Physics 551 Homework 3

Due Friday 26 September

The early problems again refer to the scaled Simple Harmonic Oscillator

$$i\partial_t |\psi\rangle = h |\psi\rangle$$
, $h = \frac{1}{2} \left(\xi^2 + p_{\xi}^2\right)$, $p_{\xi} = -i\partial_{\xi}$ (1)

and its raising and lowering operators

$$a^{\dagger} \equiv \frac{\xi - ip_{\xi}}{\sqrt{2}}, \quad a \equiv \frac{\xi + ip_{\xi}}{\sqrt{2}}$$
 (2)

obeying the commutation relations

$$\left[\xi, p_{\xi}\right] = i, \qquad \left[a, a^{\dagger}\right] = 1.$$
(3)

1 Energy fluctuations

Consider the coherent state $|\alpha\rangle = C(\alpha) |0\rangle$ and the squeezed state $|\zeta\rangle = S(\zeta) |0\rangle$, with the same definitions for the operators as in the previous homework set. Consider general complex values for the parameters α and ζ .

Compute directly $\langle \alpha | h | \alpha \rangle$, $\langle \alpha | h^2 | \alpha \rangle$, $\langle \zeta | h | \zeta \rangle$, and $\langle \zeta | h^2 | \zeta \rangle$. Use these to determine the uncertainty in the energy, for each case (coherent and squeezed), as a function of α or ζ .

Hint: although α, ζ are complex, the expectation values are time independent. Is there a more convenient choice of time to evaluate them? It may be easiest to work with $h = (\xi^2 + p_{\xi}^2)/2$ rather than expressing it in terms of a, a^{\dagger} ; and use how ξ, p_{ξ} "move past" the operators $C(\alpha), S(\zeta)$ as derived in the last homework set.

extra credit: compute $\langle h \rangle$ and $\langle h^2 \rangle$ for a squeezed coherent state, with α, ζ generic (so in particular there is no time when they are simultaneously real).

2 How to get a coherent state

Consider the time dependent Hamiltonian which arises when a simple harmonic oscillator is subject to a time-dependent external force F(t):

$$H(t) = \frac{\xi^2 + p_{\xi}^2}{2} - F(t)\xi.$$
(4)

Suppose that there is no force before some time t_0 , so $F(t < t_0) = 0$; and assume that the system begins in the ground state $|0\rangle$ at time $t = t_0$. Show that, at time $t_1 > t_0$, the system will be in the coherent state $e^{i\phi(t)} |\alpha(t_1)\rangle$, with

$$\alpha(t_1) = \frac{i}{\sqrt{2}} \int_{t_0}^{t_1} e^{i(t-t_1)} F(t) \, dt \,, \tag{5}$$

and $\phi(t)$ some time-dependent phase which you should also compute. *Hint*: show that the proposed explicit expression solves the Schrödinger equation with the time dependent force.

3 Parity and eigenfunctions

Consider quantum mechanics in one dimension under a confining potential, that is, $V_1(x)$ which diverges to $+\infty$ as $\rightarrow \infty$ or $x \rightarrow -\infty$. The spectrum of eigenvalues of the Hamiltonian

$$H_1 = -\frac{\hbar^2}{2m}\partial_x^2 + V_1(x) = \frac{p^2}{2m} + V_1(x)$$
(6)

is discrete and the states are properly normalizable.¹

When a continuous real function changes sign, it must pass through zero. The point where it equals zero is called a *node*. In this problem we will show that the *n*'th energy eigenstate has n-1 nodes, and that, if V(x) = V(-x) so that there is a parity symmetry, that the eigenfunctions are alternately even and odd under parity.

If you get stuck on any subproblem, just ASSUME the result is true and tackle the remaining subproblems.

