppose the uE(x) is an energy eigenfunction ofH1 with a node at x = x0. Then defining

V2(x) =

{

V1(x) x < x0 ,

∞ x > x0 ,
(7)

and

u(x) =

{

uE(x) x < x0
0 x > x0

, (8)

show that u(x) is an energy eigenfunction of H2 with the same energy as uE(x) has

under H1.

Repeat but taking u(x) and V2(x) to be finite for x > x0 and zero/infinity for x < x0.

5. Now suppose that uE(x) has two nodes at x0, x1. Show that the function u(x) = uE(x)

on the interval [x0, x1] and u(x) = 0 elsewhere is an energy eigenstate of H2, with the

same energy as uE(x) has under H1, if we now define V2(x) = V1(x) in the interval

[x0, x1] and V2(x) = ∞ elsewhere.

Show that in each of these cases, u(x) is not an energy eigenfunction of the original H1.

1We could prove this, but assume in this problem that it has already been proven.
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6. Use 4 to prove that the ground state under H does not have any nodes. Hint: use

contradiction. If the ground state had a node, show that there is a state with an equal

or lower energy which is not an energy eigenstate . . .

7. Prove that the ground state is the only energy eigenstate with no nodes. (Hint: orthog-

onality)

8. Suppose that u2(x) and u3(x) are energy eigenfunctions with energies E2 < E3. Show

that

• the first node of u2(x) is at larger x than the first node of u3(x).

• the last node (the node with largest x) of u2(x) occurs at a smaller value of x than

the last node of u3(x);

• If x3, x4 are neighboring nodes of u3(x), there are never two nodes x1, x2 of u2(x)

between them, eg, with x3 < x1 < x2 < x4.

Hint: for the first two, use 4. For the last, use 5. In each case, find two potentials V2
and V3 which each equal V1 in some range and are infinite outside, and for which the

(restricted) functions u2,3 are the ground states.

9. Suppose um(x), un(x) are distinct eigenfunctions of H1 with m,n nodes. Show that

Em < En implies that m < n.

10. Show that the spectrum of H1 is nondegenerate; that is, there are never linearly inde-

pendent energy eigenfunctions u1, u2 with the same energy. Hint: where would their

nodes be?

11. Prove that, if V (x) = V (−x), the Hamiltonian commutes with the parity operator π.

Use this to show that the energy eigenfunctions must be eigenfunctions of parity, with

eigenvalue ±1, that is, π |uE〉 = ± |uE〉. Show that functions of eigenvalue +1 always

have an even number of nodes and functions of eigenvalue −1 always have an odd number

of nodes. Therefore the eigenfunctions are alternately of even and odd parity, with an

even-parity ground state.
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