
Physics 551 Homework 8 Solutions

1 Density matrices and orthogonality

A spin-1
2
particle is in a statistical ensemble with a 50% probability to be in the |+z〉 state

(the eigenstate of Sz with eigenvalue h̄/2) a 50% chance to be in |+x〉 (the eigenstate of Sx
with eigenvalue h̄/2). [Note that these states are not orthogonal. Don’t worry about that

yet.] Use the standard procedure,

ρ =
∑

|ψi〉

Pi |ψi〉 〈ψi | (1)

to write this density operator in terms of states in the |±z〉 basis, and then as a matrix using

this basis. Use the density matrix to compute the probability that a measurement of the

z-component of spin will return value +h̄/2.

Now solve the eigenvalue/eigenvector problem for the density matrix. The eigenstates you

find are eigenstates of spin along a definite axis – that is, eigenstates of ~S · n̂ for some unit

vector n̂. Find n̂. What is the entropy of the density matrix, and is it the same as you would

guess at the beginning, knowing that there is a 50% chance to be in each of two states? What

would be a more proper description of the density matrix, in terms of probabilities to be in

orthogonal states?

2 Thermal density matrix

The thermal density operator is

ρ =
exp(−H/T )

Tr exp(−H/T )
. (2)

(The denominator just ensures that the trace of ρ is 1.) Write an explicit expression for the

density operator of a simple harmonic oscillator with energy spacing h̄ω. Find 〈n〉 (that is,

〈a†a〉) and the entropy.

Next consider the Hamiltonian of a two-state quantum system with states |+〉 and |−〉 and

Hamiltonian H = E0 |+〉 〈+|. Write an explicit expression for the thermal density operator

and find the probability to be in the |+〉 state and the entropy.

3 Landau Levels

The early parts of this problem are Problem 2.39 from the book.

Consider an electron moving in a uniform magnetic field in the z-direction, ~B = Bẑ.

Defining as usual

Πx ≡ px −
eAx
c

, Πy ≡ py −
eAy
c

, (3)

determine the commutator
[

Πx , Πy

]

.
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Write down the Hamiltonian H , and the difference between the Hamiltonain and the

part associated only with z-motion, Hxy ≡ H − p2z/2me. Argue from the form of Hxy and

the commutation relations you found (and by drawing an analogy with the previously solved

problem of a single simple harmonic oscillator), that the energy eigenstates ofHxy are discrete.

Show that the allowed energies are

Exy =
|eB|h̄

mec

(

n+
1

2

)

, E = Exy +
k2z
2me

, (4)

where k is the eigenvalue of the pz operator. The states with different values of n are called

Landau levels. [You may recognize ω = |eB|/mec as the cyclotron frequency of an electron in

this magnetic field.]

In the case of the SHO, we know that the ground state is nondegenerate. It then follows

that each excited state is also nondegenerate. But for the problem we are studying here, it is

not obvious – and in fact, not true – that the ground state of Hxy is nondegenerate. Let us

find its degeneracy.

First, show that, if there are precisely N independent eigenstates of Hxy with energy

eigenvalue (n + 1/2)(|eB|h̄/mec), then there are also precisely N independent eigenstates

with energy (n+ 3/2)(|eB|h̄/mec).

Next, suppose that the magnetic field B is uniform in a box of length Lx by Ly. Use the

usual physics trick of treating this box as periodic. For the case B = 0, use the standard

physics tricks to find the approximate total number of states with Exy < E0, where E0 is some

specific, very large value. Give a plausible physical argument that the number of states up to

energy E0 should not depend much on the value of B. Considering next the case where B is

not zero, find the approximate number of Hxy eigenstates up to energy E0 in terms of B and

N the degeneracy. Equate these relations to find the degeneracy N as a function of Lx, Ly,

and B. Show that N only depends on the total magnetic flux ΦB = BLxLy. Compare the

degeneracy N to the number of Dirac flux quanta.
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