- 1. Write the equation satisfied by an energy eigenfunction $u_{\rm E}(x)$ with energy E. Show that, if $u_{\rm E}(x)$ is a solution, then $u_{\rm E}^*(x)$ is also a solution, with the same energy. Use this to show that all eigenfunctions may be taken to be purely real. (This should be easy.)
- 2. Show that, if $H_1 = p^2/2m + V_1(x)$ and $H_2 = p^2/2m + V_2(x)$ with $V_2(x) \ge V_1(x)$ for all x, then $\langle \psi | H_1 | \psi \rangle \le \langle \psi | H_2 | \psi \rangle$ for any normalizable finite-energy state $| \psi \rangle$ (it need not be an energy eigenstate of either Hamiltonian). That is, a state's energy is always lower under H_1 than under H_2 .
- 3. Use this result to show that the ground state energy under H_1 is lower than the ground state energy under H_2 .
- 4. Suppose the $u_{\rm E}(x)$ is an energy eigenfunction of H_1 with a node at $x = x_0$. Then defining

$$V_2(x) = \begin{cases} V_1(x) & x < x_0, \\ \infty & x > x_0, \end{cases}$$
(7)

and

$$u(x) = \begin{cases} u_{\rm E}(x) & x < x_0\\ 0 & x > x_0 \end{cases},$$
(8)

show that u(x) is an energy eigenfunction of H_2 with the same energy as $u_{\rm E}(x)$ has under H_1 .

Repeat but taking u(x) and $V_2(x)$ to be finite for $x > x_0$ and zero/infinity for $x < x_0$.

5. Now suppose that $u_{\rm E}(x)$ has two nodes at x_0, x_1 . Show that the function $u(x) = u_{\rm E}(x)$ on the interval $[x_0, x_1]$ and u(x) = 0 elsewhere is an energy eigenstate of H_2 , with the same energy as $u_{\rm E}(x)$ has under H_1 , if we now define $V_2(x) = V_1(x)$ in the interval $[x_0, x_1]$ and $V_2(x) = \infty$ elsewhere.

Show that in each of these cases, u(x) is not an energy eigenfunction of the original H_1 .

¹We could prove this, but assume in this problem that it has already been proven.

- 6. Use 4 to prove that the ground state under H does not have any nodes. *Hint*: use contradiction. If the ground state had a node, show that there is a state with an equal or lower energy which is not an energy eigenstate ...
- 7. Prove that the ground state is the *only* energy eigenstate with no nodes. (*Hint*: orthogonality)
- 8. Suppose that $u_2(x)$ and $u_3(x)$ are energy eigenfunctions with energies $E_2 < E_3$. Show that
 - the first node of $u_2(x)$ is at larger x than the first node of $u_3(x)$.
 - the last node (the node with largest x) of $u_2(x)$ occurs at a smaller value of x than the last node of $u_3(x)$;
 - If x_3, x_4 are neighboring nodes of $u_3(x)$, there are never two nodes x_1, x_2 of $u_2(x)$ between them, eg, with $x_3 < x_1 < x_2 < x_4$.

Hint: for the first two, use 4. For the last, use 5. In each case, find two potentials V_2 and V_3 which each equal V_1 in some range and are infinite outside, and for which the (restricted) functions $u_{2,3}$ are the ground states.

- 9. Suppose $u_m(x)$, $u_n(x)$ are distinct eigenfunctions of H_1 with m, n nodes. Show that $E_m < E_n$ implies that m < n.
- 10. Show that the spectrum of H_1 is nondegenerate; that is, there are never linearly independent energy eigenfunctions u_1 , u_2 with the same energy. Hint: where would their nodes be?
- 11. Prove that, if V(x) = V(-x), the Hamiltonian commutes with the parity operator π .

Use this to show that the energy eigenfunctions must be eigenfunctions of parity, with eigenvalue ± 1 , that is, $\pi |u_E\rangle = \pm |u_E\rangle$. Show that functions of eigenvalue +1 always have an even number of nodes and functions of eigenvalue -1 always have an odd number of nodes. Therefore the eigenfunctions are alternately of even and odd parity, with an even-parity ground state.